

Any-Frequency Precision Clocks
Si5316, Si5319, Si5322, Si5323, Si5324, Si5325, Si5326, Si5327, Si5365, Si5366, Si5367,

Si5368, Si5369, Si5374, Si5375
Family Reference Manual

Si53xx-RM

## Table of Contents

Section Page

1. Any-Frequency Precision Clock Product Family Overview ..... 12
2. Narrowband vs. Wideband Overview ..... 16
3. Any-Frequency Clock Family Members ..... 17
3.1. Si5316 ..... 17
3.2. Si5319 ..... 18
3.3. Si5322 ..... 19
3.4. Si5323 ..... 20
3.5. Si5324 ..... 21
3.6. Si5325 ..... 22
3.7. Si5326 ..... 23
3.8. Si5327 ..... 24
3.9. Si5365 ..... 25
3.10. Si5366 ..... 26
3.11. Si5367 ..... 27
3.12. Si5368 ..... 28
3.13. Si5369 ..... 29
3.14. Si5374/75 Compared to Si5324/19 ..... 29
3.15. Si5374 ..... 30
3.16. Si5375 ..... 31
4. Device Specifications ..... 32
5. DSPLL (All Devices) ..... 46
5.1. Clock Multiplication ..... 47
5.2. PLL Performance ..... 48
5.2.1. Jitter Generation ..... 48
5.2.2. Jitter Transfer ..... 48
5.2.3. Jitter Tolerance ..... 49
6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 50
6.1. Clock Multiplication (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 50
6.1.1. Clock Multiplication (Si5316) ..... 50
6.1.2. Clock Multiplication (Si5322, Si5323, Si5365, Si5366) ..... 52
6.1.3. CKOUT3 and CKOUT4 (Si5365 and Si5366) ..... 64
6.1.4. Loop bandwidth (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 64
6.1.5. Jitter Tolerance (Si5316, Si5323, Si5366) ..... 64
6.1.6. Narrowband Performance (Si5316, Si5323, Si5366) ..... 64
6.1.7. Input-to-Output Skew (Si5316, Si5323, Si5366) ..... 64
6.1.8. Wideband Performance (Si5322 and Si5365) ..... 64
6.1.9. Lock Detect (Si5322 and Si5365) ..... 64
6.1.10. Input-to-Output Skew (Si5322 and Si5365) ..... 64
6.2. PLL Self-Calibration ..... 65
6.2.1. Input Clock Stability during Internal Self-Calibration (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 65
6.2.2. Self-Calibration caused by Changes in Input Frequency (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 65
6.2.3. Recommended Reset Guidelines (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 65
6.3. Pin Control Input Clock Control ..... 67
6.3.1. Manual Clock Selection ..... 67
6.3.2. Automatic Clock Selection (Si5322, Si5323, Si5365, Si5366) ..... 68
6.3.3. Hitless Switching with Phase Build-Out (Si5323, Si5366) ..... 69
6.4. Digital Hold/VCO Freeze ..... 70
6.4.1. Narrowband Digital Hold (Si5316, Si5323, Si5366) ..... 70
6.4.2. Recovery from Digital Hold (Si5316, Si5323, Si5366) ..... 70
6.4.3. Wideband VCO Freeze (Si5322, Si5365) ..... 70
6.5. Frame Synchronization (Si5366) ..... 70
6.6. Output Phase Adjust (Si5323, Si5366) ..... 71
6.6.1. FSYNC Realignment (Si5366) ..... 71
6.6.2. Including FSYNC Inputs in Clock Selection (Si5366) ..... 71
6.6.3. FS_OUT Polarity and Pulse Width Control (Si5366) ..... 71
6.6.4. Using FS_OUT as a Fifth Output Clock (Si5366) ..... 71
6.6.5. Disabling FS_OUT (Si5366) ..... 72
6.7. Output Clock Drivers ..... 72
6.7.1. LVPECL and CMOS TQFP Output Signal Format Restrictions at 3.3 V (Si5365, Si5366) ..... 72
6.8. PLL Bypass Mode ..... 73
6.9. Alarms ..... 73
6.9.1. Loss-of-Signal Alarms (Si5316, Si5322, Si5323, Si5365, Si5366) ..... 73
6.9.2. FOS Alarms (Si5365 and Si5366) ..... 73
6.9.3. FSYNC Align Alarm (Si5366 and CK_CONF = 1 and FRQTBL = L) ..... 74
6.9.4. C1B and C2B Alarm Outputs (Si5316, Si5322, Si5323) ..... 74
6.9.5. C1B, C2B, C3B, and ALRMOUT Outputs (Si5365, Si5366) ..... 74
6.10. Device Reset ..... 75
6.11. DSPLLsim Configuration Software ..... 75
7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375) ..... 76
7.1. Clock Multiplication ..... 76
7.1.1. Jitter Tolerance (Si5319, Si5324, Si5325, Si5326, Si5327, Si5368, Si5369, Si5374 and Si5375) ..... 76
7.1.2. Wideband Parts (Si5325, Si5367) ..... 76
7.1.3. Narrowband Parts (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 77
7.1.4. Loop Bandwidth (Si5319, Si5326, Si5368, Si5375) ..... 79
7.1.5. Lock Detect (Si5319, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 79
7.2. PLL Self-Calibration ..... 79
7.2.1. Initiating Internal Self-Calibration ..... 79
7.2.2. Input Clock Stability during Internal Self-Calibration ..... 80
7.2.3. Self-Calibration Caused by Changes in Input Frequency ..... 80
7.2.4. Narrowband Input-to-Output Skew (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 80
7.2.5. Clock Output Behavior Before and During ICAL ..... 80
7.3. Input Clock Configurations (Si5367 and Si5368) ..... 81
7.4. Input Clock Control ..... 81
7.4.1. Manual Clock Selection (Si5324, Si5325, Si5326, Si5367, Si5368, Si5369, Si5374) ..... 82
7.4.2. Automatic Clock Selection (Si5324, Si5325, Si5326, Si5367, Si5368, Si5369, Si5374) ..... 83
7.4.3. Hitless Switching with Phase Build-Out (Si5324, Si5326, Si5327, Si5368, Si5369, Si5374) ..... 84
7.5. Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374
and Si5375 Free Run Mode ..... 85
7.5.1. Free Run Mode Programming Procedure ..... 85
7.5.2. Clock Control Logic in Free Run Mode ..... 85
7.5.3. Free Run Reference Frequency Constraints ..... 86
7.5.4. Free Run Reference Frequency Constraints ..... 86
7.6. Digital Hold ..... 87
7.6.1. Narrowband Digital Hold (Si5316, Si5324, Si5326, Si5368, Si5369, Si5374) ..... 87
7.6.2. History Settings for Low Bandwidth Devices (Si5324, Si5327, Si5369, Si5374) ..... 89
7.6.3. Recovery from Digital Hold (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374) ..... 89
7.6.4. VCO Freeze (Si5319, Si5325, Si5367, Si5375) ..... 89
7.6.5. Digital Hold versus VCO Freeze ..... 89
7.7. Output Phase Adjust (Si5326, Si5368) ..... 90
7.7.1. Coarse Skew Control (Si5326, Si5368) ..... 90
7.7.2. Fine Skew Control (Si5326, Si5368) ..... 90
7.7.3. Independent Skew (Si5324, Si5326, Si5368, Si5369, Si5374) ..... 91
7.7.4. Output-to-output Skew (Si5324, Si5326, Si5327, Si5368, Si5369, Si5374) ..... 91
7.7.5. Input-to-Output Skew (All Devices) ..... 91
7.8. Frame Synchronization Realignment (Si5368 and CK_CONFIG_REG = 1) ..... 91
7.8.1. FSYNC Realignment (Si5368) ..... 93
7.8.2. FSYNC Skew Control (Si5368) ..... 94
7.8.3. Including FSYNC Inputs in Clock Selection (Si5368) ..... 94
7.8.4. FS_OUT Polarity and Pulse Width Control (Si5368) ..... 94
7.8.5. Using FS_OUT as a Fifth Output Clock (Si5368) ..... 94
7.9. Output Clock Drivers (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375) ..... 95
7.9.1. Disabling CKOUTn. ..... 95
7.9.2. LVPECL TQFP Output Signal Format Restrictions at 3.3 V ( $\mathrm{Si} 5367, \mathrm{Si} 368$, Si5369) ..... 95
7.10. PLL Bypass Mode (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375) ..... 96
7.11. Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375) ..... 96
7.11.1. Loss-of-Signal Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375) ..... 96
7.11.2. FOS Algorithm (Si5324, Si5325, Si5326, Si5368, Si5369, Si5374) ..... 97
7.11.3. C1B, C2B (Si5319, Si5324, Si5325, Si5326, Si5327, Si5374, Si5375) ..... 99
7.11.4. LOS (Si5319, Si5375) ..... 99
7.11.5. C1B, C2B, C3B, ALRMOUT (Si5367, Si5368, Si5369 [CK_CONFIG_REG = 0]) ..... 99
7.11.6. C1B, C2B, C3B, ALRMOUT (Si5368 [CK_CONFIG_REG = 1]) ..... 100
7.11.7. LOS Algorithm for Reference Clock Input (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 100
7.11.8. LOL (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 100
7.11.9. Device Interrupts ..... 101
7.12. Device Reset ..... 101
7.13. $I^{2} \mathrm{C}$ Serial Microprocessor Interface ..... 102
7.14. Serial Microprocessor Interface (SPI) ..... 103
7.14.1. Default Device Configuration ..... 104
7.15. Register Descriptions ..... 104
7.16. DSPLLsim Configuration Software ..... 104
8. High-Speed I/O ..... 105
8.1. Input Clock Buffers ..... 105
8.2. Output Clock Drivers ..... 107
8.2.1. LVPECL TQFP Output Signal Format Restrictions at 3.3 V (Si5367, Si5368, Si5369) ..... 107
8.2.2. Typical Output Circuits ..... 107
8.2.3. Typical Clock Output Scope Shots ..... 109
8.3. Typical Scope Shots for SFOUT Options ..... 110
8.4. Crystal/Reference Clock Interfaces (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, and Si5375) ..... 113
8.5. Three-Level (3L) Input Pins (No External Resistors) ..... 115
8.6. Three-Level (3L) Input Pins (With External Resistors) ..... 116
9. Power Supply ..... 117
10. Packages and Ordering Guide ..... 118
Appendix A—Narrowband References ..... 119
Appendix B—Frequency Plans and Jitter Performance (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, Si5375) ..... 121
Appendix C—Typical Phase Noise Plots ..... 126
Appendix D—Alarm Structure ..... 144
Appendix E—Internal Pullup, Pulldown by Pin ..... 147
Appendix F-Typical Performance: Bypass Mode, PSRR, Crosstalk, Output Format Jitter ..... 154
Appendix G-Near Integer Ratios ..... 162
Appendix H—Jitter Attenuation and Loop BW ..... 164
Appendix I—Si5374 and Si5375 PCB Layout Recommendations ..... 169
Appendix J—Si5374 and Si5375 Crosstalk ..... 173
Document Change List ..... 178
Contact Information ..... 180

## List of Figures

Figure 1. Si5316 Any-Frequency Jitter Attenuator Block Diagram ..... 17
Figure 2. Si5319 Any-Frequency Jitter Attenuating Clock Multiplier Block Diagram ..... 18
Figure 3. Si5322 Low Jitter Clock Multiplier Block Diagram ..... 19
Figure 4. Si5323 Jitter Attenuating Clock Multiplier Block Diagram ..... 20
Figure 5. Si5324 Clock Multiplier and Jitter Attenuator Block Diagram ..... 21
Figure 6. Si5325 Low Jitter Clock Multiplier Block Diagram ..... 22
Figure 7. Si5326 Clock Multiplier and Jitter Attenuator Block Diagram ..... 23
Figure 8. Si5327 Clock Multiplier and Jitter Attenuator Block Diagram ..... 24
Figure 9. Si5365 Low Jitter Clock Multiplier Block Diagram ..... 25
Figure 10. Si5366 Jitter Attenuating Clock Multiplier Block Diagram ..... 26
Figure 11. Si5367 Clock Multiplier Block Diagram ..... 27
Figure 12. Si5368 Clock Multiplier and Jitter Attenuator Block Diagram ..... 28
Figure 13. Si5369 Clock Multiplier and Jitter Attenuator Block Diagram ..... 29
Figure 14. Si5374 Functional Block Diagram ..... 30
Figure 15. Si5375 Functional Block Diagram ..... 31
Figure 16. Differential Voltage Characteristics ..... 32
Figure 17. Rise/Fall Time Characteristics ..... 32
Figure 18. SPI Timing Diagram ..... 38
Figure 19. Frame Synchronization Timing ..... 39
Figure 20. Any-Frequency Precision Clock DSPLL Block Diagram ..... 46
Figure 21. Clock Multiplication Circuit ..... 47
Figure 22. PLL Jitter Transfer Mask/Template ..... 48
Figure 23. Jitter Tolerance Mask/Template ..... 49
Figure 24. Si5316 Divisor Ratios ..... 51
Figure 25. Wideband PLL Divider Settings (Si5325, Si5367) ..... 76
Figure 26. Narrowband PLL Divider Settings (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375) ..... 78
Figure 27. Si5324, Si5325, Si5326, Si5327, and Si5374 Input Clock Selection ..... 81
Figure 28. Si5367, Si5368, and Si5369 Input Clock Selection ..... 82
Figure 29. Free Run Mode Block Diagram ..... 85
Figure 30. Parameters in History Value of M ..... 87
Figure 31. Digital Hold vs. VCO Freeze Example ..... 89
Figure 32. Frame Sync Frequencies ..... 92
Figure 33. FOS Compare ..... 98
Figure 34. $\mathrm{I}^{2} \mathrm{C}$ Command Format ..... 102
Figure 35. I2C Example. ..... 102
Figure 36. SPI Write/Set Address Command ..... 104
Figure 37. SPI Read Command ..... 104
Figure 38. Differential LVPECL Termination ..... 105
Figure 39. Single-Ended LVPECL Termination ..... 105
Figure 40. CML/LVDS Termination (1.8, 2.5, 3.3 V ) ..... 106
Figure 41. CMOS Termination (1.8, 2.5, 3.3 V ). ..... 106
Figure 42. Typical Output Circuit (Differential) ..... 107
Figure 43. Differential Output Example Requiring Attenuation ..... 108
Figure 44. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn- Together) ..... 108
Figure 45. CKOUT Structure ..... 109
Figure 46. sfout_2, CMOS ..... 110
Figure 47. sfout_3, lowSwingLVDS ..... 110
Figure 48. sfout_5, LVPECL ..... 111
Figure 49. sfout_6, CML ..... 111
Figure 50. sfout_7, LVDS ..... 112
Figure 51. CMOS External Reference Circuit ..... 113
Figure 52. Sinewave External Clock Circuit ..... 113
Figure 53. Differential External Reference Input Example (Not for Si5374 or Si5375) ..... 114
Figure 54. Differential OSC Reference Input Example for Si5374 and Si5375 ..... 114
Figure 55. Three Level Input Pins ..... 115
Figure 56. Three Level Input Pins ..... 116
Figure 57. Typical Power Supply Bypass Network (TQFP Package) ..... 117
Figure 58. Typical Power Supply Bypass Network (QFN Package) ..... 117
Figure 59. Typical Reference Jitter Transfer Function ..... 120
Figure 60. Jitter vs. f3 ..... 121
Figure 61. Jitter vs. f3 with FPGA ..... 122
Figure 62. Reference vs. Output Frequency ..... 123
Figure 63. Jitter vs. Reference Frequency (1 of 2) ..... 124
Figure 64. Jitter vs. Reference Frequency (2 of 2) ..... 125
Figure 65. 155.52 MHz In; 622.08 MHz Out ..... 126
Figure 66. 155.52 MHz In; 622.08 MHz Out; Loop BW = 7 Hz , Si5324 ..... 127
Figure 67. 19.44 MHz In; 156.25 MHz Out; Loop BW = 80 Hz ..... 128
Figure 68. 19.44 MHz In; 156.25 MHz Out; Loop BW = 5 Hz, Si5324 ..... 129
Figure 69. 27 MHz In; 148.35 MHz Out; Light Trace BW = 6 Hz; Dark Trace BW = 110 Hz, Si5324 ..... 130
Figure 70. 61.44 MHz In; 491.52 MHz Out; Loop BW = 7 Hz, Si5324 ..... 131
Figure 71. 622.08 MHz In; 672.16 MHz Out; Loop BW = 6.9 kHz ..... 132
Figure 72. 622.08 MHz In; 672.16 MHz Out; Loop BW = 100 Hz ..... 133
Figure 73. 156.25 MHz In; 155.52 MHz Out ..... 134
Figure 74. 78.125 MHz In; 644.531 MHz Out ..... 135
Figure 75. 78.125 MHz In; 690.569 MHz Out ..... 136
Figure 76. 78.125 MHz In; 693.493 MHz Out ..... 137
Figure 77. 86.685 MHz In; 173.371 MHz and 693.493 MHz Out ..... 138
Figure 78. 86.685 MHz In; 173.371 MHz Out ..... 139
Figure 79. 86.685 MHz In; 693.493 MHz Out ..... 140
Figure 80. 155.52 MHz and 156.25 MHz In; 622.08 MHz Out ..... 141
Figure 81. 10 MHz In ; 1 GHz Out ..... 142
Figure 82. Si5324 and Si5326 Alarm Diagram ..... 144
Figure 83. Si5368 Alarm Diagram (1 of 2) ..... 145
Figure 84. Si5368 Alarm Diagram (2 of 2) ..... 146
Figure 85. $\pm 50$ ppm, 2 ppm Steps ..... 162
Figure 86. $\pm 200$ ppm, 10 ppm Steps ..... 163
Figure 87. $\pm 2000$ ppm, 50 ppm Steps ..... 163
Figure 88. RF Generator, Si5326, Si5324; No Jitter (For Reference) ..... 165
Figure 89. RF Generator, Si5326, Si5324 ( 50 Hz Jitter) ..... 165
Figure 90. RF Generator, Si5326, Si5324 (100 Hz Jitter) ..... 166
Figure 91. RF Generator, Si5326, Si5324 (500 Hz Jitter) ..... 166
Figure 92. RF Generator, Si5326, Si5324 (1 kHz Jitter) ..... 167
Figure 93. RF Generator, Si5326, Si5324 (5 kHz Jitter) ..... 167
Figure 94. RF Generator, Si5326, Si5324 (10 kHz Jitter) ..... 168
Figure 95. Vdd Plane ..... 169
Figure 96. Ground Plane and Reset ..... 170
Figure 97. Output Clock Routing ..... 171
Figure 98. OSC_P, OSC_N Routing ..... 172
Figure 99. Si5374, Si5375 DSPLL A ..... 174
Figure 100. Si5374, Si5375 DSPLL B ..... 175
Figure 101. Si5374, Si5375 DSPLL C ..... 176
Figure 102. Si5374, Si5375 DSPLL D. ..... 177

## List of Tables

Table 1. Product Selection Guide ..... 14
Table 2. Product Selection Guide (Si5322/25/65/67) ..... 15
Table 3. Recommended Operating Conditions ${ }^{1}$ ..... 32
Table 4. DC Characteristics ..... 33
Table 5. DC Characteristics—Microprocessor Devices (Si5324, Si5325, Si5367, Si5368) ..... 37
Table 6. SPI Specifications (Si5324, Si5325, Si5367, and Si5368) ..... 37
Table 7. DC Characteristics—Narrowband Devices (Si5316, Si5319, Si5323, Si5366, Si5368) ..... 38
Table 8. AC Characteristics—All Devices ..... 40
Table 9. Jitter Generation (Si5316, Si5324, Si5366, Si5368) ..... 44
Table 10. Jitter Generation (Si5322, Si5325, Si5365, Si5367) ..... 44
Table 11. Thermal Characteristics ..... 45
Table 12. Si5316, Si5322, Si5323, Si5365 and Si5366 Key Features ..... 50
Table 13. Frequency Settings ..... 50
Table 14. Input Divider Settings ..... 51
Table 15. Si5316 Bandwidth Values ..... 51
Table 16. SONET Clock Multiplication Settings (FRQTBL=L) ..... 52
Table 17. Datacom Clock Multiplication Settings (FRQTBL = M, CK_CONF = 0) ..... 57
Table 18. SONET to Datacom Clock Multiplication Settings ..... 61
Table 19. Clock Output Divider Control (DIV34) ..... 64
Table 20. Si5316, Si5322, and Si5323 Pins and Reset ..... 66
Table 21. Si5365 and Si5366 Pins and Reset ..... 66
Table 22. Manual Input Clock Selection (Si5316, Si5322, Si5323), AUTOSEL = L ..... 67
Table 23. Manual Input Clock Selection (Si5365, Si5366), AUTOSEL = L ..... 67
Table 24. Automatic/Manual Clock Selection ..... 68
Table 25. Clock Active Indicators (AUTOSEL = M or H) (Si5322 and Si5323) ..... 68
Table 26. Clock Active Indicators (AUTOSEL = M or H) (Si5365 and Si5367) ..... 68
Table 27. Input Clock Priority for Auto Switching (Si5322, Si5323) ..... 68
Table 28. Input Clock Priority for Auto Switching (Si5365, Si5366) ..... 69
Table 29. FS_OUT Disable Control (DBLFS) ..... 72
Table 30. Output Signal Format Selection (SFOUT). ..... 72
Table 31. DSBL2/BYPASS Pin Settings ..... 73
Table 32. Frequency Offset Control (FOS_CTL). ..... 74
Table 33. Alarm Output Logic Equations ..... 74
Table 34. Lock Detect Retrigger Time. ..... 75
Table 35. Narrowband Frequency Limits ..... 78
Table 36. Dividers and Limits ..... 78
Table 37. CKOUT_ALWAYS_ON and SQ_ICAL Truth Table ..... 80
Table 38. Manual Input Clock Selection (Si5367, Si5368, Si5369) ..... 82
Table 39. Manual Input Clock Selection (Si5324, Si5325, Si5326, Si5374) ..... 83
Table 40. Automatic/Manual Clock Selection ..... 83
Table 41. Input Clock Priority for Auto Switching ..... 84
Table 42. Digital Hold History Delay ..... 88
Table 43. Digital Hold History Averaging Time ..... 88
Table 44. CKIN3/CKIN4 Frequency Selection (CK_CONF = 1) ..... 92
Table 45. Common NC5 Divider Settings ..... 93
Table 46. Alignment Alarm Trigger Threshold ..... 93
Table 47. Output Signal Format Selection ..... 95
Table 48. Loss-of-Signal Validation Times ..... 96
Table 49. Loss-of-Signal Registers ..... 96
Table 50. FOS Reference Clock Selection ..... 98
Table 51. CLKnRATE Registers ..... 98
Table 52. Alarm Output Logic Equations (Si5367, Si5368, and Si5369 [CONFIG_REG = 0]) ..... 99
Table 53. Alarm Output Logic Equations [Si5368 and CKCONFIG_REG = 1] ..... 100
Table 54. Lock Detect Retrigger Time (LOCKT) ..... 101
Table 55. SPI Command Format. ..... 103
Table 56. Output Driver Configuration ..... 107
Table 57. Disabling Unused Output Driver ..... 108
Table 58. Output Format Measurements ${ }^{1}$, ..... 109
Table 59. Approved Crystals ..... 119
Table 60. XA/XB Reference Sources and Frequencies ..... 119
Table 61. Jitter Values for Figure 61 ..... 122
Table 62. Jitter Values for Figure 62 ..... 123
Table 63. Jitter Values for Figure 74 ..... 135
Table 64. Jitter Values for Figure 75 ..... 136
Table 65. Jitter Values for Figure 76 ..... 137
Table 66. Jitter Values for Figure 77 ..... 138
Table 67. Jitter Values for Figure 80 ..... 141
Table 68. Si5316 Pullup/Down ..... 147
Table 69. Si5322 Pullup/Down ..... 147
Table 70. Si5323 Pullup/Down ..... 148
Table 71. Si5319, Si5324, Pullup/Down ..... 148
Table 72. Si5325 Pullup/Down ..... 149
Table 73. Si5326 Pullup/Down ..... 149
Table 74. Si5327 Pullup/Down ..... 150
Table 75. Si5365 Pullup/Down ..... 150
Table 76. Si5366 Pullup/Down ..... 151
Table 77. Si5367 Pullup/Down ..... 152
Table 78. Si5368 Pullup/Down ..... 152
Table 79. Si5369 Pullup/Down ..... 153
Table 80. Si5374/75 Pullup/Down ..... 153
Table 81. Output Format vs. Jitter ..... 161
Table 82. Jitter Values ..... 164
Table 83. Si5374/75 Crosstalk Jitter Values ..... 173

## 1. Any-Frequency Precision Clock Product Family Overview

Silicon Laboratories Any-Frequency Precision Clock products provide jitter attenuation and clock multiplication/ clock division for applications requiring sub 1 ps rms jitter performance. The device product family is based on Silicon Laboratories' 3rd generation DSPLL technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for discrete VCXO/VCSOs and loop filter components. These devices are ideally suited for applications which require low jitter reference clocks, including OTN (OTU-1, OTU-2, OTU-3, OTU-4), OC-48/STM-16, OC-192/STM-64, OC-768/STM-256, GbE, 10GbE, Fibre Channel, 10GFC, synchronous Ethernet, wireless backhaul, wireless point-point infrastructure, broadcast video/ HDTV (HD SDI, 3G SDI), test and measurement, data acquisition systems, and FPGA/ASIC reference clocking.
Table 1 provides a product selector guide for the Silicon Laboratories Any-Frequency Precision Clocks. Three product families are available. The Si5316, Si5319, Si5323, Si5324, Si5326, Si5366, and Si5368 are jitterattenuating clock multipliers that provide ultra-low jitter generation as low as 0.30 ps RMS. The devices vary according to the number of clock inputs, number of clock outputs, and control method. The Si5316 is a fixedfrequency, pin controlled jitter attenuator that can be used in clock smoothing applications. The Si5323 and Si5366 are pin-controlled jitter-attenuating clock multipliers. The frequency plan for these pin-controlled devices is selectable from frequency lookup tables and includes common frequency translations for SONET/SDH, ITU G. 709 Forward Error Correction (FEC) applications (255/238, 255/237, 255/236, 238/255, 237/255, 236/255), Gigabit Ethernet, 10G Ethernet, 1G/2G/4G/8G/10G Fibre Channel, ATM and broadcast video (Genlock). The Si5319, Si5324, Si5326, Si5327, Si5368, and Si5369 are microprocessor-controlled devices that can be controlled via an $I^{2} \mathrm{C}$ or SPI interface. These microprocessor-controlled devices accept clock inputs ranging from 2 kHz to 710 MHz and generate multiple independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . Virtually any frequency translation combination across this operating range is supported. Independent dividers are available for every input clock and output clock, so the Si5324, Si5326, Si5327, and Si5368 can accept input clocks at different frequencies and generate output clocks at different frequencies. The Si5316, Si5319, Si 5323 , Si 5326 , Si 5327 , Si 5366 , Si 5368 , and Si 5369 support a digitally programmable loop bandwidth that can range from 60 Hz to 8.4 kHz . An external ( $37-41 \mathrm{MHz}, 55-61 \mathrm{MHz}, 109-125.5 \mathrm{MHz}$, or $163-$ 180 MHz ) reference clock or a low-cost 114.285 MHz 3 rd overtone crystal is required for these devices to enable ultra-low jitter generation and jitter attenuation. (See "Appendix A—Narrowband References" on page 119.) The Si5324 and Si5369 are much lower bandwidth devices, providing a user-programmable loop bandwidth from 4 to 525 Hz .

The Si5323, Si5324, Si5326, Si5327, Si 5366 , Si 5368 , and Si 5369 support hitless switching between input clocks in compliance with GR-253-CORE and GR-1244-CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (<200 ps typ). Manual, automatic revertive and automatic nonrevertive input clock switching options are available. The devices monitor the input clocks for loss-of-signal and provide a LOS alarm when missing pulses on any of the input clocks are detected. The devices monitor the lock status of the PLL and provide a LOL alarm when the PLL is unlocked. The lock detect algorithm works by continuously monitoring the phase of the selected input clock in relation to the phase of the feedback clock. The Si5326, Si5366, Si5368, and Si5369 monitor the frequency of the input clocks with respect to a reference frequency applied to an input clock or the XA/XB input, and generates a frequency offset alarm (FOS) if the threshold is exceeded. This FOS feature is available for SONET/SDH applications. Both Stratum 3/3E and SONET Minimum Clock (SMC) FOS thresholds are supported.
The Si5319, Si5323, Si5324, Si5326, Si5366, Si5368, and Si5369 provide a digital hold capability that allows the device to continue generation of a stable output clock when the selected input reference is lost. During digital hold, the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding entry into digital hold.
The Si5322, Si5325, Si5365, and Si5367 are frequency flexible, low jitter clock multipliers that provide jitter generation of 0.6 ps RMS without jitter attenuation. These devices provide low jitter integer clock multiplication or fractional clock synthesis, but they are not as frequency-flexible as the Si5319/23/24/26/66/68/69. The devices vary according to the number of clock inputs, number of clock outputs, and control method. The Si5322 and Si5365 are pin-controlled clock multipliers. The frequency plan for these devices is selectable from frequency lookup tables.

A wide range of settings are available, but they are a subset of the frequency plans supported by the Si5323 and Si5366 jitter-attenuating clock multipliers. The Si5325 and Si5367 are microprocessor-controlled clock multipliers that can be controlled via an $I^{2} \mathrm{C}$ or SPI interface.
These devices accept clock inputs ranging from 10 MHz to 710 MHz and generate multiple independent, synchronous clock outputs ranging from 10 MHz to 945 MHz and select frequencies to 1.4 GHz . The Si5325 and Si5367 support a subset of the frequency translations available in the Si5319, Si5324, Si5326, Si5327, Si5368, and Si5369 jitter-attenuating clock multipliers. The Si5325 and Si5367 can accept input clocks at different frequencies and generate output clocks at different frequencies. The Si 5322 , Si 5325 , Si 5365 , and Si 5367 support a digitally programmable loop bandwidth that ranges from 150 kHz to 1.3 MHz . No external components are required for these devices. LOS and FOS monitoring is available for these devices, as described above.
The Si5374 and Si5375 are quad DSPLL versions of the Si5324 and Si5319, respectively. Each of the four DSPLLs can operate at completely independent frequencies. The only resources that they share are a common $I^{2} \mathrm{C}$ bus and a common XA/XB jitter reference oscillator. The Si5375 consists of four one-input and one-output DSPLLs. The Si5374 consists of four two-input and two-output DSPLLs with very low loop bandwidth.
The Any-Frequency Precision Clocks have differential clock output(s) with programmable signal formats to support LVPECL, LVDS, CML, and CMOS loads. If the CMOS signal format is selected, each differential output buffer generates two in-phase CMOS clocks at the same frequency. For system-level debugging, a PLL bypass mode drives the clock output directly from the selected input clock, bypassing the internal PLL.

Silicon Laboratories offers a PC-based software utility, DSPLLsim, that can be used to determine valid frequency plans and loop bandwidth settings for the Any-Frequency Precision Clock product family. For the microprocessorcontrolled devices, DSPLLsim provides the optimum PLL divider settings for a given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption. Two DSPLLsim configuration software applications are available for the 1-PLL and 4-PLL devices, respectively. DSPLLsim can also be used to simplify device selection and configuration. This utility can be downloaded from http://www.silabs.com/timing. Other useful documentation, including device data sheets and programming files for the microprocessor-controlled devices are available from this website.

Table 1. Product Selection Guide

| Part Number | Control | Number of Inputs and Outputs | Input Frequency (MHz) ${ }^{*}$ | Output Frequency $(\mathrm{MHz})^{*}$ | RMS Phase Jitter (12 kHz-20 MHz) | PLL <br> Bandwidth | Hitless Switching | Free Run Mode | Package |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Si5315 | Pin | 1PLL, 2 \| 2 | 0.008-644 | 0.008-644 | 0.45 ps | 60 Hz to 8 kHz | $\bullet$ |  | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5316 | Pin | 1PLL, 2 \| 1 | 19-710 | 19-710 | 0.3 ps | 60 Hz to <br> 8 kHz |  |  | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5317 | Pin | 1PLL, 1 \| 2 | 1-710 | 1-710 | 0.3 ps | 60 Hz to 8 kHz |  |  | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5319 | $1^{2} \mathrm{C} /$ SPI | 1PLL, 1 \\| 1 | 0.002-710 | 0.002-1417 | 0.3 ps | 60 Hz to <br> 8 kHz |  | $\bullet$ | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5323 | Pin | 1PLL, 2 \| 2 | 0.008-707 | 0.008-1050 | 0.3 ps | 60 Hz to <br> 8 kHz | $\bullet$ |  | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5324 | $1^{2} \mathrm{C} / \mathrm{SPI}$ | 1PLL, 2 \| 2 | 0.002-710 | 0.002-1417 | 0.3 ps | $\begin{aligned} & 4 \mathrm{~Hz} \text { to } \\ & 525 \mathrm{~Hz} \end{aligned}$ | $\bullet$ | $\bullet$ | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5326 | $1^{2} \mathrm{C} / \mathrm{SPI}$ | 1PLL, 2 \| 2 | 0.002-710 | 0.002-1417 | 0.3 ps | 60 Hz to 8 kHz | $\bullet$ | $\bullet$ | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5327 | $1^{2} \mathrm{C} / \mathrm{SPI}$ | 1PLL, 2 \| 2 | 0.002-710 | 0.002-808 | 0.5 ps | 60 Hz to <br> 8 kHz | $\bullet$ | $\bullet$ | $\begin{aligned} & 6 \times 6 \mathrm{~mm} \\ & 36-\mathrm{QFN} \end{aligned}$ |
| Si5366 | Pin | 1PLL, 4 \| 5 | 0.008-707 | 0.008-1050 | 0.3 ps | 60 Hz to 8 kHz | $\bullet$ |  | $\begin{aligned} & 14 \times 14 \mathrm{~mm} \\ & 100-\mathrm{TQFP} \end{aligned}$ |
| Si5368 | $1^{2} \mathrm{C} /$ SPI | 1PLL, 4\|5 | 0.002-710 | 0.002-1417 | 0.3 ps | 60 Hz to 8 kHz | $\bullet$ | $\bullet$ | $\begin{aligned} & 14 \times 14 \mathrm{~mm} \\ & 100-\mathrm{TQFP} \end{aligned}$ |
| Si5369 | $1^{2} \mathrm{C} / \mathrm{SPI}$ | 1PLL, 4 \| 5 | 0.002-710 | 0.002-1417 | 0.3 ps | $\begin{aligned} & 4 \mathrm{~Hz} \text { to } \\ & 525 \mathrm{~Hz} \end{aligned}$ | $\bullet$ | $\bullet$ | $\begin{aligned} & 14 \times 14 \mathrm{~mm} \\ & 100-\mathrm{TQFP} \end{aligned}$ |
| Si5374 | $1^{2} \mathrm{C}$ | 4PLL, 8 \| 8 | 0.002-710 | 0.002-808 | 0.4 ps | $\begin{aligned} & 4 \mathrm{~Hz} \text { to } \\ & 525 \mathrm{~Hz} \end{aligned}$ | $\bullet$ | $\bullet$ | $\begin{gathered} 10 \times 10 \mathrm{~mm} \\ 80-B G A \end{gathered}$ |
| Si5375 | $1^{2} \mathrm{C}$ | 4PLL, 4\| 4 | 0.002-710 | 0.002-808 | 0.4 ps | 60 Hz to 8 kHz | $\bullet$ | $\bullet$ | $\begin{gathered} 10 \times 10 \mathrm{~mm} \\ 80-B G A \end{gathered}$ |

*Note: Maximum input and output rates may be limited by speed rating of device. See each device's data sheet for ordering information.

Table 2. Product Selection Guide (Si5322/25/65/67)

|  | n 를 $\vdots$ 등 응 |  |  |  |  |  | $0$ |  | $\begin{aligned} & \underline{\underline{I}} \\ & \frac{\pi}{\top} \\ & \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low Jitter Precision Clock Multipliers (Wideband) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Si5322 | 2 | 2 |  | 707 | 1050 | 0.6 ps rms typ | $\bullet$ |  |  |  |  | $\bullet$ |  | $\bullet$ |  |
| Si5325 | 2 | 2 | - | 710 | 1400 | 0.6 ps rms typ | $\bullet$ |  | $\bullet$ |  |  | $\bullet$ |  | - |  |
| Si5365 | 4 | 5 |  | 707 | 1050 | 0.6 ps rms typ | $\bullet$ |  | $\bullet$ |  |  |  | $\bullet$ |  | - |
| Si5367 | 4 | 5 | $\bullet$ | 710 | 1400 | 0.6 ps rms typ | $\bullet$ |  | $\bullet$ |  |  |  | $\bullet$ |  | $\bullet$ |
| Notes: <br> 1. M info <br> 2. Re |  | put an <br> ernal ourc | outp and | rates <br> , fixed equen | y be lim <br> quency s" on pa | ed by speed rating <br> d overtone 114.28 119. | $\begin{aligned} & \text { f del } \\ & \mathrm{MHz} \end{aligned}$ | ce. <br> crys | or | ere | ice's <br> clo | data <br> k. S | heet <br> "Ta | ord $\text { e } 60 .$ | ing <br> A/XB |

## Si53xx-RM

## 2. Narrowband vs. Wideband Overview

The narrowband (NB) devices offer a number of features and capabilities that are not available with the wideband (WB) devices, as outlined in the below list:

- Broader set of frequency plans due to more divisor options
- Hitless switching between input clocks
- Lower minimum input clock frequency
- Lower loop bandwidth

■ Digital Hold (reference-based holdover instead of VCO freeze)

- FRAMESYNC realignment
- CLAT and FLAT (input to output skew adjust)
- INC and DEC pins
- PLL Loss of Lock status indicator
- FOS is not supported.


## 3. Any-Frequency Clock Family Members

### 3.1. Si5316

The Si5316 is a low jitter, precision jitter attenuator for high-speed communication systems, including OC-48, OC192, 10G Ethernet, and 10G Fibre Channel. The Si5316 accepts dual clock inputs in the 19, 38, 77, 155, 311, or 622 MHz frequency range and generates a jitter-attenuated clock output at the same frequency. Within each of these clock ranges, the device can be tuned approximately $14 \%$ higher than nominal SONET/SDH frequencies, up to a maximum of 710 MHz in the 622 MHz range. The DSPLL loop bandwidth is digitally selectable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5316 is ideal for providing jitter attenuation in high performance timing applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.


Figure 1. Si5316 Any-Frequency Jitter Attenuator Block Diagram

### 3.2. Si5319

The Si 5319 is a jitter-attenuating precision $\mathrm{M} / \mathrm{N}$ clock multiplier for applications requiring sub 1 ps jitter performance. The Si5319 accepts one clock input ranging from 2 kHz to 710 MHz and generates one clock output ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The Si5319 can also use its crystal oscillator as a clock source for frequency synthesis. The device provides virtually any frequency translation combination across this operating range. The Si5319 input clock frequency and clock multiplication ratio are programmable through an I2C or SPI interface. The Si5319 is based on Silicon Laboratories' 3rd-generation DSPLL ${ }^{\circledR}$ technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5319 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. See " 7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 2. Si5319 Any-Frequency Jitter Attenuating Clock Multiplier Block Diagram

### 3.3. Si5322

The Si5322 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5322 accepts dual clock inputs ranging from 19.44 to 707 MHz and generates two frequencymultiplied clock outputs ranging from 19.44 to 1050 MHz . The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video (HD SDI, 3G SDI) rates. The DSPLL loop bandwidth is digitally selectable from 150 kHz to 1.3 MHz . Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5322 is ideal for providing low jitter clock multiplication in high performance timing applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.


Figure 3. Si5322 Low Jitter Clock Multiplier Block Diagram

### 3.4. Si5323

The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, Fibre Channel, and broadcast video (HD SDI, 3G SDI). The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz and generates two frequency-multiplied clock outputs ranging from 8 kHz to 1050 MHz . The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video rates. The DSPLL loop bandwidth is digitally selectable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si 5323 is ideal for providing clock multiplication and jitter attenuation in high-performance timing applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.


Figure 4. Si5323 Jitter Attenuating Clock Multiplier Block Diagram

### 3.5. Si5324

The Si5324 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. The Si5324 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. The Si5324 input clock frequency and clock multiplication ratios are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. The Si5324 features loop bandwidth values as low as 4 Hz . Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5324 is ideal for providing clock multiplication and jitter attenuation in high-performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 5. Si5324 Clock Multiplier and Jitter Attenuator Block Diagram

### 3.6. Si5325

The Si5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The Si5325 input clock frequency and clock multiplication ratios are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable from 150 kHz to 1.3 MHz . Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5325 is ideal for providing clock multiplication in high performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 6. Si5325 Low Jitter Clock Multiplier Block Diagram

### 3.7. Si5326

The Si5326 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. The Si5326 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. The Si5326 input clock frequency and clock multiplication ratios are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable from 60 Hz to 8 kHz , providing jitter performance optimization at the application level. Operating from a single $1.8,2.5$, or 3.3 V supply, the Si 332 is ideal for providing clock multiplication and jitter attenuation in high-performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 7. Si5326 Clock Multiplier and Jitter Attenuator Block Diagram

### 3.8. Si5327

The Si5327 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. The Si5327 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent, synchronous clock outputs ranging from 2 kHz to 808 MHz . The device provides virtually any frequency translation combination across this operating range. The Si5327 input clock frequency and clock multiplication ratios are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. The Si5327 features loop bandwidth values as low as 4 Hz . Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5327 is ideal for providing clock multiplication and jitter attenuation in high-performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 8. Si5327 Clock Multiplier and Jitter Attenuator Block Diagram

### 3.9. Si5365

The Si5365 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5365 accepts four clock inputs ranging from 19.44 MHz to 707 MHz and generates five frequency-multiplied clock outputs ranging from 19.44 MHz to 1050 MHz . The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video rates. The DSPLL loop bandwidth is digitally selectable. Operating from a single $1.8,2.5 \mathrm{~V}$, or 3.3 V supply, the Si5365 is ideal for providing clock multiplication in high performance timing applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.


Figure 9. Si5365 Low Jitter Clock Multiplier Block Diagram

### 3.10. Si5366

The Si5366 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre Channel. The Si5366 accepts four clock inputs ranging from 8 kHz to 707 MHz and generates five frequency-multiplied clock outputs ranging from 8 kHz to 1050 MHz . The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video (HD SDI, 3G SDI) rates. The DSPLL loop bandwidth is digitally selectable from 60 Hz to 8 kHz , providing jitter performance optimization at the application level. Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5366 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.


Figure 10. Si5366 Jitter Attenuating Clock Multiplier Block Diagram

### 3.11. Si5367

The Si5367 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5367 accepts four clock inputs ranging from 10 to 707 MHz and generates five frequencymultiplied clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The Si5367 input clock frequency and clock multiplication ratio are programmable through an $1^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable from 150 kHz to 1.3 MHz . Operating from a single $1.8,2.5$, or 3.3 V supply, the Si5367 is ideal for providing clock multiplication in high performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 11. Si5367 Clock Multiplier Block Diagram

### 3.12. Si5368

The Si5368 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5368 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. The Si5368 input clock frequency and clock multiplication ratio are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable from 60 Hz to 8 kHz , providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5368 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 12. Si5368 Clock Multiplier and Jitter Attenuator Block Diagram

### 3.13. Si5369

The Si5369 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5369 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. The Si5369 input clock frequency and clock multiplication ratio are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The DSPLL loop bandwidth is digitally programmable, providing loop bandwidth values as low as 4 Hz . Operating from a single 1.8, 2.5 , or 3.3 V supply, the Si5369 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.


Figure 13. Si5369 Clock Multiplier and Jitter Attenuator Block Diagram

### 3.14. Si5374/75 Compared to Si5324/19

In general, the Si5374 can be viewed as a quad version of the Si5324 and the Si5375 can be viewed as a quad version of the Si5319. However, there are not exactly the same. This is an overview of the differences:

1. The Si5374/75 cannot use a crystal as its OSC reference. It requires the use of a single external single-ended or differential crystal oscillator.
2. The Si5374/75 only supports $I^{2} \mathrm{C}$ as its serial port protocol and does not have SPI. No $I^{2} \mathrm{C}$ address pins are available on the Si5374/75.
3. The Si5374/75 does not provide separate INT_CK1B and CK2B pins to indicate when CKIN1 and CKIN2 do not have valid clock inputs. Instead, the IRQ pin can be programmed to function as one pin, the other pin or both.
4. Selection of the OSC frequency is done by a register (RATE_REG), not by using the RATE pins.
5. The Si5374/75 uses a different version of DSPLLsim: Si537xDSPLLsim.
6. The Si5374/75 does not support 3.3 V operation.

### 3.15. Si5374

The Si5374 is a highly integrated, 4-PLL jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. Each of the DSPLL® clock multiplier engines accepts two input clocks ranging from 2 kHz to 710 MHz and generates two independent, synchronous output clocks ranging from 2 kHz to 808 MHz . Each DSPLL provides virtually any frequency translation across this operating range. For asynchronous, free-running clock generation applications, the Si5374's reference oscillator can be used as a clock source for the four DSPLLs. The Si5374 input clock frequency and clock multiplication ratio are programmable through an I2C interface. The Si5374 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. Each DSPLL loop bandwidth is digitally programmable from 4 to 525 Hz , providing jitter performance optimization at the application level. The device operates from a single 1.8 or 2.5 V supply with onchip voltage regulators with excellent PSRR. The Si5374 is ideal for providing clock multiplication and jitter attenuation in high port count optical line cards requiring independent timing domains.


Figure 14. Si5374 Functional Block Diagram

### 3.16. Si5375

The Si5375 is a highly integrated, 4-PLL jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. Each of the DSPLL® clock multiplier engines accepts an input clock ranging from 2 kHz to 710 MHz and generates an output clock ranging from 2 kHz to 808 MHz . Each DSPLL provides virtually any frequency translation combination across this operating range. For asynchronous, free-running clock generation applications, the Si5375's reference oscillator can be used as a clock source for any of the four DSPLLs. The Si5375 input clock frequency and clock multiplication ratio are programmable through an I2C interface. The Si5375 is based on Silicon Laboratories' third-generation DSPLL® technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. Each DSPLL loop bandwidth is digitally programmable from 60 Hz to 8 kHz , providing jitter performance optimization at the application level. The device operates from a single 1.8 or 2.5 V supply with onchip voltage regulators with excellent PSRR. The Si5375 is ideal for providing clock multiplication and jitter attenuation in high port count optical line cards requiring independent timing domains.


Figure 15. Si5375 Functional Block Diagram

Rev. 0.5

## Si53xx-RM

## 4. Device Specifications

The following tables are intended to simplify device selection. The specifications in the individual device data sheets take precedence over this document. Refer to the respective device data sheet for devices not listed in the tables below.

Table 3. Recommended Operating Conditions ${ }^{1}$

| Parameter | Symbol |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Note:

1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of $25^{\circ} \mathrm{C}$ unless otherwise stated.
2. See Sections 6.7.1 and 8.2.1 for restrictions on output formats for TQFP devices at 3.3 V .


Figure 16. Differential Voltage Characteristics


Figure 17. Rise/Fall Time Characteristics

Table 4. DC Characteristics

| Parameter | Symbol | Test Condition | $\begin{array}{\|c} \hline-1 \\ \\ \stackrel{n}{\omega} \\ \hline \end{array}$ | $$ | $\begin{array}{\|l\|} \hline \underset{N}{N} \\ \\ \\ \hline \end{array}$ |  |  | 0 <br> 0 <br>  <br>  <br>  | $$ | $\begin{aligned} & \text { 0} \\ & 0 \\ & 10 \\ & \cdots \\ & \omega \end{aligned}$ | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current (Independent of Supply Voltage) | $\mathrm{I}_{\mathrm{DD}}$ | LVPECL Format 622.08 MHz Out All CKOUT's Enabled |  | $\bullet$ | $\bullet$ | - |  |  |  |  | - | 251 | 279 | mA |
|  |  |  |  |  |  |  | $\bullet$ | - | $\bullet$ | $\bullet$ | - | 394 | 435 | mA |
|  |  | LVPECL Format 622.08 MHz Out Only 1 CKOUT Enabled | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |  | - | 217 | 243 | mA |
|  |  |  |  |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | 253 | 284 | mA |
|  |  | CMOS Format 19.44 MHz Out All CKOUTs Enabled |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |  | - | 204 | 234 | mA |
|  |  |  |  |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ | - | - | 278 | 321 | mA |
|  |  | CMOS Format 19.44 MHz Out Only 1 CKOUT Enabled | $\bullet$ | $\bullet$ | - | $\bullet$ |  |  |  |  | - | 194 | 220 | mA |
|  |  |  |  |  |  |  | $\bullet$ | - | $\bullet$ | $\bullet$ | - | 229 | 261 | mA |
|  |  | Disable Mode | $\bullet$ | - | 165 | - | mA |
| CKIN_n Input Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Common Mode Voltage (Input Threshold Voltage) | $\mathrm{V}_{\text {ICM }}{ }^{1}$ | $1.8 \mathrm{~V} \pm 10 \%$ | $\bullet$ | 0.9 | - | 1.4 | V |
|  |  | $2.5 \mathrm{~V} \pm 10 \%$ | $\bullet$ | 1.0 | - | 1.7 |  |
|  |  | $3.3 \mathrm{~V} \pm 10 \%$ | $\bullet$ | 1.1 | - | 1.95 |  |
| Input Resistance | $\mathrm{CKN}_{\text {RIN }}$ | Single-ended | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | 20 | 40 | 60 | $\mathrm{k} \Omega$ |
| Single-Ended Input Voltage Swing | $V_{\text {ISE }}$ | $\begin{gathered} \mathrm{f}_{\mathrm{CKIN}} \leq 212.5 \mathrm{MHz} \\ \text { See Figure } 16 . \end{gathered}$ | $\bullet$ | 0.2 | - | - | $\mathrm{V}_{\mathrm{PP}}$ |
|  |  | $\begin{gathered} \mathrm{f}_{\text {CKIN }}>212.5 \mathrm{MHz} \\ \text { See Figure } 16 . \end{gathered}$ | - | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | 0.25 | - | - | $\mathrm{V}_{\mathrm{PP}}$ |
| Differential Input Voltage Swing | $\mathrm{V}_{\text {ID }}$ | $\begin{gathered} \mathrm{f}_{\mathrm{CKIN}} \leq 212.5 \mathrm{MHz} \\ \text { See Figure } 16 . \end{gathered}$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | 0.2 | - | - | $\mathrm{V}_{\mathrm{PP}}$ |
|  |  | $\begin{gathered} \mathrm{f}_{\text {CKIN }}>212.5 \mathrm{MHz} \\ \text { See Figure } 16 . \end{gathered}$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | 0.25 | - | - | $\mathrm{V}_{\mathrm{PP}}$ |
| Notes: <br> 1. Refer to Section 6.7.1 and 8.2.1 for restrictions on output formats for TQFP devices at 3.3 V . <br> 2. This is the amount of leakage that the 3 L inputs can tolerate from an external driver. See Figure 55 on page 115. <br> 3. No under- or overshoot is allowed. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4．DC Characteristics（Continued）

| Parameter | Symbol | Test Condition | 呂 | N | 尔 | 骨 | $$ | $\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \stackrel{N}{0} \\ & i \end{aligned}$ |  | ｜l｜ | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Clocks <br> （CKOUTn—See＂8．2．Output Clock Drivers＂for Configuring Output Drivers for LVPECLICMLILVDSICMOS） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Common Mode | $\mathrm{V}_{\text {OCM }}$ | LVPECL $100 \Omega$ load line－to－line | － | － | － | － | － | － | － | － | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.42 \end{gathered}$ | － | $\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}}- \\ 1.25 \end{gathered}$ | V |
| Differential Output Swing | $\mathrm{V}_{\mathrm{OD}}$ | LVPECL $100 \Omega$ load line－to－line ${ }^{1}$ | － | － | － | － | － | － | － | $\bullet$ | 1.1 | － | 1.9 | $\mathrm{V}_{\mathrm{PP}}$ |
| Single Ended Output Swing | $\mathrm{V}_{\text {SE }}$ | LVPECL $100 \Omega$ load line－to－line ${ }^{1}$ | $\bullet$ | － | $\bullet$ | － | $\bullet$ | $\bullet$ | － | － | 0.5 | － | 0.93 | $\mathrm{V}_{\mathrm{PP}}$ |
| Differential Output Voltage | $\mathrm{CKO}_{\mathrm{VD}}$ | CML $100 \Omega$ load line－to－line | － | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | － | － | 350 | 425 | 500 | mV PPP |
| Common Mode Output Voltage | $\mathrm{CKO}_{\text {Vcm }}$ | CML $100 \Omega$ load line－to－line | － | $\bullet$ | $\bullet$ | － | $\bullet$ | $\bullet$ | － | $\bullet$ | － | $\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{DD}} \\ -.36 \end{array}$ | － | V |
| Differential Output Voltage | $\mathrm{CKO}_{\mathrm{VD}}$ | LVDS $100 \Omega$ load line－to－line | － | $\bullet$ | $\bullet$ | － | － | $\bullet$ | － | － | 500 | 700 | 900 | mV PP |
|  |  | Low swing LVDS $100 \Omega$ load line－to－line | － | － | － | － | － | － | － | － | 350 | 425 | 500 | mV PPP |
| Common Mode Output Voltage | $\mathrm{CKO}_{\text {Vcm }}$ | LVDS $100 \Omega$ load line－to－line | $\bullet$ | $\bullet$ | $\bullet$ | － | $\bullet$ | $\bullet$ | $\bullet$ | － | 1.125 | 1.2 | 1.275 | V |
| Differential Output Resistance | $\mathrm{CKO}_{\mathrm{RD}}$ | CML，LVPECL， LVDS，Disabled， Sleep | $\bullet$ | $\bullet$ | $\bullet$ | － | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | 170 | 200 | 230 | $\Omega$ |
| Output Voltage Low | CKO－ <br> volle | CMOS | $\bullet$ | $\bullet$ | $\bullet$ | － | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | － | － | 0.4 | V |
| Output Voltage High | CKO－ <br> VOHLH | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V} \\ \mathrm{CMOS} \end{gathered}$ | $\bullet$ | $\bullet$ | － | $\bullet$ | － | $\bullet$ | $\bullet$ | － | $\begin{aligned} & 0.8 x \\ & V_{D D} \end{aligned}$ | － | － | V |
| Notes： <br> 1．Refer to Section 6．7．1 and 8．2．1 for restrictions on output formats for TQFP devices at 3.3 V ． <br> 2．This is the amount of leakage that the 3 L inputs can tolerate from an external driver．See Figure 55 on page 115. <br> 3．No under－or overshoot is allowed． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4. DC Characteristics (Continued)

| Parameter | Symbol | Test Condition |  | $\begin{aligned} & \underset{N}{N} \\ & \stackrel{N}{N} \\ & \stackrel{n}{n} \end{aligned}$ | $\begin{array}{\|l\|} \hline \underset{N}{n} \\ \underset{N}{n} \\ \hline \end{array}$ | $$ | $\begin{aligned} & \hline \stackrel{n}{0} \\ & \\ & \stackrel{n}{n} \\ & \omega \end{aligned}$ | $\begin{array}{\|l\|} \hline \begin{array}{l} 0 \\ \\ \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \hat{0} \\ 0 \\ \\ \end{array}$ |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Drive Current (CMOS driving into $\mathrm{CKO}_{\mathrm{VoL}}$ for output low or CKOvor for output high. CKOUT+ and CKOUT- shorted externally) | $\mathrm{CKO}_{10}$ | CMOS <br> Driving into CKOvol for output low or $\mathrm{CKO}_{\mathrm{VOH}}$ for output high. CKOUT+ and CKOUTshorted externally. |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\text {DD }}=1.8 \mathrm{~V}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | ICMOS[1:0] = 11 | $\bullet$ | $\bullet$ | - | - | - | - | - | - | - | 7.5 | - | mA |
|  |  | ICMOS[1:0] = 10 |  |  | $\bullet$ | - |  |  | - | - | - | 5.5 | - | mA |
|  |  | ICMOS[1:0] = 01 |  |  | - | - |  |  | - | $\bullet$ | - | 3.5 | - | mA |
|  |  | ICMOS[1:0] = 00 |  |  | - | - |  |  | - | - | - | 1.75 | - | mA |
|  |  | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ |  |  |  |  |  |  |  |  | - | 32 | - | mA |
|  |  | ICMOS[1:0] = 11 | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | $\bullet$ | $\bullet$ | - | 32 | - | mA |
|  |  | ICMOS[1:0] = 10 |  |  | - | - |  |  | - | $\bullet$ | - | 24 | - | mA |
|  |  | ICMOS[1:0] = 01 |  |  | $\bullet$ | - |  |  | - | $\bullet$ | - | 16 | - | mA |
|  |  | ICMOS[1:0] = 00 |  |  | - | - |  |  | - | $\bullet$ | - | 8 | - | mA |
| 2-Level LVCMOS Input Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Voltage Low | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V}$ | $\bullet$ | - | - | - | - | - | $\bullet$ | - | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ | $\bullet$ | - | - | - | - | - | - | $\bullet$ | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{\mathrm{DD}}=2.97 \mathrm{~V}$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | - | - | $\bullet$ | - | - | 0.8 | V |
| Input Voltage High | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{DD}}=1.89 \mathrm{~V}$ | - | $\bullet$ | - | - | $\bullet$ | - | - | $\bullet$ | 1.4 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ | $\bullet$ | - | - | - | - | $\bullet$ | $\bullet$ | - | 1.8 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{DD}}=3.63 \mathrm{~V}$ | $\bullet$ | $\bullet$ | - | - | - | - | - | $\bullet$ | 2.5 | - | - | V |
| 3-Level Input Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Voltage Low | $\mathrm{V}_{\text {ILL }}$ |  | - | - | - | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\left.\begin{gathered} 0.15 x \\ V_{D D} \end{gathered} \right\rvert\,$ | V |
| Input Voltage Mid | $\mathrm{V}_{\text {IMM }}$ |  | $\bullet$ | $\bullet$ | - | - | - | $\bullet$ | - | - | $\begin{gathered} 0.45 \mathrm{x} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$ | - | $\begin{gathered} 0.55 \mathrm{x} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$ | V |
| Input Voltage High | $\mathrm{V}_{\mathrm{HH}}$ |  | $\bullet$ | - | - | - | - | $\bullet$ | - | - | $\begin{gathered} 0.85 x \\ V_{D D} \end{gathered}$ | - | - | V |
| Input Low Current | IILL | See note ${ }^{2}$ | $\bullet$ | -20 | - | - | $\mu \mathrm{A}$ |
| Notes: <br> 1. Refer to Section 6.7.1 and 8.2.1 for restrictions on output formats for TQFP devices at 3.3 V . <br> 2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 55 on page 115. <br> 3. No under- or overshoot is allowed. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4. DC Characteristics (Continued)

| Parameter | Symbol | Test Condition |  | $\begin{array}{\|l\|} \hline N \\ N \\ \\ \dot{N} \end{array}$ | $\begin{array}{\|l} \hline \underset{N}{N} \\ \stackrel{n}{n} \\ \dot{N} \end{array}$ | $\begin{array}{\|l} \hline \mathbf{N} \\ \mathbf{N} \\ \vdots \\ \hline \end{array}$ | $\square$ | $\square$ | $$ |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Mid Current | $\mathrm{I}_{\text {IMM }}$ | See note ${ }^{2}$ | $\bullet$ | -2 | - | 2 | $\mu \mathrm{A}$ |
| Input High Current | $\mathrm{I}_{\mathrm{IHH}}$ | See note ${ }^{2}$ | $\bullet$ | - | - | 20 | $\mu \mathrm{A}$ |
| LVCMOS Output Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output Voltage Low | $\mathrm{V}_{\mathrm{OL}}$ | $\begin{gathered} \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.62 \mathrm{~V} \end{gathered}$ | $\bullet$ | - | - | 0.4 | V |
|  |  | $\begin{gathered} \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \end{gathered}$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | $\bullet$ | - | - | 0.4 | V |
| Output Voltage High | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{gathered} \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.62 \mathrm{~V} \end{gathered}$ | - | - | $\bullet$ | $\bullet$ | $\bullet$ | - | - | - | $\begin{gathered} \mathrm{V}_{\mathrm{DD}-4} \\ 0.4 \end{gathered}$ | - | - | V |
|  |  | $\begin{gathered} \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \end{gathered}$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | - | $\begin{gathered} \mathrm{V}_{\mathrm{DD}-} \\ 0.4 \end{gathered}$ | - | - | V |
| Tri-State Leakage Current | $\mathrm{I}_{\mathrm{OZ}}$ | $\overline{\mathrm{RST}}=0$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | -100 | - | 100 | $\mu \mathrm{A}$ |
| Notes: <br> 1. Refer to Section 6.7.1 and 8.2.1 for restrictions on output formats for TQFP devices at 3.3 V . <br> 2. This is the amount of leakage that the 3 L inputs can tolerate from an external driver. See Figure 55 on page 115. <br> 3. No under- or overshoot is allowed. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5. DC Characteristics—Microprocessor Devices (Si5324, Si5325, Si5367, Si5368)

| Parameter | Symbol | Test Condition | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{2} \mathrm{C}$ Bus Lines (SDA, SCL) |  |  |  |  |  |  |
| Input Voltage Low | $\mathrm{V}_{\text {ILI2C }}$ |  | - | - | $0.25 \times \mathrm{V}_{\mathrm{DD}}$ | V |
| Input Voltage High | $\mathrm{V}_{\text {IHI2C }}$ |  | $0.7 \times \mathrm{V}_{\mathrm{DD}}$ | - | $\mathrm{V}_{\mathrm{DD}}$ | V |
| Input Current | $\mathrm{I}_{112 \mathrm{C}}$ | $\begin{aligned} & \mathrm{VIN}=0.1 \times \mathrm{V}_{\mathrm{DD}} \\ & \text { to } 0.9 \times \mathrm{V}_{\mathrm{DD}} \end{aligned}$ | -10 | - | 10 | $\mu \mathrm{A}$ |
| Hysteresis of Schmitt trigger inputs | $\mathrm{V}_{\mathrm{HYSI} 2 \mathrm{C}}$ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ | $0.1 \times \mathrm{V}_{\mathrm{DD}}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{DD}}=2.5$ or 3.3 V | $0.05 \times \mathrm{V}_{\mathrm{DD}}$ | - | - | V |
| Output Voltage Low | $\mathrm{V}_{\mathrm{OH} 2 \mathrm{C}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \\ & \mathrm{IO}=3 \mathrm{~mA} \end{aligned}$ | - | - | $0.2 \times \mathrm{V}_{\mathrm{DD}}$ | V |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.5 \text { or } 3.3 \mathrm{~V} \\ 1 \mathrm{O}=3 \mathrm{~mA} \end{gathered}$ | - | - | 0.4 | V |

Table 6. SPI Specifications (Si5324, Si5325, Si5367, and Si5368)

| Parameter | Symbol | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Duty Cycle, SCLK | $t_{\text {DC }}$ | SCLK = 10 MHz | 40 | - | 60 | \% |
| Cycle Time, SCLK | $\mathrm{t}_{\mathrm{c}}$ |  | 100 | - | - | ns |
| Rise Time, SCLK | $\mathrm{t}_{\mathrm{r}}$ | 20-80\% | - | - | 25 | ns |
| Fall Time, SCLK | $\mathrm{t}_{\mathrm{f}}$ | 20-80\% | - | - | 25 | ns |
| Low Time, SCLK | $\mathrm{t}_{\text {lsc }}$ | 20-20\% | 30 | - | - | ns |
| High Time, SCLK | $t_{\text {hsc }}$ | 80-80\% | 30 | - | - | ns |
| Delay Time, SCLK Fall to SDO Active | $\mathrm{t}_{\mathrm{d} 1}$ |  | - | - | 25 | ns |
| Delay Time, SCLK Fall to SDO Transition | $\mathrm{t}_{\mathrm{d} 2}$ |  | - | - | 25 | ns |
| Delay Time, SS Rise to SDO Tri-state | $\mathrm{t}_{\mathrm{d} 3}$ |  | - | - | 25 | ns |
| Setup Time, SS to SCLK Fall | $\mathrm{t}_{\text {su1 }}$ |  | 25 | - | - | ns |
| Hold Time, SS to SCLK Rise | $\mathrm{t}_{\mathrm{h} 1}$ |  | 20 | - | - | ns |
| Setup Time, SDI to SCLK Rise | $\mathrm{t}_{\text {su2 }}$ |  | 25 | - | - | ns |
| Hold Time, SDI to SCLK Rise | $\mathrm{t}_{\mathrm{h} 2}$ |  | 20 | - | - | ns |
| Delay Time between Slave Selects | $\mathrm{t}_{\mathrm{cs}}$ |  | 25 | - | - | ns |

Note: All timing is referenced to the $50 \%$ level of the waveform unless otherwise noted. Input test levels are $\mathrm{VIH}=\mathrm{V}_{\mathrm{DD}}-4 \mathrm{~V}$, $\mathrm{VIL}=0.4 \mathrm{~V}$.


Figure 18. SPI Timing Diagram
Table 7. DC Characteristics—Narrowband Devices (Si5316, Si5319, Si5323, Si5366, Si5368)

| Parameter | Symbol | Test Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single-Ended Reference Clock Input Pin XA (XB with cap to gnd) |  |  |  |  |  |  |
| Input Resistance | XA ${ }_{\text {RIN }}$ | (RATE[1:0] = LM, ML, MH, or HM) | - | 10 | - | $\mathrm{k} \Omega$ |
| Input Voltage Level Limits | XA ${ }_{\text {VIN }}$ |  | 0 | - | 1.2 | V |
| Input Voltage Swing | XA VPP |  | 0.5 | - | 1.2 | $V_{\text {PP }}$ |
| Differential Reference Clock Input Pins (XAIXB) |  |  |  |  |  |  |
| Differential Input Voltage Level Limits | XA/XB ${ }_{\text {VIN }}$ | (RATE[1:0] = LM, ML, MH, or HM) | 0 | - | 1.2 | V |
| Input Voltage Swing | XA ${ }_{\text {VPP }} / X^{\text {B }}$ VPP |  | 0.5 | - | 2.4 | $V_{\text {PP }}$ |



* CLKIN_2 and CLKIN_4 are the active input clock and frame sync pair in this example

Figure 19. Frame Synchronization Timing

Si53xx-RM

Table 8. AC Characteristics—All Devices

| Parameter | Symbol | Test Condition | \|r |  | $\begin{array}{\|} \underset{N}{N} \\ \stackrel{N}{n} \\ i \end{array}$ |  | - |  |  | N00 | $\begin{aligned} & \infty \\ & \begin{array}{l} \infty \\ \\ \end{array} \\ & \hline \end{aligned}$ | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Frequency | $\mathrm{CKN}_{\mathrm{F}}$ |  | $\bullet$ |  |  |  |  |  |  |  |  | 19.38 | - | 710 | MHz |
|  |  |  |  | - |  |  | - |  |  |  |  | 19.43 | - | 707.35 | MHz |
|  |  |  |  |  | - |  |  |  | - |  | - | 0.002 | - | 707.35 | MHz |
|  |  |  |  |  |  | $\bullet$ |  |  |  | $\bullet$ |  | 10 | - | 710 | MHz |
|  |  | When used as frame synchronization input |  |  |  |  |  |  | $\bullet$ |  |  | - | 0.008 | - | MHz |
|  |  |  |  |  |  |  |  |  |  |  | $\bullet$ | 2 | - | 512 | kHz |
| CKIN_n Input Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Duty Cycle (Minimum Pulse Width) |  | Whichever is smaller (i.e., the $40 \% / 60 \%$ limitation applies only to high frequency clocks) | $\bullet$ | - | - | - | - | - | - | - | - | 40 | - | 60 | \% |
|  | CKN ${ }_{\text {DC }}$ |  | $\bullet$ | - | - | - | $\bullet$ | - | - | - | - | 2 | - | - | ns |
| Input Capacitance | $\mathrm{CKN}_{\text {CIN }}$ |  | - | - | - | - | - | - | - | $\bullet$ | $\bullet$ | - | - | 3 | pF |
| Input Rise/Fall Time | $\mathrm{CKN}_{\text {TRF }}$ | 20-80\% See Figure 17 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | $\bullet$ | - | - | 11 | ns |
| CKOUT_n Output Pins (See individual data sheets for speed grade limits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output Frequency (Output not configured for CMOS or tri-state) | $\mathrm{CK}_{\text {OF }}$ |  | $\bullet$ |  |  |  |  |  |  |  |  | 19.38 | - | 710 | MHz |
|  |  |  |  | $\bullet$ |  |  | $\bullet$ |  |  |  |  | 19.43 | - | 1049 | MHz |
|  |  |  |  |  |  |  |  |  | - |  |  | 0.008 | - | 1049 | MHz |
|  |  |  |  |  |  | - |  |  |  | $\bullet$ |  | 10 | - | 945 | MHz |
|  |  |  |  |  | $\bullet$ |  |  |  |  |  | - | 0.002 | - | 945 | MHz |
|  |  |  |  |  | - | - |  |  |  | $\bullet$ | - | 970 | - | 1134 | MHz |
|  |  |  |  |  | - | - |  |  |  | $\bullet$ | - | 1.213 | - | 1.4 | GHz |
| Maximum Output <br> Frequency in CMOS Format | $\mathrm{CKO}_{\text {FMC }}$ |  | - | - | - | $\bullet$ | - | - • | - | - | - | - | - | 212.5 | MHz |
| Output Rise/Fall (20-80\%) at 622.08 MHz | $\mathrm{CKO}_{\text {TRF }}$ | Output not configured for CMOS See Figure 17 | - | - | - | - | - | - • | - | - | - | - | 230 | 350 | ps |
| Output Rise/Fall (20-80\%) at 212.5 MHz | $\mathrm{CKO}_{\text {TRF }}$ | $\begin{gathered} \text { CMOS Output } \\ V_{D D}=1.62 \\ \text { Cload }=5 \mathrm{pF} \end{gathered}$ | - | - | - | - | - | - | - | - | - | - | - | 8 | ns |
|  |  | $\begin{gathered} \text { CMOS Output } \\ V_{D D}=2.97 \\ \text { Cload }=5 \mathrm{pF} \end{gathered}$ | - | - | - | - |  |  |  |  |  | - | - | 2 | ns |
| Output Duty Cycle Differential Uncertainty | $\mathrm{CKO}_{\text {DC }}$ | $100 \Omega$ Load Line to Line Measured at 50\% Point (not for CMOS) | $\bullet$ | - | - | - | - | - | - | $\bullet$ | - | - | - | $\pm 40$ | ps |

Table 8. AC Characteristics—All Devices (Continued)

| Parameter | Symbol | Test Condition | 呂 |  |  | $\begin{array}{\|l\|} \hline \stackrel{N}{N} \\ \underset{\sim}{n} \\ \dot{\omega} \end{array}$ |  |  | $\left.\begin{array}{\|l\|} \hat{0} \\ 0 \\ \\ \end{array} \right\rvert\,$ | $\left.\begin{array}{\|l\|} \hline 0 \\ 0 \\ \\ \\ \end{array} \right\rvert\,$ | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LVCMOS Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Capacitance | $\mathrm{C}_{\text {in }}$ |  | $\bullet$ | - | - | - | - | - | - | $\bullet$ | - | - | 3 | pF |
| Minimum Reset Pulse Width | $\mathrm{t}_{\text {RSTMN }}$ |  | $\bullet$ | - | - | - | - | - | - | $\bullet$ | 1 | - | - | $\mu \mathrm{S}$ |
| Reset to Microprocessor Access Ready | $t_{\text {READY }}$ |  |  |  | - | $\bullet$ |  |  | - | $\bullet$ | - | - | 10 | ms |
| LVCMOS Output Pins |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LOSn Trigger Window |  | From last CKIN_n $\uparrow$ to internal detection of LOSn |  | $\bullet$ |  | $\bullet$ | $\bullet$ |  | $\bullet$ |  | $\begin{gathered} 100 \mathrm{x} \\ \text { N3 } \end{gathered}$ | - | $\begin{gathered} 570 \times \\ \text { N3 } \end{gathered}$ | $\mathrm{T}_{\text {CKIN }}$ |
|  | LOS $_{\text {TRIG }}$ | From last CKIN_n $\uparrow$ to internal detection of LOSn N3 $=1$ |  |  | - |  |  | $\bullet$ |  | - | $\begin{gathered} 0.8 x \\ \text { N3 } \end{gathered}$ | - | $4.5 \times \mathrm{N} 3$ | $\mathrm{T}_{\text {CKIN }}$ |
|  |  | From last CKIN_n $\uparrow$ to internal detection of LOSn N3 = 1 |  |  | $\bullet$ |  |  | $\bullet$ |  | - | 250 ns | - | 4.5 | $\mathrm{T}_{\text {CKIN }}$ |
| Time to Clear LOL after LOS Cleared | ${ }^{\text {t CLRLOL }}$ | $\begin{gathered} \downarrow \text { LOS to } \downarrow \text { LOL } \\ \text { Assume } \\ \text { Fold }=\text { Fnew, } \\ \text { Stable XA/XB } \\ \text { reference } \end{gathered}$ | $\bullet$ |  | $\bullet$ |  |  | $\bullet$ |  | $\bullet$ | - | 10 | - | ms |

## Si53xx-RM

Table 8. AC Characteristics—All Devices (Continued)

| Parameter | Symbol | Test Condition |  | $\begin{array}{\|c\|} \hline \stackrel{N}{N} \\ \stackrel{N}{n} \\ \hline \end{array}$ |  |  | N |  |  |  |  |  | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device Skew |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output Clock Skew, see Section 7.7.4 | ${ }^{\text {t SKEW }}$ | 个 of CKOUT_n to $\uparrow$ of CKOUT_m, CKOUT_n and CKOUT_m at same frequency and signal format <br> PHASE OFFSET $=0$ SQICAL = 1 <br> CKOUT_ALWAYS_O $\mathrm{N}=1$ |  |  |  |  |  | - |  | - | - |  | - | - | 100 | ps |
| Coarse Skew Adjust Resolution | $\mathrm{t}_{\text {PHRES }}$ | Using CLAT[7:0] register |  |  |  |  |  |  |  |  | $\bullet$ |  | - | 1/F $\mathrm{F}_{\mathrm{Vco}}$ | - | ps |
|  |  | using INC/DEC pins |  |  |  |  |  |  | $\bullet$ |  |  |  | - | 1/F Fco | - | ps |
| Coarse Skew Adjust Range | tPHSRNG | Using CLAT[7:0] register |  |  |  |  |  |  |  |  | $\bullet$ |  | $-\infty$ | - | $+\infty$ |  |
|  |  | using INC/DEC pins |  |  |  |  |  |  | $\bullet$ |  |  |  | $-\infty$ | - | $+\infty$ | s |
| Fine Skew Adjust Resolution | $\mathrm{t}_{\text {FPHSRES }}$ | using FLAT[14:0] register |  |  |  | $\bullet$ |  |  |  |  | - |  | - | 9 | - | ps |
| Fine Skew Adjust Range | $\mathrm{t}_{\text {FPPSRNG }}$ | $\begin{aligned} & \hline \text { using FLAT[14:0] } \\ & \text { register } \end{aligned}$ |  |  |  | $\bullet$ |  |  |  |  | $\bullet$ |  | -110 | - | 110 | ps |
| Phase Offset Resolution | tofstres | using PHASEOFFSETn[7:0] registers |  |  |  | $\bullet$ |  |  |  |  | $\bullet$ |  | - | $\begin{array}{\|c\|} \hline \mathrm{N} 1 \_\mathrm{HS}^{\mathrm{f}} \mathrm{vco} \end{array}$ | - |  |
| Phase Offset Range | tofstrng | using PHASEOFFSETn[7:0] registers |  |  |  | $\bullet$ |  |  |  |  | - |  | $\begin{gathered} -128 \mathrm{x} \\ \mathrm{t}_{\text {OF- }} \\ \text { STRES } \\ \hline \end{gathered}$ | - | $\begin{gathered} 127 \times \\ \text { tof- }_{\text {OF- }} \\ \text { STRES } \end{gathered}$ |  |
| PLL Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lock Time | tockhw | $\uparrow \overline{\text { RST }}$ with valid CKIN to $\downarrow$ LOL; $B W=100 \mathrm{~Hz}$ | - |  |  |  |  |  | $\bullet$ |  |  |  | - |  | 1.2 | sec |
| Pin Reset or Register Reset to Microprocessor Access Ready | $\mathrm{t}_{\text {READY }}$ |  |  |  |  | - | $\bullet$ |  |  | $\bullet$ | - |  | - | - | 10 | ms |
| Reset to first $\uparrow$ on CKOUT | $\mathrm{t}_{\text {START }}$ | Valid, stable clock on CKIN | $\bullet$ | $\bullet$ |  |  |  | $\bullet \bullet$ | $\bullet$ |  |  |  | - | - | 1.2 | sec |
| Minimum Reset Pulse Width | $\mathrm{t}_{\text {RSTMIN }}$ |  | $\bullet$ | - | - • | - | - | - - | - | - | - |  | 1 | - | - | $\mu \mathrm{s}$ |
| Lock Time | tıOCKMP | Start of ICAL to $\downarrow$ of LOL, lowest BW setting |  |  |  |  |  |  |  |  | $\bullet$ |  | - | 35 | 1000 | ms |
| Closed Loop Jitter Peaking | $\mathrm{J}_{\mathrm{PK}}$ |  | $\bullet$ | - | - | $\bullet \bullet$ | $\bullet \bullet$ | - | $\bullet$ | - | $\bullet$ |  | - | 0.05 | 0.1 | dB |

Table 8. AC Characteristics—All Devices (Continued)

| Parameter | Symbol | Test Condition | $\begin{aligned} & 0.0 \\ & \stackrel{N}{N} \\ & \cdots \\ & i n \end{aligned}$ | $\begin{array}{\|l\|} \mathbf{N} \\ \tilde{N} \\ \stackrel{n}{n} \end{array}$ | $\begin{aligned} & \hline \underset{N}{N} \\ & \stackrel{N}{n} \\ & \stackrel{n}{n} \end{aligned}$ |  |  | $\left. \right\rvert\,$ | $\begin{array}{\|l\|} \hline \\ \hline 0 \\ i \\ \\ \hline 0 \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \\ \stackrel{n}{\omega} \end{array}$ | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Phase Change due to Temperature Variation | ${ }_{\text {temp }}$ | Max phase changes from -40 to $+85^{\circ} \mathrm{C}$ | - | - | - | - | - | - | - | $\bullet$ | - | 300 | 500 | ps |
| Jitter Tolerance | $\mathrm{J}_{\text {TOL }}$ |  | - | - | - | - | - | - | - | - |  | $\begin{aligned} & \text { 2.3. Jitte } \\ & \text { pag } \end{aligned}$ | $\begin{aligned} & \text { Tolerar } \\ & 49 \text {. } \end{aligned}$ | ce" on |
| Phase Noise fout $=622.08 \mathrm{MHz}$ | $\mathrm{CKO}_{\text {PN }}$ | 1 kHz Offset | $\bullet$ |  |  |  |  | $\bullet$ |  | $\bullet$ | - | -106 | -87 | dBc/Hz |
|  |  | 10 kHz Offset | $\bullet$ |  |  |  |  | $\bullet$ |  | $\bullet$ | - | -121 | -100 | dBc/Hz |
|  |  | 100 kHz Offset | $\bullet$ |  |  |  |  | - |  | $\bullet$ | - | -132 | -110 | dBc/Hz |
|  |  | 1 MHz Offset | $\bullet$ |  |  |  |  | - |  | $\bullet$ | - | -132 | -125 | dBc/Hz |
| Subharmonic Noise | $\mathrm{SP}_{\text {SUBH }}$ | Phase Noise @ 100 kHz Offset | $\bullet$ |  |  |  |  | $\bullet$ |  | $\bullet$ | - | -88 | -76 | dBc |
| Spurious Noise | SP ${ }_{\text {SPUR }}$ |  | $\bullet$ |  |  |  |  | $\bullet$ |  | $\bullet$ | - | -93 | -70 | dBc |

## Si53xx-RM

Table 9. Jitter Generation (Si5316, Si5324, Si5366, Si5368)

| Parameter | Symbol | Test Condition ${ }^{1,2,3,4,5}$ |  | Min | Typ | Max | GR-253 Spec | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Measurement Filter (MHz) | DSPLL Bandwidth ${ }^{2}$ |  |  |  |  |  |
| Jitter Gen OC-192 | $\mathrm{J}_{\text {GEN }}$ | 0.02-80 | 120 Hz | - | 4.2 | 6.2 | $30 \mathrm{ps} \mathrm{pp/0.3} \mathrm{UIpp}$ | $\mathrm{ps}_{\text {Pp }}$ |
|  |  |  |  | - | . 27 | . 42 | N/A | ps ${ }_{\text {rms }}$ |
|  |  | 4-80 | 120 Hz | - | 3.7 | 6.4 | $10 \mathrm{ps} \mathrm{pp/0.1} \mathrm{Ulpp}$ | pspp |
|  |  |  |  | - | . 14 | . 31 | N/A | ps ${ }_{\text {rms }}$ |
|  |  | 0.05-80 | 120 Hz | - | 4.4 | 6.9 | $10 \mathrm{ps} \mathrm{pp/0.1} \mathrm{UIpp}$ | pspp |
|  |  |  |  | - | . 26 | . 41 | $\begin{gathered} 1.0 \mathrm{ps}_{\mathrm{rms}} \\ \left(0.01 \mathrm{UI}_{\mathrm{rms}}\right. \end{gathered}$ | ps ${ }_{\text {rms }}$ |
| Jitter Gen OC-48 | $\mathrm{J}_{\text {GEN }}$ | 0.012-20 | 120 Hz | - | 3.5 | 5.4 | 40.2 ps pp/ (0.1 Ulpp) | pspp |
|  |  |  |  | - | . 27 | . 41 | $\begin{aligned} & 4.02 \mathrm{ps}_{\mathrm{rms}} \\ & \left(0.01 \mathrm{UI}_{\mathrm{rms}}\right. \end{aligned}$ | $\mathrm{ps}_{\text {rms }}$ |

Notes:

1. Test condition: $\mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{OUT}}=622.08 \mathrm{MHz}$, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-80\%), LVPECL clock output.
2. BWSEL [1:0] loop bandwidth settings provided in Pin Descriptions.
3. 114.285 MHz 3rd OT crystal used as XA/XB input.
4. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$
5. $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$

Table 10. Jitter Generation (Si5322, Si5325, Si5365, Si5367)

| Parameter | Symbol | Test Condition ${ }^{1,2}$ |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Measurement Filter (MHz) | $\begin{gathered} \text { DSPLL } \\ \text { Bandwidth }^{2} \\ (\mathrm{kHz}) \end{gathered}$ |  |  |  |  |
| Jitter Gen OC-192 | $J_{\text {GEN }}$ | 0.02-80 | 1096 | - | . 49 | - | $\mathrm{ps}_{\text {rms }}$ |
|  |  | 4-80 | 1096 | - | . 23 | - | $\mathrm{ps}_{\mathrm{rms}}$ |
|  |  | 0.05-80 | 1096 | - | . 47 | - | $\mathrm{ps}_{\mathrm{rms}}$ |
| Jitter Gen OC-48 | $\mathrm{J}_{\mathrm{GEN}}$ | 0.012-20 | 1096 | - | . 48 | - | $\mathrm{ps}_{\text {rms }}$ |

## Notes:

1. Test condition: $\mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{OUT}}=622.08 \mathrm{MHz}$, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-80\%), LVPECL clock output.
2. BWSEL [1:0] loop bandwidth settings provided in Pin Descriptions.

Table 11. Thermal Characteristics

| Parameter | Symbol | Test Condition | Devices | Value | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance Junction to Ambient | $\theta_{\text {JA }}$ | Still Air | Si5316, Si5319, Si5322, Si5323, Si5324, Si5325 | 32 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
|  |  |  | Si5365, Si5366, Si5367, Si5368 | 40 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance Junction to Case | $\theta_{\mathrm{JC}}$ | Still Air | $\begin{aligned} & \hline \text { Si5316, Si5319, } \\ & \text { Si5322, Si5323, } \\ & \text { Si5324, Si5325 } \end{aligned}$ | 14 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## 5. DSPLL (All Devices)

All members of the Any-Frequency Precision Clocks family incorporate a phase-locked loop (PLL) that utilizes Silicon Laboratories' third generation DSPLL technology to eliminate jitter, noise, and the need for external VCXO and loop filter components found in discrete PLL implementations. This is achieved by using a digital signal processing (DSP) algorithm to replace the loop filter commonly found in discrete PLL designs. Because external PLL components are not required, sensitivity to board-level noise sources is minimized. This digital technology provides highly stable and consistent operation over process, temperature, and voltage variations.
A simplified block diagram of the DSPLL is shown in Figure 20. This algorithm processes the phase detector error term and generates a digital frequency control word M to adjust the frequency of the digitally-controlled oscillator (DCO). The narrowband configuration devices (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, and Si5369) provide ultra-low jitter generation by using an external jitter reference clock and jitter attenuation. For applications where basic frequency multiplication of low jitter clocks is all that is required, the wideband parts (Si5322, Si5325, Si5365, and Si5367) are available.


Figure 20. Any-Frequency Precision Clock DSPLL Block Diagram

### 5.1. Clock Multiplication

Fundamental to these parts is a clock multiplication circuit that is simplified in Figure 21. By having a large range of dividers and multipliers, nearly any output frequency can be created from a fixed input frequency. For typical telecommunications and data communications applications, the hardware control parts (Si5316, Si5322, Si5323, Si5365, and Si5366) provide simple pin control.
The microprocessor controlled parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, and Si5369) provide a programmable range of clock multiplications. To assist users in finding valid divider settings for a particular input frequency and clock multiplication ratio, Silicon Laboratories offers PC-based software (DSPLLsim) that calculates these settings automatically. When multiple divider combinations produce the same output frequency, the software recommends the divider settings yielding the recommended settings for phase noise performance and power consumption.


Figure 21. Clock Multiplication Circuit

### 5.2. PLL Performance

All members of the Any-Frequency Precision Clock family of devices provide extremely low jitter generation, a wellcontrolled jitter transfer function, and high jitter tolerance. For more information the loop bandwidth and its effect on jitter attenuation, see "Appendix H—Jitter Attenuation and Loop BW" on page 164.

### 5.2.1. Jitter Generation

Jitter generation is defined as the amount of jitter produced at the output of the device with a jitter free input clock. Generated jitter arises from sources within the VCO and other PLL components. Jitter generation is a function of the PLL bandwidth setting. Higher loop bandwidth settings may result in lower jitter generation, but may result in less attenuation of jitter that might be present on the input clock signal.

### 5.2.2. Jitter Transfer

Jitter transfer is defined as the ratio of output signal jitter to input signal jitter for a specified jitter frequency. The jitter transfer characteristic determines the amount of input clock jitter that passes to the outputs. The DSPLL technology used in the Any-Frequency Precision Clock devices provides tightly controlled jitter transfer curves because the PLL gain parameters are determined largely by digital circuits which do not vary over supply voltage, process, and temperature. In a system application, a well-controlled transfer curve minimizes the output clock jitter variation from board to board and provides more consistent system level jitter performance.
The jitter transfer characteristic is a function of the loop bandwidth setting. Lower bandwidth settings result in more jitter attenuation of the incoming clock, but may result in higher jitter generation. Section 1 Any-Frequency Precision Clock Product Family Overview also includes specifications related to jitter bandwidth and peaking. Figure 22 shows the jitter transfer curve mask.


Figure 22. PLL Jitter Transfer Mask/Template

### 5.2.3. Jitter Tolerance

Jitter tolerance is defined as the maximum peak-to-peak sinusoidal jitter that can be present on the incoming clock before the DSPLL loses lock. The tolerance is a function of the jitter frequency, because tolerance improves for lower input jitter frequency.

The jitter tolerance of the DSPLL is a function of the loop bandwidth setting. Figure 23 shows the general shape of the jitter tolerance curve versus input jitter frequency. For jitter frequencies above the loop bandwidth, the tolerance is a constant value $A_{j 0}$. Beginning at the PLL bandwidth, the tolerance increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ for lower input jitter frequencies.


Figure 23. Jitter Tolerance Mask/Template
The equation for the high frequency jitter tolerance can be expressed as a function of the PLL loop bandwidth (i.e., bandwidth):

$$
A_{j 0}=\frac{5000}{B W} \text { ns pk-pk }
$$

For example, the jitter tolerance when $\mathrm{f}_{\text {in }}=155.52 \mathrm{MHz}, \mathrm{f}_{\text {out }}=622.08 \mathrm{MHz}$ and the loop bandwidth $(\mathrm{BW})$ is 100 Hz :

$$
A_{j 0}=\frac{5000}{100}=50 \mathrm{~ns} \mathrm{pk-pk}
$$

## 6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)

These parts provide high-performance clock multiplication with simple pin control. Many of the control inputs are three levels: High, Low, and Medium. High and Low are standard voltage levels determined by the supply voltage: $\mathrm{V}_{\mathrm{DD}}$ and Ground. If the input pin is left floating, it is driven to nominally half of $\mathrm{V}_{\mathrm{DD}}$. Effectively, this creates three logic levels for these controls.
These parts span a range of applications and I/O capacity as shown in Table 12.
Table 12. Si5316, Si5322, Si5323, Si5365 and Si5366 Key Features

|  | Si5316 | Si5322 | Si5323 | Si5365 | Si5366 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SONET Frequencies | $\bullet$ | $\bullet$ | - | $\bullet$ | - |
| DATACOM Frequencies | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| DATACOM/SONET internetworking |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Fixed Ratio between input clocks | $\bullet$ |  |  |  |  |
| Flexible Frequency Plan |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Number of Inputs | 2 | 2 | 2 | 4 | 4 |
| Number of Outputs | 1 | 2 | 2 | 5 | 5 |
| Jitter Attenuation | $\bullet$ |  | - |  | $\bullet$ |

### 6.1. Clock Multiplication (Si5316, Si5322, Si5323, Si5365, Si5366)

By setting the tri-level FRQSEL[3:0] pins these devices provide a wide range of standard SONET and data communications frequency scaling, including simple integer frequency multiplication to fractional settings required for coding and decoding.

### 6.1.1. Clock Multiplication (Si5316)

The device accepts dual input clocks in the 19, 39, $78,155,311$, or 622 MHz frequency range and generates a dejittered output clock at the same frequency. The frequency range is set by the FRQSEL [1:0] pins, as shown in Table 13.

Table 13. Frequency Settings

| FRQSEL[1:0] | Output Frequency (MHz) |
| :---: | :---: |
| LL | $19.38-22.28$ |
| LM | $38.75-44.56$ |
| LH | $77.50-89.13$ |
| ML | $155.00-178.25$ |
| MM | $310.00-356.50$ |
| MH | $620.00-710.00$ |

The Si5316 can accept a CKIN1 input at a different frequency than the CKIN2 input. The frequency of one input clock can be $1 x, 4 x$, or $32 x$ the frequency of the other input clock. The output frequency is always equal to the lower of the two clock inputs and is set via the FRQSEL [1:0] pins. The frequency applied at each clock input is divided down by a pre-divider as shown in the Figure 1 on page 17. These pre-dividers must be set such that the two resulting clock frequencies, f3_1 and f3_2 must be equal and are set by the FRQSEL [1:0] pins. Input divider settings are controlled by the CK1DIV and CK2DIV pins, as shown in Table 14.

Table 14. Input Divider Settings

| CKnDIV | N3n Input Divider |
| :---: | :---: |
| L | 1 |
| M | 4 |
| H | 32 |

Table 15. Si5316 Bandwidth Values

| FRQSEL[1:0] Nominal Frequency Values (MHz) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BW[1:0] | $\begin{gathered} \text { LL } \\ 19.44 \mathrm{MHz} \end{gathered}$ | $\begin{gathered} \text { LM } \\ 38.88 \mathrm{MHz} \end{gathered}$ | LH <br> 77.76 MHz | $\begin{gathered} \text { ML } \\ 155.52 \mathrm{MHz} \end{gathered}$ | $\begin{gathered} \text { MM } \\ 311.04 \mathrm{MHz} \end{gathered}$ | $\begin{gathered} \text { MH } \\ 622.08 \mathrm{MHz} \end{gathered}$ |
| HM | 100 Hz |
| HL | 210 Hz | 210 Hz | 200 Hz | 200 Hz | 200 Hz | 200 Hz |
| MH | 410 Hz | 410 Hz | 400 Hz | 400 Hz | 400 Hz | 400 Hz |
| MM | 1.7 kHz | 1.7 kHz | 1.6 kHz | 1.6 kHz | 1.6 kHz | 1.6 kHz |
| ML | 7.0 kHz | 7.0 kHz | 6.8 kHz | 6.7 kHz | 6.7 kHz | 6.7 kHz |



Figure 24. Si5316 Divisor Ratios

### 6.1.2. Clock Multiplication (Si5322, Si5323, Si5365, Si5366)

These parts provide flexible frequency plans for SONET, DATACOM, and interworking between the two (Table 16, Table 17, and Table 18 respectively). The CKINn inputs must be the same frequency as specified in the tables. The outputs are the same frequency; however, in the Si5365 and Si5366, CKOUT3 and CKOUT4 can be further divided down by using the DIV34 [1:0] pins.
The following notes apply to Tables 16, 17, and 18:

1. All entries are available for the Si 5323 and Si 5366 . Only those marked entries under the WB column are available for the Si5322 and Si5365.
2. The listed output frequencies appear on CKOUTn. For the Si5365 and Si5366, sub-multiples are available on CKOUT3 and CKOUT4 using the DIV34[1:0] control pins.
3. All ratios are exact, but the frequency values are rounded.
4. For bandwidth settings, f3 values, and frequency operating ranges, consult DSPLLsim.
5. For the Si5366 with CK_CONF = 1, CKIN3 and CKIN4 are the same frequency as FS_OUT.

Table 16. SONET Clock Multiplication Settings (FRQTBL=L)

| No | $\begin{array}{\|c\|} \hline \text { FRQSEL } \\ {[3: 0]} \end{array}$ | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}} \mathrm{MHz}$ | Mult Factor | Nominal $\mathrm{f}_{\mathrm{OUT}} \mathrm{MHz}$ | All Devices | Si5366 Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathbf{f}_{\text {CKouts }}$ (MHz) <br> (CK_CONF = 0) | $\begin{aligned} & \text { FS_OUT (MHz) } \\ & \text { (CK_CONF = 1) } \end{aligned}$ |
| 0 | LLLL |  | 0.008 | 1 | 0.008 | 0.008 | 0.008 |
| 1 | LLLM |  |  | 2430 | 19.44 | 19.44 | 0.008 |
| 2 | LLLH |  |  | 4860 | 38.88 | 38.88 | 0.008 |
| 3 | LLML |  |  | 9720 | 77.76 | 77.76 | 0.008 |
| 4 | LLMM |  |  | 19440 | 155.52 | 155.52 | 0.008 |
| 5 | LLMH |  |  | 38880 | 311.04 | 311.04 | 0.008 |
| 6 | LLHL |  |  | 77760 | 622.08 | 622.08 | 0.008 |

Table 16. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

| No | $\begin{array}{\|c\|} \hline \text { FRQSEL } \\ {[3: 0]} \end{array}$ | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}} \mathrm{MHz}$ | Mult Factor | Nominal $\mathrm{f}_{\text {OUT }} \mathrm{MHz}$ | All Devices | Si5366 Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{f}_{\text {CKOUT5 }}$ (MHz) (CK_CONF = 0) | FS_OUT (MHz) (CK_CONF = 1) |
| 7 | LLHM | $\bullet$ | 19.44 | 1 | 19.44 | 19.44 | 0.008 |
| 8 | LLHH | $\bullet$ |  | 2 | 38.88 | 38.88 | 0.008 |
| 9 | LMLL | $\bullet$ |  | 4 | 77.76 | 77.76 | 0.008 |
| 10 | LMLM | $\bullet$ |  | 8 | 155.52 | 155.52 | 0.008 |
| 11 | LMLH |  |  | $8 \times(255 / 238)$ | 166.63 | 166.63 | NA |
| 12 | LMML |  |  | $8 \times(255 / 237)$ | 167.33 | 167.33 | NA |
| 13 | LMMM |  |  | $8 \times(255 / 236)$ | 168.04 | 168.04 | NA |
| 14 | LMMH | $\bullet$ |  | 16 | 311.04 | 311.04 | 0.008 |
| 15 | LMHL | $\bullet$ |  | 32 | 622.08 | 622.08 | 0.008 |
| 16 | LMHM |  |  | $32 \times(255 / 238)$ | 666.51 | 666.51 | NA |
| 17 | LMHH |  |  | $32 \times(255 / 237)$ | 669.33 | 669.33 | NA |
| 18 | LHLL |  |  | $32 \times(255 / 236)$ | 672.16 | 672.16 | NA |
| 19 | LHLM | $\bullet$ |  | 48 | 933.12 | 933.12 | 0.008 |
| 20 | LHLH | $\bullet$ |  | 54 | 1049.76 | 1049.76 | 0.008 |
| 21 | LHML | $\bullet$ | 38.88 | 1 | 38.88 | 38.88 | 0.008 |
| 22 | LHMM | $\bullet$ |  | 2 | 77.76 | 77.76 | 0.008 |
| 23 | LHMH | $\bullet$ |  | 4 | 155.52 | 155.52 | 0.008 |
| 24 | LHHL | $\bullet$ |  | 16 | 622.08 | 622.08 | 0.008 |
| 25 | LHHM |  |  | $16 \times(255 / 238)$ | 666.51 | 666.51 | NA |
| 26 | LHHH |  |  | $16 \times(255 / 237)$ | 669.33 | 669.33 | NA |
| 27 | MLLL |  |  | $16 \times(255 / 236)$ | 672.16 | 672.16 | NA |

Table 16. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

| No | $\begin{gathered} \text { FRQSEL } \\ {[3: 0]} \end{gathered}$ | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}} \mathrm{MHz}$ | Mult Factor | Nominal $\mathrm{f}_{\text {OUT }} \mathrm{MHz}$ | All Devices | Si5366 Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \mathbf{f}_{\text {CKOUT5 }}(\mathrm{MHz}) \\ & (\mathrm{CK} \text { CONF }=0) \end{aligned}$ | FS_OUT (MHz) (CK_CONF = 1) |
| 28 | MLLM | $\bullet$ | 77.76 | 1/4 | 19.44 | 19.44 | 0.008 |
| 29 | MLLH | $\bullet$ |  | 1/2 | 38.88 | 38.88 | 0.008 |
| 30 | MLML | $\bullet$ |  | 1 | 77.76 | 77.76 | 0.008 |
| 31 | MLMM | $\bullet$ |  | 2 | 155.52 | 155.52 | 0.008 |
| 32 | MLMH | $\bullet$ |  | $2 \times(255 / 238)$ | 166.63 | 166.63 | NA |
| 33 | MLHL |  |  | $2 \times(255 / 237)$ | 167.33 | 167.33 | NA |
| 34 | MLHM |  |  | $2 \times(255 / 236)$ | 168.04 | 168.04 | NA |
| 35 | MLHH | $\bullet$ |  | 4 | 311.04 | 311.04 | 0.008 |
| 36 | MMLL | $\bullet$ |  | 8 | 622.08 | 622.08 | 0.008 |
| 37 | MMLM | $\bullet$ |  | $8 \times(255 / 238)$ | 666.51 | 666.51 | NA |
| 38 | MMLH |  |  | $8 \times(255 / 237)$ | 669.33 | 669.33 | NA |
| 39 | MMML |  |  | $8 \times(255 / 236)$ | 672.16 | 672.16 | NA |
| 40 | MMMM | $\bullet$ | 155.52 | 1/8 | 19.44 | 19.44 | 0.008 |
| 41 | MMMH | $\bullet$ |  | 1/4 | 38.88 | 38.88 | 0.008 |
| 42 | MMHL | $\bullet$ |  | 1/2 | 77.76 | 77.76 | 0.008 |
| 43 | MMHM | $\bullet$ |  | 1 | 155.52 | 155.52 | 0.008 |
| 44 | MMHH | $\bullet$ |  | 255/238 | 166.63 | 166.63 | NA |
| 45 | MHLL |  |  | 255/237 | 167.33 | 167.33 | NA |
| 46 | MHLM |  |  | 255/236 | 168.04 | 168.04 | NA |
| 47 | MHLH | $\bullet$ |  | 2 | 311.04 | 311.04 | 0.008 |
| 48 | MHML | $\bullet$ |  | 4 | 622.08 | 622.08 | 0.008 |
| 49 | MHMM | $\bullet$ |  | $4 \times(255 / 238)$ | 666.51 | 666.51 | NA |
| 50 | MHMH |  |  | $4 \times(255 / 237)$ | 669.33 | 669.33 | NA |
| 51 | MHHL |  |  | $4 \times(255 / 236)$ | 672.16 | 672.16 | NA |
| 52 | MHHM | $\bullet$ | 166.63 | 238/255 | 155.52 | 155.52 | NA |
| 53 | MMHM | $\bullet$ |  | 1 | 166.63 | 166.63 | NA |
| 54 | MHHH | $\bullet$ |  | $4 \times(238 / 255)$ | 622.08 | 622.08 | NA |
| 55 | MHML | $\bullet$ |  | 4 | 666.51 | 666.51 | NA |

Table 16. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

| No | $\begin{gathered} \text { FRQSEL } \\ {[3: 0]} \end{gathered}$ | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}} \mathrm{MHz}$ | Mult Factor | Nominal $\mathrm{f}_{\mathrm{OUT}} \mathrm{MHz}$ | All Devices | Si5366 Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{f}_{\text {CKOUT5 }}$ (MHz) (CK_CONF = 0) | FS_OUT (MHz) (CK_CONF = 1) |
| 56 | HLLL |  | 167.33 | 237/255 | 155.52 | 155.52 | NA |
| 57 | MMHM | $\bullet$ |  | 1 | 167.33 | 167.33 | NA |
| 58 | HLLM |  |  | $4 \times(237 / 255)$ | 622.08 | 622.08 | NA |
| 59 | MHML | $\bullet$ |  | 4 | 669.33 | 669.33 | NA |
| 60 | HLLH |  | 168.04 | 236/255 | 155.52 | 155.52 | NA |
| 61 | MMHM | $\bullet$ |  | 1 | 168.04 | 168.04 | NA |
| 62 | HLML |  |  | $4 \times(236 / 255)$ | 622.08 | 622.08 | NA |
| 63 | MHML | $\bullet$ |  | 4 | 672.16 | 672.16 | NA |
| 64 | HLMM | $\bullet$ | 311.04 | 1 | 311.04 | 311.04 | 0.008 |
| 65 | HLMH | - |  | 2 | 622.08 | 622.08 | 0.008 |
| 66 | HLHL | $\bullet$ |  | $2 \times(255 / 238)$ | 666.51 | 666.51 | NA |
| 67 | HLHM |  |  | $2 \times(255 / 237)$ | 669.33 | 669.33 | NA |
| 68 | HLHH |  |  | $2 \times(255 / 236)$ | 672.16 | 672.16 | NA |
| 69 | HMLL | $\bullet$ | 622.08 | 1/32 | 19.44 | 19.44 | 0.008 |
| 70 | HMLM | $\bullet$ |  | 1/16 | 38.88 | 38.88 | 0.008 |
| 71 | HMLH | $\bullet$ |  | 1/8 | 77.76 | 77.76 | 0.008 |
| 72 | HMML | $\bullet$ |  | 1/4 | 155.52 | 155.52 | 0.008 |
| 73 | HMMM | $\bullet$ |  | 1/2 | 311.04 | 311.04 | 0.008 |
| 74 | HMMH | $\bullet$ |  | 1 | 622.08 | 622.08 | 0.008 |
| 75 | HMHL | $\bullet$ |  | 255/238 | 666.51 | 666.51 | NA |
| 76 | HMHM |  |  | 255/237 | 669.33 | 669.33 | NA |
| 77 | HMHH | $\bullet$ |  | 255/236 | 672.16 | 672.16 | NA |
| 78 | HHLL | $\bullet$ | 666.51 | 1/4 x 238/255 | 155.52 | 155.52 | NA |
| 79 | HMML | $\bullet$ |  | 1/4 | 166.63 | 166.63 | NA |
| 80 | HHLM | $\bullet$ |  | 238/255 | 622.08 | 622.08 | NA |
| 81 | HMMH | $\bullet$ |  | 1 | 666.51 | 666.51 | NA |

Table 16. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

| No | $\begin{array}{\|c\|} \hline \text { FRQSEL } \\ {[3: 0]} \end{array}$ | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}} \mathrm{MHz}$ | Mult Factor | Nominal $\mathrm{f}_{\text {OUT }} \mathrm{MHz}$ | All Devices | Si5366 Only |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{f}_{\text {CKOUT5 }}$ (MHz) (CK_CONF = 0) | $\begin{aligned} & \text { FS_OUT (MHz) } \\ & \text { (CK_CONF = 1) } \end{aligned}$ |
| 82 | HHLH |  | 669.33 | 1/4 $\times 237 / 255$ | 155.52 | 155.52 | NA |
| 83 | HMML | $\bullet$ |  | 1/4 | 167.33 | 167.33 | NA |
| 84 | HHML |  |  | 237/255 | 622.08 | 622.08 | NA |
| 85 | HMMH | $\bullet$ |  | 1 | 669.33 | 669.33 | NA |
| 86 | HHMM |  | 672.16 | 1/4 $\times 236 / 255$ | 155.52 | 155.52 | NA |
| 87 | HMML | $\bullet$ |  | 1/4 | 168.04 | 168.04 | NA |
| 88 | HHMH |  |  | 236/255 | 622.08 | 622.08 | NA |
| 89 | HMMH | $\bullet$ |  | 1 | 672.16 | 672.16 | NA |

Table 17. Datacom Clock Multiplication Settings (FRQTBL $\left.=M, C K \_C O N F=0\right)$

| Setting | FRQSEL[3:0] | ${ }^{0}$ | $\mathrm{f}_{\mathrm{IN}}$ (MHz) | Mult Factor | $\mathrm{f}_{\text {OUT }}{ }^{\text {( }} \mathrm{MHz}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | LLLL | $\bullet$ | 15.625 | 2 | 31.25 |
| 1 | LLLM | - |  | 4 | 62.5 |
| 2 | LLLH | $\bullet$ |  | 8 | 125 |
| 3 | LLML | $\bullet$ |  | 16 | 250 |
| 4 | LLMM | $\bullet$ | 25 | 17/4 | 106.25 |
| 5 | LLMH | $\bullet$ |  | 5 | 125 |
| 6 | LLHL |  |  | 25/4 x 66/64 | 161.13 |
| 7 | LLHM |  |  | 51/8 $\times 66 / 64$ | 164.36 |
| 8 | LLHH |  |  | 25/4 x 66/64 $\times 255 / 238$ | 172.64 |
| 9 | LMLL |  |  | 25/4 x 66/64 x 255/237 | 173.37 |
| 10 | LMLM |  |  | 51/8 $\times 66 / 64 \times 255 / 238$ | 176.1 |
| 11 | LMLH |  |  | 51/8 $\times 66 / 64 \times 255 / 237$ | 176.84 |
| 12 | LMML | $\bullet$ |  | 17/2 | 212.5 |
| 13 | LMMM | $\bullet$ |  | 17 | 425 |
| 14 | LMMH |  |  | $25 \times 66 / 64$ | 644.53 |
| 15 | LMHL |  |  | 51/2 x 66/64 | 657.42 |
| 16 | LMHM |  |  | $25 \times 66 / 64 \times 255 / 238$ | 690.57 |
| 17 | LMHH |  |  | $25 \times 66 / 64 \times 255 / 237$ | 693.48 |
| 18 | LHLL |  |  | 51/2 x 66/64 $\times 255 / 238$ | 704.38 |
| 19 | LHLM |  |  | 51/2 x 66/64 x 255/237 | 707.35 |
| 20 | LHLH | $\bullet$ | 31.25 | 2 | 62.5 |
| 21 | LHML | $\bullet$ |  | 4 | 125 |
| 22 | LHMM | $\bullet$ |  | 8 | 250 |
| 23 | LHMH | $\bullet$ | 53.125 | 2 | 106.25 |
| 24 | LHHL | $\bullet$ |  | 4 | 212.5 |
| 25 | LHHM | $\bullet$ |  | 8 | 425 |
| 26 | LHHH | $\bullet$ | 106.25 | $3 / 2 \times 66 / 64$ | 164.36 |
| 27 | MLLL |  |  | $3 / 2 \times 66 / 64 \times 255 / 238$ | 176.1 |
| 28 | MLLM |  |  | 3/2 x 66/64 x 255/237 | 176.84 |
| 29 | MLLH | $\bullet$ |  | 2 | 212.5 |
| 30 | MLML | $\bullet$ |  | 4 | 425 |
| 31 | MLMM | $\bullet$ |  | $6 \times 66 / 64$ | 657.42 |
| 32 | MLMH |  |  | $6 \times 66 / 64 \times 255 / 238$ | 704.38 |
| 33 | MLHL |  |  | $6 \times 66 / 64 \times 255 / 237$ | 707.35 |

Table 17. Datacom Clock Multiplication Settings (FRQTBL = M, CK_CONF = 0) (Continued)

| Setting | FRQSEL[3:0] | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}}(\mathrm{MHz})$ | Mult Factor | $\mathrm{f}_{\mathrm{OUT}}{ }^{*}(\mathrm{MHz})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | MLHM | - | 125 | 10/8 x 66/64 | 161.13 |
| 35 | MLHH |  |  | 10/8 $\times 66 / 64 \times 255 / 238$ | 172.64 |
| 36 | MMLL |  |  | $10 / 8 \times 66 / 64 \times 255 / 237$ | 173.37 |
| 37 | MMLM | $\bullet$ |  | $5 \times 66 / 64$ | 644.53 |
| 38 | MMLH |  |  | $5 \times 66 / 64 \times 255 / 238$ | 690.57 |
| 39 | MMML |  |  | $5 \times 66 / 64 \times 255 / 237$ | 693.48 |
| 40 | MMMM | - | 156.25 | 66/64 | 161.13 |
| 41 | MMMH |  |  | 66/64 $\times 255 / 238$ | 172.64 |
| 42 | MMHL |  |  | 66/64 x 255/237 | 173.37 |
| 43 | MMHM | $\bullet$ |  | $4 \times 66 / 64$ | 644.53 |
| 44 | MMHH |  |  | $4 \times 66 / 64 \times 255 / 238$ | 690.57 |
| 45 | MHLL |  |  | $4 \times 66 / 64 \times 255 / 237$ | 693.48 |
| 46 | MMMM | $\bullet$ | 159.375 | 66/64 | 164.36 |
| 47 | MMMH |  |  | 66/64 $\times 255 / 238$ | 176.1 |
| 48 | MMHL |  |  | 66/64 $\times 255 / 237$ | 176.84 |
| 49 | MMHM | $\bullet$ |  | $4 \times 66 / 64$ | 657.4 |
| 50 | MMHH |  |  | $4 \times 66 / 64 \times 255 / 238$ | 704.38 |
| 51 | MHLL |  |  | $4 \times 66 / 64 \times 255 / 237$ | 707.35 |
| 52 | MHLM | $\bullet$ | 161.13 | $4 / 5 \times 64 / 66$ | 125 |
| 53 | MHLH | $\bullet$ |  | 255/238 | 172.64 |
| 54 | MHML |  |  | 255/237 | 173.37 |
| 55 | MHMM | $\bullet$ |  | 4 | 644.53 |
| 56 | MHMH | $\bullet$ |  | $4 \times 255 / 238$ | 690.57 |
| 57 | MHHL |  |  | $4 \times 255 / 237$ | 693.48 |
| 58 | MHHM |  | 164.36 | $2 / 3 \times 64 / 66$ | 106.25 |
| 59 | MHLH | - |  | 255/238 | 176.1 |
| 60 | MHML |  |  | 255/237 | 176.84 |
| 61 | MHMM | $\bullet$ |  | 4 | 657.42 |
| 62 | MHMH | $\bullet$ |  | $4 \times 255 / 238$ | 704.38 |
| 63 | MHHL |  |  | $4 \times 255 / 237$ | 707.35 |
| 64 | MHHH |  | 172.64 | $4 / 5 \times 64 / 66 \times 238 / 255$ | 125 |
| 65 | HLLL |  |  | 64/66 $\times 238 / 255$ | 156.25 |
| 66 | HLLM | $\bullet$ |  | 238/255 | 161.13 |
| 67 | HLLH | $\bullet$ |  | $4 \times 238 / 255$ | 644.53 |
| 68 | MHMM | $\bullet$ |  | 4 | 690.57 |

Table 17. Datacom Clock Multiplication Settings (FRQTBL = M, CK_CONF = 0) (Continued)

| Setting | FRQSEL[3:0] | $\sum_{3}^{\infty}$ | $\mathrm{f}_{\mathrm{IN}}$ (MHz) | Mult Factor | $\mathrm{f}_{\text {OuT }}$ ( MHz ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 69 | HLML |  | 173.37 | $4 / 5 \times 64 / 66 \times 237 / 255$ | 125 |
| 70 | HLMM |  |  | 64/66 x 237/255 | 156.25 |
| 71 | HLMH | $\bullet$ |  | 237/255 | 161.13 |
| 72 | HLHL |  |  | $4 \times 237 / 255$ | 644.53 |
| 73 | MHMM | $\bullet$ |  | 4 | 693.48 |
| 74 | HLHM |  | 176.1 | $2 / 3 \times 64 / 66 \times 238 / 255$ | 106.25 |
| 75 | HLLL |  |  | 64/66 x 238/255 | 159.375 |
| 76 | HLLM | $\bullet$ |  | 238/255 | 164.36 |
| 77 | HLLH | $\bullet$ |  | $4 \times 238 / 255$ | 657.42 |
| 78 | MHMM | - |  | 4 | 704.38 |
| 79 | HLHH |  | 176.84 | $2 / 3 \times 64 / 66 \times 237 / 255$ | 106.25 |
| 80 | HLMM |  |  | 64/66 x 237/255 | 159.375 |
| 81 | HLMH | $\bullet$ |  | 237/255 | 164.36 |
| 82 | HLHL |  |  | $4 \times 237 / 255$ | 657.42 |
| 83 | MHMM | - |  | 4 | 707.35 |
| 84 | HMLL | $\bullet$ | 212.5 | 2 | 425 |
| 85 | HMLM | $\bullet$ | 425 | 1 | 425 |
| 86 | HMLH | $\bullet$ | 644.53 | 1/5 x 64/66 | 125 |
| 87 | HMML | $\bullet$ |  | 1/4 | 161.13 |
| 88 | HMMM | $\bullet$ |  | 1 | 644.53 |
| 89 | HMMH | $\bullet$ |  | 255/238 | 690.57 |
| 90 | HMHL |  |  | 255/237 | 693.48 |
| 91 | HMHM | $\bullet$ | 657.42 | 1/6 x 64/66 | 106.25 |
| 92 | HMML | $\bullet$ |  | 1/4 | 164.36 |
| 93 | HMMM | $\bullet$ |  | 1 | 657.42 |
| 94 | HMMH | $\bullet$ |  | 255/238 | 704.38 |
| 95 | HMHL |  |  | 255/237 | 707.35 |
| 96 | HMHH |  | 690.57 | $1 / 5 \times 64 / 66 \times 238 / 255$ | 125 |
| 97 | HHLL | $\bullet$ |  | $1 / 4 \times 64 / 66 \times 238 / 255$ | 156.25 |
| 98 | HHLM | $\bullet$ |  | 1/4 $\times 238 / 255$ | 161.13 |
| 99 | HMML | $\bullet$ |  | 1/4 | 172.64 |
| 100 | HHLH | $\bullet$ |  | 238/255 | 644.53 |
| 101 | HMMM | - |  | 1 | 690.57 |

Table 17. Datacom Clock Multiplication Settings (FRQTBL = M, CK_CONF = 0) (Continued)

| Setting | FRQSEL[3:0] | ${ }^{0}$ | $\mathrm{f}_{\mathrm{IN}}(\mathrm{MHz})$ | Mult Factor | $\mathrm{f}_{\text {OUT }}{ }^{\text {( }}$ (MHz) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 102 | HHML |  | 693.48 | 1/5 x 64/66 $\times 237 / 255$ | 125 |
| 103 | HHMM |  |  | 1/4 x 64/66 $\times 237 / 255$ | 156.25 |
| 104 | HHMH | $\bullet$ |  | 1/4 x 237/255 | 161.13 |
| 105 | HMML | $\bullet$ |  | 1/4 | 173.37 |
| 106 | HHHL |  |  | 237/255 | 644.53 |
| 107 | HMMM | $\bullet$ |  | 1 | 693.48 |
| 108 | HHHM |  | 704.38 | 1/6 x 64/66 $\times 238 / 255$ | 106.25 |
| 109 | HHLL |  |  | 1/4 $\times 64 / 66 \times 238 / 255$ | 159.375 |
| 110 | HHLM | $\bullet$ |  | 1/4 x (238/255) | 164.36 |
| 111 | HMML | $\bullet$ |  | 1/4 | 176.1 |
| 112 | HHLH | $\bullet$ |  | 238/255 | 657.42 |
| 113 | HMMM | $\bullet$ |  | 1 | 704.38 |
| 114 | HHHH |  | 707.35 | 1/6 x 64/66 $\times 237 / 255$ | 106.25 |
| 115 | HHMM |  |  | 1/4 $\times 64 / 66 \times 237 / 255$ | 159.375 |
| 116 | HHMH | - |  | $1 / 4 \times(237 / 255)$ | 164.36 |
| 117 | HMML | $\bullet$ |  | 1/4 | 176.84 |
| 118 | HHHL |  |  | 237/255 | 657.42 |
| 119 | HMMM | $\bullet$ |  | 1 | 707.35 |

Table 18. SONET to Datacom Clock Multiplication Settings

| Setting | FRQSEL[3:0] | ${ }_{3}^{0}$ | $\mathrm{f}_{\mathrm{IN}}(\mathrm{MHz})$ | Mult Factor | $\mathrm{f}_{\text {OUT* }}(\mathrm{MHz})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | LLLL |  | 0.008 | 3125 | 25 |
| 1 | LLLM |  |  | 6480 | 51.84 |
| 2 | LLLH |  |  | 53125/8 | 53.125 |
| 3 | LLML |  |  | 15625/2 | 62.5 |
| 4 | LLMM |  |  | 53125/4 | 106.25 |
| 5 | LLMH |  |  | 15625 | 125 |
| 6 | LLHL |  |  | 78125/4 | 156.25 |
| 7 | LLHM |  |  | 159375/8 | 159.375 |
| 8 | LLHH |  |  | 53125/2 | 212.5 |
| 9 | LMLL |  |  | 53125 | 425 |
| 10 | LMLM |  | 19.440 | 625/486 | 25 |
| 11 | LMLH |  |  | 10625/3888 | 53.125 |
| 12 | LMML |  |  | 3125/972 | 62.5 |
| 13 | LMMM |  |  | 10625/1944 | 106.25 |
| 14 | LMMH |  |  | 3125/486 | 125 |
| 15 | LMHL |  |  | 15625/1944 | 156.25 |
| 16 | LMHM |  |  | 31875/3888 | 159.375 |
| 17 | LMHH |  |  | 15625/1944 x 66/64 | 161.13 |
| 18 | LHLL |  |  | 31875/3888 x 66/64 | 164.36 |
| 19 | LHLM |  |  | $\begin{gathered} 15625 / 1944 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 172.64 |
| 20 | LHLH |  |  | $\begin{gathered} 31875 / 3888 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 176.1 |
| 21 | LHML |  |  | 10625/972 | 212.5 |
| 22 | LHMM |  |  | 10625/486 | 425 |
| 23 | LHMH |  |  | 15625/486 x 66/64 | 644.53 |
| 24 | LHHL |  |  | 31875/972 x 66/64 | 657.42 |
| 25 | LHHM |  |  | $\begin{gathered} 15625 / 486 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 690.57 |
| 26 | LHHH |  |  | $\begin{gathered} 31875 / 972 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 704.38 |
| 27 | MLLL |  | 27.000 | 1 | 27 |
| 28 | MLLM |  |  | 250/91 | 74.17582 |
| 29 | MLLH |  |  | 11/4 | 74.25 |

Table 18. SONET to Datacom Clock Multiplication Settings (Continued)

| Setting | FRQSEL[3:0] | ${ }_{3}^{0}$ | $\mathrm{f}_{\text {IN }}(\mathrm{MHz})$ | Mult Factor | $\mathrm{f}_{\mathrm{OUT}}{ }^{\text {( }} \mathrm{MHz}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | MLML | $\bullet$ | 62.500 | 2 | 125 |
| 31 | MLMM | $\bullet$ |  | 4 | 250 |
| 32 | MLMH |  | 74.176 | 91/250 | 27 |
| 33 | MLHL |  |  | 1 | 74.17582 |
| 34 | MLHM |  |  | $91 \times 11 / 250 \times 4$ | 74.25 |
| 35 | MLHH |  | 74.250 | 4/11 | 27 |
| 36 | MMLL |  |  | $4 \times 250 / 11 \times 91$ | 74.17582 |
| 37 | MMLM |  |  | 1 | 74.25 |
| 38 | MMLH |  | 77.760 | 10625/7776 | 106.25 |
| 39 | MMML |  |  | 3125/1944 | 125 |
| 40 | MMMM |  |  | 15625/7776 | 156.25 |
| 41 | MMMH |  |  | 31875/15552 | 159.375 |
| 42 | MMHL |  |  | 15625/7776 x 66/64 | 161.13 |
| 43 | MMHM |  |  | 31875/15552 x 66/64 | 164.36 |
| 44 | MMHH |  |  | $\begin{gathered} 15625 / 7776 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 172.64 |
| 45 | MHLL |  |  | $\begin{gathered} 31875 / 15552 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 176.1 |
| 46 | MHLM |  |  | 10625/3888 | 212.5 |
| 47 | MHLH |  |  | 10625/1944 | 425 |
| 48 | MHML |  |  | 15625/1944 x 66/64 | 644.53 |
| 49 | MHMM |  |  | 31875/3888 x 66/64 | 657.42 |
| 50 | MHMH |  |  | $\begin{gathered} 15625 / 1944 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 690.57 |
| 51 | MHHL |  |  | $\begin{gathered} 31875 / 3888 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 704.38 |

Table 18. SONET to Datacom Clock Multiplication Settings (Continued)

| Setting | FRQSEL[3:0] | $\sum^{\infty}$ | $\mathrm{f}_{\mathrm{IN}}$ (MHz) | Mult Factor | $\mathrm{f}_{\text {OUT* }}$ ( MHz ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | MHHM |  | 155.520 | 15625/15552 | 156.25 |
| 53 | MHHH |  |  | 31875/31104 | 159.375 |
| 54 | HLLL |  |  | 15625/15552 x 66/64 | 161.13 |
| 55 | HLLM |  |  | 31875/31104 x 66/64 | 164.36 |
| 56 | HLLH |  |  | $\begin{gathered} 15625 / 15552 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 172.64 |
| 57 | HLML |  |  | $\begin{gathered} 31875 / 31104 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 176.1 |
| 58 | HLMM |  |  | 10625/7776 | 212.5 |
| 59 | HLMH |  |  | 10625/3888 | 425 |
| 60 | HLHL |  |  | 15625/3888 x 66/64 | 644.53 |
| 61 | HLHM |  |  | 31875/7776 x 66/64 | 657.42 |
| 62 | HLHH |  |  | $\begin{gathered} 15625 / 3888 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 690.57 |
| 63 | HMLL |  |  | $\begin{gathered} \hline 31875 / 7776 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 704.38 |
| 64 | HMLM |  | 622.080 | 15625/15552 x 66/64 | 644.53 |
| 65 | HMLH |  |  | 31875/31104 $\times 66 / 64$ | 657.42 |
| 66 | HMML |  |  | $\begin{gathered} 15625 / 15552 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 690.57 |
| 67 | HMMM |  |  | $\begin{gathered} 31875 / 31104 \times 66 / \\ 64 \times 255 / 238 \end{gathered}$ | 704.38 |

### 6.1.3. CKOUT3 and CKOUT4 (Si5365 and Si5366)

Submultiples of the output frequency on CKOUT1 and CKOUT2 can be produced on the CKOUT3 and CKOUT4 outputs using the DIV34 [1:0] control pins as shown in Table 19.

Table 19. Clock Output Divider Control (DIV34)

| DIV34[1:0] | Output Divider Value |
| :---: | :---: |
| HH | 32 |
| HM | 16 |
| HL | 10 |
| MH | 8 |
| MM | 6 |
| ML | 5 |
| LH | 4 |
| LM | 2 |
| LL | 1 |

6.1.4. Loop bandwidth (Si5316, Si5322, Si5323, Si5365, Si5366)

The loop bandwidth (BW) is digitally programmable using the BWSEL [1:0] input pins. The device operating frequency should be determined prior to loop bandwidth configuration because the loop bandwidth is a function of the phase detector input frequency and the PLL feedback divider setting. Use DSPLLsim to calculate these values automatically. This utility is available for download from www.silabs.com/timing.

### 6.1.5. Jitter Tolerance (Si5316, Si5323, Si5366)

Refer to "5.2.3. Jitter Tolerance" on page 49.

### 6.1.6. Narrowband Performance (Si5316, Si5323, Si5366)

The DCO uses the reference clock on the XA/XB pins as its reference for jitter attenuation. The XA/XB pins support either a crystal oscillator or an input buffer (single-ended or differential) so that an external oscillator can be used as the reference source. The reference source is chosen with the RATE [1:0] pins. In both cases, there are wide margins in the absolute frequency of the reference input because it is a fixed frequency reference and is only used as a jitter reference and holdover reference (see "6.4. Digital Hold/vCO Freeze" on page 70).
However, care must be taken in certain areas for optimum performance. For details on this subject, refer to "Appendix B-Frequency Plans and Jitter Performance (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, Si5375)" on page 121. For examples of connections to the XA/XB pins, refer to "8.4. Crystal/Reference Clock Interfaces (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, and Si5375)" on page 113.

### 6.1.7. Input-to-Output Skew (Si5316, Si5323, Si5366)

The input-to-output skew for these devices is not controlled.

### 6.1.8. Wideband Performance (Si5322 and Si5365)

These devices operate as wideband clock multipliers without an external resonator or reference clock. They are ideal for applications where the input clock is already low jitter and only simple clock multiplication is required. A limited selection of clock multiplication factors is available (See Table 16, Table 17, and Table 18).

### 6.1.9. Lock Detect (Si5322 and Si5365)

A PLL loss of lock indicator is not available in these parts.

### 6.1.10. Input-to-Output Skew (Si5322 and Si5365)

The input-to-output skew for these devices is not controlled.

### 6.2. PLL Self-Calibration

An internal self-calibration (ICAL) is performed before operation to optimize loop parameters and jitter performance. While the self-calibration is being performed, the DSPLL is being internally controlled by the selfcalibration state machine, and the LOL alarm will be active for narrowband parts. The self-calibration time tockhw is given in Table 8, "AC Characteristics-All Devices".
Any of the following events will trigger a self-calibration:
■ Power-on-reset (POR)

- Release of the external reset pin $\overline{\mathrm{RST}}$ (transition of $\overline{\mathrm{RST}}$ from 0 to 1)
- Change in FRQSEL, FRQTBL, BWSEL, or RATE pins
- Internal DSPLL registers out-of-range, indicating the need to relock the DSPLL.

In any of the above cases, an internal self-calibration will be initiated if a valid input clock exists (no input alarm) and is selected as the active clock at that time. For the Si5316, Si5323 and Si5366, the external crystal or reference clock must also be present for the self-calibration to begin. If valid clocks are not present, the selfcalibration state machine will wait until they appear, at which time the calibration will start. All outputs are on during the calibration process.

After a successful self-calibration has been performed with a valid input clock, no subsequent self-calibrations are performed unless one of the above conditions are met. If the input clock is lost following self-calibration, the device enters digital hold mode. When the input clock returns, the device relocks to the input clock without performing a self-calibration. (Narrow band devices only).

### 6.2.1. Input Clock Stability during Internal Self-Calibration (Si5316, Si5322, Si5323, Si5365, Si5366)

An exit from reset must occur when the selected CKINn clock is stable in frequency with a frequency value that is within the operating range that is reported by DSPLLsim. The other CKINs must also either be stable in frequency or squelched during a reset.

### 6.2.2. Self-Calibration caused by Changes in Input Frequency (Si5316, Si5322, Si5323, Si5365, Si5366)

If the selected CKINn varies by 500 ppm or more in frequency since the last calibration, the device may initiate a self-calibration.
6.2.3. Recommended Reset Guidelines (Si5316, Si5322, Si5323, Si5365, Si5366)

Follow the recommended RESET guidelines in Table 20 and Table 21 when reset should be applied to a device.

Table 20. Si5316, Si5322, and Si5323 Pins and Reset

| Pin \# | Si5316 Pin <br> Name | Si5322 Pin <br> Name | Si5323 Pin <br> Name | Must Reset after Changing |
| :---: | :---: | :---: | :---: | :---: |
| 2 | N/A | FRQTBL | FRQTBL | Yes |
| 11 | RATE 0 | N/A | RATE 0 | Yes |
| 14 | DBL_BY | DBL2_BY | DBL2_BY | No |
| 15 | RATE1 | N/A | RATE1 | Yes |
| 19 | N/A | N/A | DEC | No |
| 20 | N/A | N/A | INC | No |
| 22 | BWSEL0 | BWSEL0 | BWSEL0 | Yes |
| 23 | BWSEL1 | BWSEL1 | BWSEL1 | Yes |
| 24 | FRQSEL0 | FRQSEL0 | FRQSEL0 | Yes |
| 25 | FRQSEL1 | FRQSEL1 | FRQSEL1 | Yes |
| 26 | N/A | FRQSEL2 | FRQSEL2 | Yes |
| 27 | N/A | FRQSEL3 | FRQSEL3 |  |
| 30 | SFOUT1 | N/A | SFOUT1 | No, but skew not guaranteed without Reset |
| 33 | SFOUT0 | N/A | SFOUT0 | No, but skew not guaranteed without Reset |

Table 21. Si5365 and Si5366 Pins and Reset

| Pin \# | Si5365 Pin Name | Si5366 Pin Name | Must Reset after Changing |
| :---: | :---: | :---: | :---: |
| 4 | FRQTBL | FRQTBL | Yes |
| 32 | N/A | RATE 0 | Yes |
| 42 | N/A | RATE 1 | Yes |
| 51 | N/A | CK_CONF | Yes |
| 54 | N/A | DEC | No |
| 55 | N/A | INC | No |
| 60 | BWSEL0 | BSWEL0 | Yes |
| 61 | BWSEL1 | BWSEL1 | Yes |
| 66 | DIV34_0 | DIV34_0 | Yes |
| 67 | DIV34_1 | DIV34_1 | Yes |
| 68 | FRQSEL0 | FRQSEL0 | Yes |
| 69 | FRQSEL1 | FRQSEL1 | Yes |
| 70 | FRQSEL2 | FRQSEL2 | Yes |
| 71 | FRQSEL3 | FRQSEL3 | No, but skew not guaranteed without Reset |
| 80 | N/A | SFOUT1 | No, but skew not guaranteed without Reset |
| 95 | N/A | SFOUT0 |  |

### 6.3. Pin Control Input Clock Control

This section describes the clock selection capabilities (manual input selection, automatic input selection, hitless switching, and revertive switching). When switching between two clocks, LOL may temporarily go high if the two clocks differ in frequency by more than 100 ppm .

### 6.3.1. Manual Clock Selection

Manual control of input clock selection is chosen via the CS[1:0] pins according to Table 22 and Table 23.
Table 22. Manual Input Clock Selection (Si5316, Si5322, Si5323), AUTOSEL = L

| CS (Si5316) <br> CS_CA (Si5322, Si5323) | Si5316 | Si5322 | Si5323 |
| :---: | :---: | :---: | :---: |
| 0 | CKIN1 |  |  |
| 1 | CKIN2 |  |  |

The manual input clock selection settings for the Si5365 and the Si5366 are shown in Table 23. The Si5366 has two modes of operation (See Section "6.5. Frame Synchronization (Si5366)"). With CK_CONF = 0, any of the four input clocks may be selected manually; however, when CK_CONF = 1 the inputs are paired, CKIN1 is paired with CKIN3 and likewise for CKIN2 and CKIN4. Therefore, only two settings are available to select one of the two pairs.

Table 23. Manual Input Clock Selection (Si5365, Si5366), AUTOSEL = L

| [CS1_CA4, CS0_CA3]_Pins | Si5365 | Si5366 |  |
| :---: | :---: | :---: | :---: |
|  |  | CK_CONF = 0 <br> (5 Output Clocks) | CK_CONF = 1 <br> (FS_OUT Configuration) |
| 00 | CKIN1 | CKIN1 | CKIN1/CKIN3 |
| 01 | CKIN2 | CKIN2 | CKIN2/CKIN4 |
| 10 | CKIN3 | CKIN3 | Reserved |
| 11 | CKIN4 | CKIN4 | Reserved |

## Notes:

1. To avoid clock switching based on intermediate states during a CS state change, the CS input pins are internally deglitched.
2. If the selected clock enters an alarm condition, the PLL enters digital hold mode.

### 6.3.2. Automatic Clock Selection (Si5322, Si5323, Si5365, Si5366)

The AUTOSEL input pin sets the input clock selection mode as shown in Table 24. Automatic switching is either revertive or non-revertive. Setting AUTOSEL to M or H, changes the CSn_CAm pins to output pins that indicate the state of the automatic clock selection (See Table 25 and Table 26). Digital hold is indicated by all CnB signals going high after a valid ICAL.

Table 24. Automatic/Manual Clock Selection

| AUTOSEL | Clock Selection Mode |
| :---: | :---: |
| L | Manual (See Previous Section) |
| M | Automatic Non-revertive |
| H | Automatic Revertive |

Table 25. Clock Active Indicators (AUTOSEL = M or H) (Si5322 and Si5323)

| CS_CA | Active Clock |
| :---: | :---: |
| 0 | CKIN1 |
| 1 | CKIN2 |

Table 26. Clock Active Indicators (AUTOSEL = M or H) (Si5365 and Si5367)

| CA1 | CA2 | CSO_CA3 | CS1_CA4 | Active Clock |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | CKIN1 |
| 0 | 1 | 0 | 0 | CKIN2 |
| 0 | 0 | 1 | 0 | CKIN3 |
| 0 | 0 | 0 | 1 | CKIN4 |

The prioritization of clock inputs for automatic switching is shown in Table 27 and Table 28. This priority is hardwired in the devices.

Table 27. Input Clock Priority for Auto Switching (Si5322, Si5323)

| Priority | Input Clocks |
| :---: | :---: |
| 1 | CKIN1 |
| 2 | CKIN2 |
| 3 | Digital Hold |

Table 28. Input Clock Priority for Auto Switching (Si5365, Si5366)

| Priority | Input Clock Configuration |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Si5365 | Si5366 |  |
|  |  | 4 Input Clocks <br> (CK_CONF = 0) | FSYNC Switching <br> (CK_CONF = 1) |  |
| 1 | CKIN1 | CKIN1/CKIN3 |  |  |
| 2 | CKIN2 | CKIN2/CKIN4 |  |  |
| 3 | CKIN3 | N/A |  |  |
| 4 | CKIN4 | N/A |  |  |
| 5 | Digital Hold | Digital Hold |  |  |

At power-on or reset, the valid CKINn with the highest priority (1 being the highest priority) is automatically selected. If no valid CKINn is available, the device suppresses the output clocks and waits for a valid CKINn signal. If the currently selected CKINn goes into an alarm state, the next valid CKINn in priority order is selected. If no valid CKINn is available, the device enters Digital Hold.
Operation in revertive and non- revertive is different when a signal becomes valid:
Revertive (AUTOSEL $=\mathrm{H}$ ): $\quad$ The device constantly monitors all CKINn. If a CKINn with a higher priority than the current active CKINn becomes valid, the active CKINn is changed to the CKINn with the highest priority.
Non-revertive (AUTOSEL = M): The active clock does not change until there is an alarm on the active clock. The device will then select the highest priority CKINn that is valid. Once in digital hold, the device will switch to the first CKINn that becomes valid.

### 6.3.3. Hitless Switching with Phase Build-Out (Si5323, Si5366)

Silicon Laboratories switching technology performs "phase build-out" to minimize the propagation of phase transients to the clock outputs during input clock switching. All switching between input clocks occurs within the input multiplexor and phase detector circuitry. The phase detector circuitry continually monitors the phase difference between each input clock and the DSPLL output clock, fosc. The phase detector circuitry can lock to a clock signal at a specified phase offset relative to $f_{\text {Osc }}$ so that the phase offset is maintained by the PLL circuitry.
At the time a clock switch occurs, the phase detector circuitry knows both the input-to-output phase relationship for the original input clock and for the new input clock. The phase detector circuitry locks to the new input clock at the new clock's phase offset so that the phase of the output clock is not disturbed. The phase difference between the two input clocks is absorbed in the phase detector's offset value, rather than being propagated to the clock output.
The switching technology virtually eliminates the output clock phase transients traditionally associated with clock rearrangement (input clock switching).

### 6.4. Digital Hold/VCO Freeze

All Any-Frequency Precision Clock devices feature a hold over or VCO freeze mode, whereby the DSPLL is locked to a digital value.

### 6.4.1. Narrowband Digital Hold (Si5316, Si5323, Si5366)

If an LOS or FOS condition exists on the selected input clock, the device enters digital hold. In this mode, the device provides a stable output frequency until the input clock returns and is validated. When the device enters digital hold, the internal oscillator is initially held to its last frequency value. Next, the internal oscillator slowly transitions to a historical average frequency value that was taken over a time window of $6,711 \mathrm{~ms}$ in size that ended 26 ms before the device entered digital hold. This frequency value is taken from an internal memory location that keeps a record of previous DSPLL frequency values. By using a historical average frequency, input clock phase and frequency transients that may occur immediately preceding loss of clock or any event causing digital hold do not affect the digital hold frequency. Also, noise related to input clock jitter or internal PLL jitter is minimized.
If a highly stable reference, such as an oven-controlled crystal oscillator, is supplied at XA/XB, an extremely stable digital hold can be achieved. If a crystal is supplied at the XA/XB port, the digital hold stability will be limited by the stability of the crystal.

### 6.4.2. Recovery from Digital Hold (Si5316, Si5323, Si5366)

When the input clock signal returns, the device transitions from digital hold to the selected input clock. The device performs hitless recovery from digital hold. The clock transition from digital hold to the returned input clock includes "phase buildout" to absorb the phase difference between the digital hold clock phase and the input clock phase.

### 6.4.3. Wideband VCO Freeze (Si5322, Si5365)

If an LOS condition exists on the selected input clock, the device freezes the VCO. In this mode, the device provides a stable output frequency until the input clock returns and is validated. When the device enters VCO freeze, the internal oscillator is initially held to its last frequency value.

### 6.5. Frame Synchronization (Si5366)

FSYNC is used in applications that require a synchronizing pulse that has an exact number of periods of a highrate clock, Frame Synchronization is selected by setting CK_CONF = 1 and $\operatorname{FRQTBL}=\mathrm{L}$ ). In a typical frame synchronization application, CKIN1 and CKIN2 are high-speed input clocks from primary and secondary clock generation cards and CKIN3 and CKIN4 are their associated primary and secondary frame synchronization signals. The device generates four output clocks and a frame sync output FS_OUT. CKIN3 and CKIN4 control the phase of FS_OUT.
The frame sync inputs supplied to CKIN3 and CKIN4 must be 8 kHz . Since the frequency of FS_OUT is derived from CKOUT2, CKOUT2 must be a standard SONET frequency (e.g. $19.44 \mathrm{MHz}, 77.76 \mathrm{MHz}$. Table 16 lists the input frequency/clock multiplication ratio combinations supporting an 8 kHz output on FS_OUT.

### 6.6. Output Phase Adjust (Si5323, Si5366)

Overall device skew (CKINn to CKOUT_n phase delay) is controllable via the INC and DEC input pins. A positive pulse applied at the INC pin increases the device skew by $1 / f_{\mathrm{OSC}}$, one period of the DCO output clock. A pulse on the DEC pin decreases the skew by the same amount. Since $f_{\text {Osc }}$ is close to 5 GHz , the resolution of the skew control is approximately 200 ps. Using the INC and DEC pins, there is no limit to the range of skew adjustment that can be made. Following a power-up or reset, the skew will revert to the reset value.
The INC pin function is not available for all frequency table selections. DSPLLsim reports this whenever it is used to implement a frequency plan.

### 6.6.1. FSYNC Realignment (Si5366)

The FS_ALIGN pin controls the realignment of FS_OUT to the active CKIN3 or CKIN4 input. The currently active frame sync input is determined by which input clock is currently being used by the PLL. For example, if CKIN1 is being selected as the PLL input, CKIN3 is the currently-active frame sync input. If neither CKIN3 or CKIN4 are currently active (digital hold), the realignment request is ignored. The active edge used for realignment is the CKIN3 or CKIN4 rising edge.
FS_ALIGN operates in Level Sensitive mode (See Figure 19, "Frame Synchronization Timing."). While FS_ALIGN is active, each active edge of the currently-active frame sync input (CKIN3 or CKIN4) is used to control the NC5 output divider and therefore the FS_OUT phase. Note that while the realignment control is active, it cannot be guaranteed that a fixed number of high-frequency clock (CKOUT2) cycles exists between each FS_OUT cycle.
The resolution of the phase realignment is 1 clock cycle of CKOUT2. If the realignment control is not active, the NC5 divider will continuously divide down its $\mathrm{f}_{\mathrm{CKOUT} 2}$ input. This guarantees a fixed number of high-frequency clock (CKOUT2) cycles between each FS_OUT cycle.
At power-up or any time after the PLL has lost lock and relocked, the device automatically performs a realignment of FS_OUT using the currently active sync input. After this, as long as the PLL remains in lock and a realignment is not requested, FS_OUT will include a fixed number of high-speed clock cycles, even if input clock switches are performed. If many clock switches are performed in phase build-out mode, it is possible that the input sync to output sync phase relationship will shift due to the accumulated residual phase transients of the phase build-out circuitry. If the sync alignment error exceeds the threshold in either the positive or negative direction, an alignment alarm becomes active. If it is then desired to reestablish the desired input-to-output sync phase relationship, a realignment can be performed. A realignment request may cause FS_OUT to instantaneously shift its output edge location in order to align with the active input sync phase.

### 6.6.2. Including FSYNC Inputs in Clock Selection (Si5366)

The frame sync inputs, CKIN3 and CKIN4, are both monitored for loss-of-signal (LOS3_INT and LOS4_INT) conditions. To include these LOS alarms in the input clock selection algorithm, set FS_SW = 1. The LOS3_INT is logically ORed with LOS1_INT and LOS4_INT is ORed with LOS2_INT as inputs to the clock selection state machine. If it is desired not to include these alarms in the clock selection algorithm, set FS_SW $=0$. The FOS alarms for CKIN3 and CKIN4 are ignored. See Table 33 on page 74.

### 6.6.3. FS_OUT Polarity and Pulse Width Control (Si5366)

Additional output controls are available for FS_OUT. FS_OUT is active high, and the pulse width is equal to one period of the CKOUT2 output clock. For example, if CKOUT2 is 622.08 MHz , the FS_OUT pulse width will be 1/ $622.08 \mathrm{e} 6=1.61 \mathrm{~ns}$.

### 6.6.4. Using FS_OUT as a Fifth Output Clock (Si5366)

In applications where the frame synchronization functionality is not needed, FS_OUT can be used as a fifth clock output. In this case, no realignment requests should be made to the NC5 divider. (This is done by holding FS_ALIGN to 0 and CK_CONF = 0).

### 6.6.5. Disabling FS_OUT (Si5366)

The FS_OUT maybe disabled via the DBLFS pin, see Table 29. The additional state (M) provided allows for FS_OUT to drive a CMOS load while the other clock outputs use a different signal format as specified by the SFOUT[1:0] pins.

Table 29. FS_OUT Disable Control (DBLFS)

| DBLFS | FS_OUT State |
| :---: | :---: |
| $H$ | Tri-State/Powerdown |
| M | Active/CMOS Format |
| L | Active/SFOUT[1:0] Format |

### 6.7. Output Clock Drivers

The devices include a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML, and CMOS formats. The signal format is selected jointly for all outputs using the SFOUT [1:0] pins, which modify the output common mode and differential signal swing. See Table 4, "DC Characteristics" for output driver specifications. The SFOUT [1:0] pins are three-level input pins, with the states designated as L (ground), $\mathrm{M}\left(\mathrm{V}_{\mathrm{DD}} /\right.$ 2), and $\mathrm{H}\left(\mathrm{V}_{\mathrm{DD}}\right)$.

Table 30 shows the signal formats based on the supply voltage and the type of load being driven. For the CMOS setting (SFOUT $=\mathrm{LH}$ ), both output pins drive single-ended in-phase signals and should be externally shorted together to obtain the drive strength specified in Table 4, "DC Characteristics", see Section "8.2. Output Clock Drivers".

Table 30. Output Signal Format Selection (SFOUT)

| SFOUT[1:0] | Signal Format |
| :---: | :---: |
| HL | CML |
| HM | LVDS |
| LH | CMOS |
| LM | Disabled |
| MH | LVPECL |
| ML | Low-swing LVDS |
| All Others | Reserved |

The SFOUT [1:0] pins can also be used to disable the output. Disabling the output puts the CKOUT+ and CKOUTpins in a high-impedance state relative to $\mathrm{V}_{\mathrm{DD}}$ (common mode tri-state) while the two outputs remain connected to each other through a $200 \Omega$ on-chip resistance (differential impedance of $200 \Omega$ ). The maximum amount of internal circuitry is powered down, minimizing power consumption and noise generation. Changing SFOUT without a reset causes the output to output skew to become random. When SFOUT = LH for CMOS, PLL bypass mode is not supported.

### 6.7.1. LVPECL and CMOS TQFP Output Signal Format Restrictions at 3.3 V (Si5365, Si5366)

The LVPECL and CMOS output formats draw more current than either LVDS or CML. However, the allowed output format pin settings are restricted so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When SFOUT[1:0] $=\mathrm{MH}$ or LH (for either LVPECL or CMOS), either DBL5 must be H or DBL34 must be high.

### 6.8. PLL Bypass Mode

The device supports a PLL bypass mode in which the selected input clock is fed directly to all enabled output buffers, bypassing the DSPLL. In PLL bypass mode, the input and output clocks will be at the same frequency. PLL bypass mode is useful in a laboratory environment to measure system performance with and without the effects of jitter attenuation provided by the DSPLL.
The DSBL2/BYPASS pin is used to select the PLL bypass mode according to Table 31.
Table 31. DSBL2/BYPASS Pin Settings

| DSBL2/BYPASS | Function |
| :---: | :---: |
| L | CKOUT2 Enabled |
| M | CKOUT2 Disabled |
| H | PLL Bypass Mode w/ CKOUT2 Enabled |

Internally, the bypass path is implemented with high-speed differential signaling for low jitter. Bypass mode does not support CMOS clock output.

### 6.9. Alarms

Summary alarms are available to indicate the overall status of the input signals and frame alignment (Si5366 only). Alarm outputs stay high until all the alarm conditions for that alarm output are cleared.

### 6.9.1. Loss-of-Signal Alarms (Si5316, Si5322, Si5323, Si5365, Si5366)

The device has loss-of-signal circuitry that continuously monitors CKINn for missing pulses. The LOS circuitry generates an internal LOSn_INT output signal that is processed with other alarms to generate CnB.
An LOS condition on CKIN1 causes the internal LOS1_INT alarm to become active. Similarly, an LOS condition on CKINn causes the LOSn_INT alarm to become active. Once a LOSn_INT alarm is asserted on one of the input clocks, it remains asserted until that input clock is validated over a designated time period. The time to clear LOSn_INT after a valid input clock appears is listed in Table 8, "AC Characteristics—All Devices". If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.

### 6.9.1.1. Narrowband LOS Algorithm (Si5316, Si5323, Si5366)

The LOS circuitry divides down each input clock to produce an 8 kHz to 2 MHz signal. (For the Si5316, the output of divider N3 (See Figure 1) is used.) The LOS circuitry over samples this divided down input clock using a 40 MHz clock to search for extended periods of time without input clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, a LOSn_INT alarm is declared. Table 8, "AC Characteristics-All Devices" gives the minimum and maximum amount of time for the LOS monitor to trigger.

### 6.9.1.2. Wideband LOS Algorithm (Si5322, Si5365)

Each input clock is divided down to produce a 78 kHz to 1.2 MHz signal before entering the LOS monitoring circuitry. The same LOS algorithm as described in the above section is then used.

### 6.9.2. FOS Alarms (Si5365 and Si5366)

If FOS alarms are enabled (See Table 32), the internal frequency offset alarms (FOSn_INT) indicate if the input clocks are within a specified frequency band relative to the frequency of CKIN2. The frequency offset monitoring circuitry compares the frequency of the input clock(s) with CKIN2. If the frequency offset of an input clock exceeds a preset frequency offset threshold, an FOS alarm (FOSn_INT) is declared for that clock input. Note that FOS monitoring is not available on CKIN3 and CKIN4 if CK_CONF $=1$. The device supports FOS hysteresis per GR-1244-CORE, making the device less susceptible to FOS alarm chattering. A TCXO or OCXO reference clock must be used in conjunction with either the SMC or Stratum 3/3E settings. Note that wander can cause false FOS alarms.

Table 32. Frequency Offset Control (FOS_CTL)

| FOS_CNTL | Meaning |
| :---: | :---: |
| L | FOS Disabled. |
| M | Stratum 3/3E FOS Threshold $(12 \mathrm{ppm})$ |
| H | SONET Minimum Clock Threshold (48 ppm) |

### 6.9.3. FSYNC Align Alarm (Si5366 and CK_CONF = 1 and FRQTBL = L)

At power-up or any time after the PLL has lost lock and relocked, the device automatically performs a realignment of FS_OUT using the currently active sync input. After this, as long as the PLL remains in lock and a realignment is not requested, FS_OUT will include a fixed number of high-speed clock cycles, even if input clock switches are performed. If many clock switches are performed, it is possible that the input sync to output sync phase relationship will shift due to the accumulated residual phase transients of the phase build-out circuitry. The internal ALIGN_INT signal is asserted when the accumulated phase errors exceeds two cycles of CKOUT2.

### 6.9.4. C1B and C2B Alarm Outputs (Si5316, Si5322, Si5323)

The alarm outputs (C1B and C2B) are determined directly by the LOS1_INT and LOS2_INT internal indicators directly. That is $\mathrm{C} 1 \mathrm{~B}=\mathrm{LOS} 1$ and C2B $=$ LOS2.

### 6.9.5. C1B, C2B, C3B, and ALRMOUT Outputs (Si5365, Si5366)

The alarm outputs (C1B, C2B, C3B, ALRMOUT) provide a summary of various alarm conditions on the input clocks depending on the setting of the FOS_CNTL and CK_CONF pins.
The following internal alarm indicators are used in determining the output alarms:

- LOSn_INT: See section "6.9.1. Loss-of-Signal Alarms (Si5316, Si5322, Si5323, Si5365, Si5366)" for a description of how LOSn_INT is determined
- FOSn_INT: See section "6.9.2. FOS Alarms (Si5365 and Si5366)"for a description of how FOSn_INT is determined
- ALIGN_INT: See section "6.9.3. FSYNC Align Alarm (Si5366 and CK_CONF = 1 and FRQTBL = L)" for a description of how ALIGN_INT is determined
Based on the above internal signals and the settings of the CK_CONF and FOS_CTL pins, the outputs C1B, C2B, C3B, ALRMOUT are determined (See Table 33). For details, see "Appendix D—Alarm Structure" on page 144.

Table 33. Alarm Output Logic Equations

| CK_CONF | FOS_CTL | Alarm Output Equations |
| :---: | :---: | :---: |
| $0$ <br> Four independent input clocks | (Disables FOS) | $\begin{aligned} & \mathrm{C} 1 \mathrm{~B}=\text { LOS1_INT } \\ & \mathrm{C} 2 \mathrm{~B}=\text { LOS2_INT } \\ & \mathrm{C} 3 \mathrm{~B}=\text { LOS3_INT } \\ & \text { ALRMOUT }=\text { LOS4_INT } \end{aligned}$ |
|  | M or H | $\begin{aligned} & \mathrm{C} 1 \mathrm{~B}=\text { LOS1_INT or FOS1_INT } \\ & \mathrm{C} 2 \mathrm{~B}=\text { LOS2_INT or FOS2_INT } \\ & \mathrm{C} 3 \mathrm{~B}=\text { LOS3_INT or FOS3_INT } \\ & \text { ALRMOUT }=\text { LOS4_INT } \text { or FOS4_INT } \end{aligned}$ |
| $1$ <br> (FSYNC switching mode) | L (Disables FOS) | $\begin{gathered} \hline \text { C1B }=\text { LOS1_INT or }(\text { LOS3_INT and FSYNC_SWTCH }) \\ \text { C2B }=\text { LOS2_INT or }\left(\text { LOS } 4 \_I N T \text { and FSYNC_SWTCH }\right) \\ \text { C3B }=\text { tri-state } \\ \text { ALRMOUT }=A L I G N \_I N T \end{gathered}$ |
|  | M or H | $\begin{gathered} \text { C1B }=\text { LOS1_INT or (LOS3_INT and FSYNC_SWTCH }) \text { or FOS1_INT } \\ \text { C2B }=\text { LOS2_INT or }(\text { LOS4_INT and FSYNC_SWTCH }) \text { or FOS2_INT } \\ \text { C3B }=\text { tri-state } \\ \text { ALRMOUT }=A L I G N \_I N T \end{gathered}$ |

### 6.9.5.1. PLL Lock Detect (Si5316, Si5323, Si5366)

The PLL lock detection algorithm indicates the lock status on the LOL output pin. The algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. If the time between two consecutive phase cycle slips is greater than the Retrigger Time, the PLL is in lock. The LOL output has a guaranteed minimum pulse width as shown in (Table 8, "AC Characteristics—All Devices"). The LOL pin is also held in the active state during an internal PLL calibration.
The retrigger time is automatically set based on the PLL closed loop bandwidth (See Table 34).
Table 34. Lock Detect Retrigger Time

| PLL Bandwidth Setting (BW) | Retrigger Time (ms) |
| :---: | :---: |
| $60-120 \mathrm{~Hz}$ | 53 |
| $120-240 \mathrm{~Hz}$ | 26.5 |
| $240-480 \mathrm{~Hz}$ | 13.3 |
| $480-960 \mathrm{~Hz}$ | 6.6 |
| $960-1920 \mathrm{~Hz}$ | 3.3 |
| $1920-3840 \mathrm{~Hz}$ | 1.66 |
| $3840-7680 \mathrm{~Hz}$ | .833 |

### 6.9.5.2. Lock Detect (Si5322, Si5365)

A PLL loss of lock indicator is not available for these devices.

### 6.10. Device Reset

Upon powerup, the device internally executes a power-on-reset (POR) which resets the internal device logic. The pin $\overline{\mathrm{RST}}$ can also be used to initiate a reset. The device stays in this state until a valid CKINn is present, when it then performs a PLL Self-Calibration (See "6.2. PLL Self-Calibration").

### 6.11. DSPLLsim Configuration Software

To simplify frequency planning, loop bandwidth selection, and general device configuration of the Any-Frequency Precision Clocks. Silicon Laboratories offers the DSPLLsim configuration utility for this purpose. This software is available to download from www.silabs.com/timing.

## 7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)

The devices in this family provide a rich set of clock multiplication/clock division options, loop bandwidth selections, output clock phase adjustment, and device control options.

### 7.1. Clock Multiplication

The input frequency, clock multiplication ratio, and output frequency are set via register settings. Because the DSPLL dividers settings are directly programmable, a wide range of frequency translations is available. In addition, a wider range of frequency translations is available in narrowband parts than wideband parts due to the lower phase detector frequency range in narrowband parts. To assist users in finding valid divider settings for a particular input frequency and clock multiplication ratio, Silicon Laboratories offers the DSPLLsim utility to calculate these settings automatically. When multiple divider combinations produce the same output frequency, the software recommends the divider settings that yield the best combination of phase noise performance and power consumption.

### 7.1.1. Jitter Tolerance (Si5319, Si5324, Si5325, Si5326, Si5327, Si5368, Si5369, Si5374 and Si5375)

## See Section 5.2.3.

### 7.1.2. Wideband Parts (Si5325, Si5367)

These devices operate as wideband clock multipliers without an external resonator or reference clock. This mode may be desirable if the input clock is already low jitter and only simple clock multiplication is required. A limited selection of clock multiplication factors is available in this mode. The input-to-output skew for wideband parts is not controlled.
Refer to Figure 25. The selected input clock passes through the N3 input divider and is provided to the DSPLL. The input-to-output clock multiplication ratio is defined as follows:
$\mathrm{f}_{\text {OUT }}=\mathrm{f}_{\mathrm{IN}} \times \mathrm{N} 2 /(\mathrm{N} 1 \times \mathrm{N} 3)$
where:

> N1 $=$ output divider
> N2 $=$ feedback divider
> N3 $=$ input divider


Figure 25. Wideband PLL Divider Settings (Si5325, Si5367)

Because there is only one DCO and all of the outputs must be frequencies that are integer divisions of the DCO frequency, there are restrictions on the ratio of one output frequency to another output frequency. That is, there is considerable freedom in the ratio between the input frequency and the first output frequency; but once the first output frequency is chosen, there are restrictions on subsequent output frequencies. These restrictions are made tighter by the fact that the N1_HS divider is shared among all of the outputs. DSPLLsim should be used to determine if two different simultaneous outputs are compatible with one another.
The same issue exists for inputs of different frequencies: both inputs, after having been divided by their respective N3 dividers, must result in the same f3 frequency because the phase/frequency detector can operate at only one frequency at one time.

### 7.1.2.1. Loop Bandwidth (Si5325, Si5367)

The loop bandwidth (BW) is digitally programmable using the $B W S E L \_R E G[3: 0]$ register bits. The device operating frequency should be determined prior to loop bandwidth configuration because the loop bandwidth is a function of the phase detector input frequency and the PLL feedback divider. See DSPLLsim for BWSEL_REG settings and associated bandwidth.

### 7.1.2.2. Lock Detect (Si5325, Si5367)

A PLL loss of lock indicator is not available in these devices.

### 7.1.2.3. Input to Output Skew (Si5325, Si5367)

The input to output skew for wideband devices is not controlled.

### 7.1.3. Narrowband Parts (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

The DCO uses the reference clock on the XA/XB pins (OSC_P and OSC_N for the Si5374 and Si5375) as its reference for jitter attenuation. The XA/XB pins support either a crystal oscillator or an input buffer (single-ended or differential) so that an external oscillator can become the reference source. In both cases, there are wide margins in the absolute frequency of the reference input because it is a fixed frequency and is used only as a jitter reference and holdover reference (see "7.6. Digital Hold" on page 87). See " Appendix A—Narrowband References" on page 119 for more details. The Si5374 and Si5375 must be used with an external crystal oscillator and cannot use crystals.
Care must be exercised in certain areas for optimum performance. For details on this subject, refer to "Appendix B—Frequency Plans and Jitter Performance (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, Si5375)" on page 121. For examples of connections to the XA/XB (for the Si5374 and Si5375, OSC_P, OSC_N) pins, refer to "8.4. Crystal/Reference Clock Interfaces (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, and Si5375)" on page 113.
Refer to Figure 26 Narrowband PLL Divider Settings (Si5319, Si5324, Si5326, Si5327, Si5368, Si5374, Si5375), a simplified block diagram of the device and Table 35 and Table 36 for frequency and divider limits. The PLL dividers and their associated ranges are listed in the diagram. Each PLL divider setting is programmed by writing to device registers. There are additional restrictions on the range of the input frequency $f_{I N}$, the DSPLL phase detector clock rate f3, and the DSPLL output clock $\mathrm{f}_{\mathrm{OSC}}$.
The selected input clock passes through the N3 input divider and is provided to the DSPLL. In addition, the external crystal or reference clock provides a reference frequency to the DSPLL. The DSPLL output frequency, $f_{\text {OSC }}$, is divided down by each output divider to generate the clock output frequencies. The input-to-output clock multiplication ratio is defined as follows:
$\mathrm{f}_{\text {OUT }}=\mathrm{f}_{\mathrm{IN}} \times \mathrm{N} 2 /(\mathrm{N} 1 \times \mathrm{N} 3)$
where:
N1 = output divider
N2 = feedback divider
N3 = input divider


Note: There are multiple outputs at different frequencies because of limitations caused by the DCO and N1_HS.
Figure 26. Narrowband PLL Divider Settings (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

Table 35. Narrowband Frequency Limits

| Signal | Frequency Limits |
| :---: | :---: |
| CKINn | $2 \mathrm{kHz}-710 \mathrm{MHz}$ |
| $\mathrm{f}_{3}$ | $2 \mathrm{kHz}-2 \mathrm{MHz}$ |
| $\mathrm{f}_{\mathrm{OSC}}$ | $4.85-5.67 \mathrm{GHz}$ |
| $\mathrm{f}_{\text {OUT }}$ | $2 \mathrm{kHz}-1.475 \mathrm{GHz}$ |

Note: Fmax $=808 \mathrm{MHz}$ for the Si5327, Si5374 and Si5375

Table 36. Dividers and Limits

| Divider | Equation | Si5325, Si5367 | Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375 |
| :---: | :---: | :---: | :---: |
| N1 | N1 = N1_HS x NCn_LS | $\begin{aligned} & \text { N1_HS = [4, 5, ..., 11] } \\ & \text { NCn_LS = [1, 2, 4, 6, ..., 2^20] } \end{aligned}$ | $\begin{aligned} & \text { N1_HS }=[4,5, \ldots, 11] \\ & \mathrm{NCn} \text { _LS }=\left[1,2,4,6, \ldots, 2^{\wedge} 20\right] \end{aligned}$ |
| N2 | N2 = N2_HS x N2_LS | $\begin{aligned} & \text { N2_HS = } \\ & \text { N2_LS = [32, 34, 36, ..., 2^9] } \end{aligned}$ | $\begin{aligned} & \text { N2_HS }=[4,5, \ldots, 11] \\ & \text { N2_LS }=\left[2,4,6, \ldots, 2^{\wedge} 20\right] \end{aligned}$ |
| N3 | N3 = N3n | N3n = [1,2,3,.., $\left.2^{\wedge} 19\right]$ | N3n = [1,2,3,.., $\left.2^{\wedge} 19\right]$ |

The output divider, NC1, is the product of a high-speed divider (N1_HS) and a low-speed divider (N1_LS). Similarly, the feedback divider N2 is the product of a high-speed divider N2_HS and a low-speed divider N2_LS. When multiple combinations of high-speed and low-speed divider values are available to produce the desired overall result, selecting the largest possible high-speed divider value will produce lower power consumption. With the $\mathrm{f}_{\mathrm{OSc}}$ and N1 ranges given above, any output frequency can be achieved from 2 kHz to 945 MHz where NC1 ranges from ( $4 \times 220$ ) to 6 . For $\mathrm{NC1}=5$, the output frequency range 970 MHz to 1.134 GHz can be obtained. For NC1 $=4$, the output frequency range from 1.2125 to 1.4175 GHz is available.
Because there is only one DCO and all of the outputs must be frequencies that are integer divisions of the DCO frequency, there are restrictions on the ratio of one output frequency to another output frequency. That is, there is considerable freedom in the ratio between the input frequency and the first output frequency; but once the first output frequency is chosen, there are restrictions on subsequent output frequencies. These restrictions are caused by the fact that the N1_HS divider is shared among all of the outputs. DSPLLsim should be used to determine if two different simultaneous outputs are compatible with one another.
The same issue exists for inputs of different frequency: both inputs, after having been divided by their respective N3 dividers, must result in the same f3 frequency because the phase/frequency detector can operate at only one frequency at one time.

### 7.1.4. Loop Bandwidth (Si5319, Si5326, Si5368, Si5375)

The device functions as a jitter attenuator with digitally programmable loop bandwidth (BW). The loop bandwidth settings range from 60 Hz to 8.4 kHz and are set using the $B W S E L \_R E G[3: 0]$ register bits. The device operating frequency should be determined prior to loop bandwidth configuration because the loop bandwidth is a function of the phase detector input frequency and the PLL feedback divider. See DSPLLsim for a table of BWSEL_REG and associated loop bandwidth settings. For more information the loop BW and its effect on jitter attenuation, see "Appendix H—Jitter Attenuation and Loop BW" on page 164.

### 7.1.4.1. Low Loop Bandwidth (Si5324, Si5327, Si5369, Si5374)

The loop BW of the Si5324, Si5327, Si5369, and Si5374 is significantly lower than the BW of the Si5326. The available Si5324/27/69/74 loop bandwidth settings and their register control values for a given frequency plan are listed by DSPLLsim (Revision 4.0.1 or higher) or in Si537xDSPLLsim. Compared to the Si5326, the BW Si5324/27/ 69/74 settings are approximately 16 times lower, which means that the Si5324/27/69/74 loop bandwidth ranges from about 4 to 525 Hz .

### 7.1.5. Lock Detect (Si5319, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

The device has a PLL lock detection algorithm that indicates the lock status on the LOL output pin and the LOL_INT read-only register bit. See Section "7.11.8. LOL (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)" for a detailed description of the LOL algorithm.

### 7.2. PLL Self-Calibration

The device performs an internal self-calibration before operation to optimize loop parameters and jitter performance. While the self-calibration is being performed, the DCO is being internally controlled by the selfcalibration state machine, and the LOL alarm will be active. The output clocks can either be active or disabled depending on the SQ_ICAL bit setting. The self-calibration time t ${ }_{\text {LOCKMP }}$ is given in Table 8, "AC CharacteristicsAll Devices". The procedure for initiating the internal self-calibration is described below.

### 7.2.1. Initiating Internal Self-Calibration

Any of the following events will trigger an automatic self-calibration:

- Internal DCO registers out-of-range, indicating the need to relock the DCO
- Setting the ICAL register bit to 1

In any of the above cases, an internal self-calibration will be initiated if a valid input clock exists (no input alarm) and is selected as the active clock at that time. The external crystal or reference clock must also be present for the self-calibration to begin (LOSX_INT $=0$ [narrowband only]).
When self-calibration is initiated the device generates an output clock if the SQ_ICAL bit is set to 0 . The output clock will appear when the device begins self-calibration. The frequency of the output clocks may be as high as $5 \%$ above or as low as $20 \%$ below the final locked value. If $S Q \_I C A L=1$, the output clocks are disabled during self-

## Si53xx-RM

calibration and will appear after the self-calibration routine is completed. The SQ_ICAL bit is self-clearing after a successful ICAL.
After a successful self-calibration has been performed with a valid input clock, it is not necessary to reinitiate a selfcalibration for subsequent losses of input clock. If the input clock is lost following self-calibration, the device enters digital hold mode. When the input clock returns, the device relocks to the input clock without performing a selfcalibration.
After power-up and writing of dividers or PLL registers, the user must set $I C A L=1$ to initiate a self-calibration. LOL will go low when self calibration is complete. Depending on the selected value of the loop bandwidth, it may take a few seconds more for the output frequency and phase to completely settle.
It is recommended that a software reset precede all ICALs and their associated register writes by setting RST_REG (Register 136.7).

### 7.2.1.1. PLL Self-Calibration (Si5324, Si5327, Si5369, Si5374)

Due to the low loop bandwidth of the Si5324, Si5327, Si5369, and Si5374, the lock time of the Si5324/27/69/75 is significantly longer than the lock time of the Si5326. As a method of reducing the lock time, the FAST_LOCK register bit can be set to improve lock times. As the Si5324/27/69/74 data sheets indicate, FAST_LOCK is the LSB of register 137. When FAST_LOCK is high, the lock time decreases. Because the Si5324/27/74 is initialized with FAST_LOCK low, it must be written before ICAL is set. Typical Si5324/27/69/74 lock times (as defined from the start of ICAL until LOL going low) with FAST_LOCK set are one to two seconds. To further reduce lock times, it is also recommended that a value of 001 be written to LOCKT (the three LSBs of register 19).

### 7.2.2. Input Clock Stability during Internal Self-Calibration

An ICAL must occur when the selected active CKINn clock is stable in frequency and with a frequency value that is within the operating range that is reported by DSPLLsim. The other CKINs must be stable in frequency (< 100 ppm from nominal) or squelched during an ICAL.

### 7.2.3. Self-Calibration Caused by Changes in Input Frequency

If the selected CKINn varies by 500 ppm or more in frequency since the last calibration, the device may initiate a self-calibration.

### 7.2.4. Narrowband Input-to-Output Skew (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

The input-to-output skew is not controlled. External circuitry is required to control the input-to-output skew. Contact Silicon Labs for further information.

### 7.2.5. Clock Output Behavior Before and During ICAL

Table 37. CKOUT_ALWAYS_ON and SQ_ICAL Truth Table

| Cases | CKOUT_ALWAYS_ON | SQ_ICAL | Results |
| :---: | :---: | :---: | :--- |
| $1^{1}$ | 0 | 0 | CKOUT OFF until after the first ICAL |
| $2^{2}$ | 0 | 1 | CKOUT OFF until after the first successful <br> ICAL (i.e., when LOL is low) |
| $3^{3}$ | 1 | 0 | CKOUT always ON, including during an ICAL |
| $4^{4}$ | 1 | 1 | CKOUT always ON, including during an ICAL. <br> Use these settings to preserve output-to-output <br> skew |

Notes:

1. Case 1 should be selected when an output clock is not desired until the part has been initialized after power-up, but is desired all of the time after initialization.
2. Case 2 should be selected when an output clock is never desired during an any ICAL. Case 2 will only generate outputs when the outputs are at the correct output frequency.
3. Case 3 should be selected whenever a clock output is always desired.
4. Case 4 is the same as Case 3 .

### 7.3. Input Clock Configurations (Si5367 and Si5368)

The device supports two input clock configurations based on CK_CONFIG_REG. See "6.5. Frame Synchronization (Si5366)" on page 70 for additional details.

### 7.4. Input Clock Control

This section describes the clock selection capabilities (manual input selection, automatic input selection, hitless switching, and revertive switching). The Si5319, Si5327, and Si5375 support only pin-controlled manual clock selection. Figure 27 and Figure 28 provide top level overviews of the clock selection logic, though they do not cover wideband or frame sync applications. Register values are indicated by underscored italics. Note that, when switching between two clocks, LOL may temporarily go high if the clocks differ in frequency by more than 100 ppm.


Figure 27. Si5324, Si5325, Si5326, Si5327, and Si5374 Input Clock Selection


Figure 28. Si5367, Si5368, and Si5369 Input Clock Selection

### 7.4.1. Manual Clock Selection (Si5324, Si5325, Si5326, Si5367, Si5368, Si5369, Si5374)

Manual control of input clock selection is available by setting the $A U T O S E L \_R E G[1: 0]$ register bits to 00 . In manual mode, the active input clock is chosen via the CKSEL_REG[1:0] register setting according to Table 38 and Table 39.

Table 38. Manual Input Clock Selection (Si5367, Si5368, Si5369)

| CKSEL REG[1:0] | Active Input Clock |  |
| :---: | :---: | :---: |
|  | $\frac{\text { CK CONFIG } \text { REG }=\mathbf{0}}{\text { (CKIN1,2,3,4 inputs) }}$ | (CKIN1,3 $\frac{\text { CK CONFIG REG } \mathbf{~ C K I N 2 , 4 ~ c l o c k / F S Y N C ~ p a i r s ) ~}}{}$ |
| 00 | CKIN1 | CKIN1/CKIN3 |
| 01 | CKIN2 | CKIN2/CKIN4 |
| 10 | CKIN3 | Not used |
| 11 | CKIN4 | Not used |

Note: Setting the CKSEL PIN register bit to one allows the CS [1:0] pins to continue to control input clock selection. If CS_PIN is set to zero, the CKSEL REG[1:0] register bits perform the input clock selection function.

Table 39. Manual Input Clock Selection (Si5324, Si5325, Si5326, Si5374)

| CKSEL REG or CS pin | Active Input Clock |
| :---: | :---: |
| 0 | CKIN1 |
| 1 | CKIN2 |

If the selected clock enters an alarm condition, the PLL enters digital hold mode. The CKSEL_REG[1:0] controls are ignored if automatic clock selection is enabled.

### 7.4.2. Automatic Clock Selection (Si5324, Si5325, Si5326, Si5367, Si5368, Si5369, Si5374)

The AUTOSEL_REG[1:0] register bits sets the input clock selection mode as shown in Table 40. Automatic switching is either revertive or non-revertive.

Table 40. Automatic/Manual Clock Selection

| AUTOSEL REG[1:0] | Clock Selection Mode |
| :---: | :---: |
| 00 | Manual |
| 01 | Automatic Non-revertive |
| 10 | Automatic Revertive |
| 11 | Reserved |

CKSEL_PIN is of significance only when Manual is selected.

### 7.4.2.1. Detailed Automatic Clock Selection Description (Si5324, Si5325, Si5326, Si5374)

Automatic switching is either revertive or non-revertive. The default prioritization of clock inputs when the device is configured for automatic switching operation is CKIN1, followed by CKIN2, and finally, digital hold mode. The inverse input clock priority arrangement is available through the CK_PRIOR bits, as shown in the Si5325, Si5326, and Si5374.
For the default priority arrangement, automatic switching mode selects CKIN1 at powerup, reset, or when in revertive mode with no alarms present on CKIN1. If an alarm condition occurs on CKIN1 and there are no active alarms on CKIN2, then the device switches to CKIN2. If both CKIN1 and CKIN2 are alarmed, then the device enters digital hold mode. If automatic mode is selected and the frequency offset alarms (FOS1_INT and FOS2_INT) are disabled, automatic switching is not initiated in response to FOS alarms. The loss-of-signal alarms (LOS1_INT and LOS2_INT) are always used in making automatic clock selection choices.
In non-revertive mode, once CKIN2 is selected, CKIN2 selection remains as long as it is valid even if alarms are cleared on CKIN1.

### 7.4.2.2. Detailed Automatic Clock Selection Description (Si5367, Si5368, Si5369)

The prioritization of clock inputs for automatic switching is shown in Table 41. For example, if CK_CONFIG_REG $=0$ and the desired clock priority order is CKIN4, CKIN3, CKIN2, and then CKIN1 as the lowest priority clock, the user should set CK_PRIOR1[1:0] = 11, CK_PRIOR2[1:0] = 10, CK_PRIOR3[1:0] = 01, and CK_PRIOR4[1:0] $=00$.

Table 41. Input Clock Priority for Auto Switching

|  | Selected Clock |  |
| :---: | :---: | :---: |
| CK PRIORn[1:0] | CK CONFIG REG $=\mathbf{0}$ | CK CONFIG REG $=\mathbf{1}$ |
| 00 | CKIN1 | CKIN1/CKIN3 |
| 01 | CKIN2 | CKIN2/CKIN4 |
| 10 | CKIN3 | Not Used |
| 11 | CKIN4 | Not Used |

If CK_CONFIG_REG $=1$ and the desired clock priority is CKIN1/CKIN3 and then CKIN2/CKIN4, the user should set CK_PRIOR1[1:0] = 00 and CK_PRIOR2[1:0] $=01$ (CK_PRIOR3[1:0] and CK_PRIOR4[1:0] are ignored in this case).
The following discussion describes the clock selection algorithm for the case of four possible input clocks (CK_CONFIG_REG = 0) in the default priority arrangement (priority order CKIN1, CKIN2, CKIN3, CKIN4). Automatic switching mode selects CKIN1 at powerup, reset, or when in revertive mode with no alarms present on CKIN1. If an alarm condition occurs on CKIN1 and there are no active alarms on CKIN2, the device switches to CKIN2. If both CKIN1 and CKIN2 are alarmed and there is no alarm on CKIN3, the device switches to CKIN3. If CKIN1, CKIN2, and CKIN3 are alarmed and there is no alarm on CKIN4, the device switches to CKIN4. If alarms exist on CKIN1, CKIN2, CKIN3, and CKIN4, the device enters digital hold mode. If automatic mode is selected and the frequency offset alarms (FOS1_INT, FOS2_INT, FOS3_INT, FOS4_INT) are disabled, automatic switching is not initiated in response to FOS alarms. The loss-of-signal alarms (LOS1_INT, LOS2_INT, LOS3_INT, LOS4_INT) are always used in making automatic clock selection choices. In non-revertive mode, once CKIN2 is selected, CKIN2 selection remains as long as it is valid even if alarms are cleared on CKIN1.

### 7.4.3. Hitless Switching with Phase Build-Out (Si5324, Si5326, Si5327, Si5368, Si5369, Si5374)

Silicon Laboratories switching technology performs phase build-out, which maintains the phase of the output when the input clock is switched. This minimizes the propagation of phase transients to the clock outputs during input clock switching. All switching between input clocks occurs within the input multiplexer and phase detector circuitry. The phase detector circuitry continually monitors the phase difference between each input clock and the DSPLL output clock, $\mathrm{f}_{\text {OSc }}$. The phase detector circuitry can lock to a clock signal at a specified phase offset relative to $\mathrm{f}_{\mathrm{OSC}}$ so that the phase offset is maintained by the PLL circuitry.
At the time a clock switch occurs, the phase detector circuitry knows both the input-to-output phase relationship for the original input clock and for the new input clock. The phase detector circuitry locks to the new input clock at the new clock's phase offset so that the phase of the output clock is not disturbed. The phase difference between the two input clocks is absorbed in the phase detector's offset value, rather than being propagated to the clock output.
The switching technology virtually eliminates the output clock phase transients traditionally associated with clock rearrangement (input clock switching).
Note that hitless switching between input clocks applies only when the input clock validation time is VALTIME[1:0] = 01 or higher.

### 7.5. Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374 and Si5375 Free Run Mode



Figure 29. Free Run Mode Block Diagram

- CKIN2 has an extra mux with a path to the crystal oscillator output.
- When in Free Run mode, CKIN2 is sacrificed (Si5326, Si5368, Si5369, Si5374).
- Switching between the crystal oscillator and CLKIN1 is hitless.
- Either a crystal or an external oscillator can be used.
- External oscillator connection can be either single ended or differential.
- All other features and specifications remain the same.


### 7.5.1. Free Run Mode Programming Procedure

- Using DSPLLsim, determine the frequency plan:
- Write to the internal dividers, including N31 and N32.
- Enable Free Run Mode (the mux select line), FREE_RUN.
- Select CKIN1 as the higher priority clock.
- Establish revertive and autoselect modes.
- Once properly programmed, the part will:
- Initially lock to either the XA/XB (OSC_P and OSC_N for the Si5374/75) or to CKIN1.
- Automatically select CKIN1, if it is available.
- Automatically and hitlessly switch to XA/XB if CKIN1 fails.
- Automatically and hitlessly switch back to CKIN1 when it subsequently returns.
- For the Si5319:
- Clock selection is manual using an input pin.
- Clock switching is not hitless.
- CKIN2 is not available.


### 7.5.2. Clock Control Logic in Free Run Mode

Noting that the mux that selects CKIN2 versus the XA/XB oscillator is located before the clock selection and control logic, when in Free Run mode operation, all such logic will be driven by the XA/XB oscillator, not the CKIN2 pins. For example, when in Free Run mode, the CK2B pin will reflect the status of the XA/XB oscillator and not the status of the CKIN2 pins.

### 7.5.3. Free Run Reference Frequency Constraints

| XAIXB Frequency Min | XA/XB Frequency Max | Xtal |
| :---: | :---: | :---: |
| 109 MHz | 125.5 MHz | 3rd overtone |
| 37 MHz | 41 MHz | Fundamental |

$$
\frac{\text { CKIN }}{N 31}=\frac{X A-X B}{N 32}=f_{3}
$$

$$
\frac{C K O U T}{X A-X B} \neq \text { Integer }
$$

- All crystals and external oscillators must lie within these two bands
- Not every crystal will work; they should be tested
- An external oscillator can be used at all four bands
- The frequency at the phase detector (f3) must be the same for both CKIN1 and XA/XB or else switching cannot be hitless
- To avoid spurs, avoid outputs that are an integer (or near integer) of the XA/XB frequency.


### 7.5.4. Free Run Reference Frequency Constraints

- While in Free Run:
- CKOUT frequency tracks the reference frequency.
- For very low drift, a TCXO or OCXO reference is necessary.
- CKOUT Jitter:
- XA/XB to CKOUT jitter transfer function is roughly one-to-one.
- For very low jitter, either use a high quality crystal or external oscillator.
- 3rd overtone crystals have lower close-in phase noise.
- In general, higher XA/XB frequency $\geq$ lower jitter.
- XA/XB frequency accuracy:
- For hitless switching, to meet all published specifications, the XA/XB frequency divided by N32 should match the CLKIN frequency divided by N31. If they do not match, the clock switch will still be well-behaved.
- Other than the above, the absolute accuracy of the XA/XB frequency is not important.


### 7.6. Digital Hold

All Any-Frequency Precision Clock devices feature a holdover mode, whereby the DSPLL is locked to a digital value.

### 7.6.1. Narrowband Digital Hold (Si5316, Si5324, Si5326, Si5368, Si5369, Si5374)

After the part's initial self-calibration (ICAL), when no valid input clock is available, the device enters digital hold. Referring to the logical diagram in "Appendix D-Alarm Structure" on page 144, lack of clock availability is defined by following the boolean equation for the $\mathrm{Si} 5324, \mathrm{Si} 5326$, and Si 5374 :
(LOS1_INT OR FOS1_INT) AND (LOS2_INT OR FOS2_INT) = enter digital hold

The equivalent Boolean equation for the Si 5327 is as follows:

LOS1 and LOS2 = enter digital hold
The equivalent boolean equation for the $\mathrm{Si} 5367, \mathrm{Si} 5368$, and Si 5369 is as follows:
(LOS1_INT OR FOS1_INT) AND (LOS2_INT OR FOS2_INT) AND
(LOS3_INT OR FOS3_INT) AND (LOS4_INT OR FOS4_INT) = enter digital hold

### 7.6.1.1. Digital Hold Detailed Description (Si5324, Si5326, Si5327, Si5368, Si5369, Si5374)

In this mode, the device provides a stable output frequency until the input clock returns and is validated. Upon entering digital hold, the internal DCO is initially held to its last frequency value, M (See Figure 30). Next, the DCO slowly transitions to a historical average frequency value supplied to the DSPLL, $\mathrm{M}_{\text {HIST }}$, as shown in Figure 30. Values of M starting from time $\mathrm{t}=-\left(\mathrm{HIST}_{-} D E L+H I S T_{-} A V G\right)$ and ending at $\mathrm{t}=-\mathrm{HIST}_{-} \mathrm{DEL}$ are averaged to compute $\mathrm{M}_{\text {HIST. }}$. This historical average frequency value is taken from an internal memory location that keeps a record of previous M values supplied to the DCO. By using a historical average frequency, input clock phase and frequency transients that may occur immediately preceding digital hold do not affect the digital hold frequency. Also, noise related to input clock jitter or internal PLL jitter is minimized.


Figure 30. Parameters in History Value of $\mathbf{M}$
The history delay can be set via the HIST_DEL[4:0] register bits as shown in Table 42 and the history averaging time can be set via the HIST_AVG[4:0] register bits as shown in Table 43. The DIGHOLDVALID register can be used to determine if the information in HIST_AVG is valid and the device can enter SONET/SDH compliant digital hold. If DIGHOLDVALID is not active, the part will enter VCO freeze instead of digital hold.

Table 42. Digital Hold History Delay

| HIST DEL[4:0] | History Delay Time (ms) | HIST DEL[4:0] | History Delay Time (ms) |
| :---: | :---: | :---: | :---: |
| 00000 | 0.0001 | 10000 | 6.55 |
| 00001 | 0.0002 | 10001 | 13 |
| 00010 | 0.0004 | 10010 (default) | 26 |
| 00011 | 0.0008 | 10011 | 52 |
| 00100 | 0.0016 | 10100 | 105 |
| 00101 | 0.0032 | 10101 | 210 |
| 00110 | 0.0064 | 10110 | 419 |
| 00111 | 0.01 | 10111 | 839 |
| 01000 | 0.03 | 11000 | 1678 |
| 01001 | 0.05 | 11001 | 3355 |
| 01010 | 0.10 | 11010 | 6711 |
| 01011 | 0.20 | 11011 | 13422 |
| 01100 | 0.41 | 11100 | 26844 |
| 01101 | 0.82 | 11101 | 53687 |
| 01110 | 1.64 | 11110 | 107374 |
| 01111 | 3.28 | 11111 | 214748 |

Table 43. Digital Hold History Averaging Time

| HIST AVG[4:0] | History Averaging Time (ms) |
| :---: | :---: |
| 00000 | 0.0000 |
| 00001 | 0.0004 |
| 00010 | 0.001 |
| 00011 | 0.003 |
| 00100 | 0.006 |
| 00101 | 0.012 |
| 00110 | 0.03 |
| 00111 | 0.05 |
| 01000 | 0.10 |
| 01001 | 0.20 |
| 01010 | 0.41 |
| 01011 | 0.82 |
| 01100 | 1.64 |
| 01101 | 3.28 |
| 01110 | 6.55 |
| 01111 | 13 |


| HIST AVG[4:0] | History Averaging Time (ms) |
| :---: | :---: |
| 10000 | 26 |
| 10001 | 52 |
| 10010 | 105 |
| 10011 | 210 |
| 10100 | 419 |
| 10101 | 839 |
| 10110 | 1678 |
| 10111 | 3355 |
| 11000 (default) | 6711 |
| 11001 | 13422 |
| 11010 | 26844 |
| 11011 | 53687 |
| 11100 | 107374 |
| 11101 | 214748 |
| 11110 | 429497 |
| 11111 | 858993 |

If a highly stable reference, such as an oven-controlled crystal oscillator (OCXO) is supplied at XA/XB, an extremely stable digital hold can be achieved. If a crystal is supplied at the XA/XB port, the digital hold stability will be limited by the stability of the crystal.

### 7.6.2. History Settings for Low Bandwidth Devices (Si5324, Si5327, Si5369, Si5374)

Because of the extraordinarily low loop bandwidth of the Si5324, Si5369 and Si5374, it is recommended that the values for both history registers be increased for longer histories.

### 7.6.3. Recovery from Digital Hold (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374)

When the input clock signal returns, the device transitions from digital hold to the selected input clock. The device performs hitless recovery from digital hold. The clock transition from digital hold to the returned input clock includes "phase buildout" to absorb the phase difference between the digital hold clock phase and the input clock phase.

### 7.6.4. VCO Freeze (Si5319, Si5325, Si5367, Si5375)

If an LOS or FOS condition exists on the selected input clock, the device enters VCO freeze. In this mode, the device provides a stable output frequency until the input clock returns and is validated. When the device enters digital hold, the internal oscillator is initially held to the frequency value at roughly one second prior to the leading edge of the alarm condition. VCO freeze is not compliant with SONET/SDH MTIE requirements; applications requiring SONET/SDH MTIE requirements should use the Si5324, Si5326, Si5368, Si5369 or Si5374. Unlike the Si5325 and Si5367, the Si5319's VCO freeze is controlled by the XA/XB reference (which is typically a crystal) resulting in greater stability. For the $\mathrm{Si} 5319, \mathrm{Si} 5327$, and Si 5375 , VCO freeze is similar to the Digital Hold function of the Si5326, Si5368, and Si5369 except that the HIST_AVG and HIST_DEL registers do not exist.

### 7.6.5. Digital Hold versus VCO Freeze

Figure 31 below is an illustration of the difference in behavior between Digital Hold and VCO Freeze.


Figure 31. Digital Hold vs. VCO Freeze Example

### 7.7. Output Phase Adjust (Si5326, Si5368)

The device has a highly accurate, digitally controlled device skew capability. For more information on Output Phase Adjustments, see both DSPLLsim and the respective data sheets. Both can be downloaded by going to www.silabs.com/timing and clicking on "Documentation" at the bottom of the page.

### 7.7.1. Coarse Skew Control (Si5326, Si5368)

With the INCDEC_PIN register bit set to 0 (pin control off), overall device skew is controlled via the CLAT[7:0] register bits. This skew control has a resolution of $1 / \mathrm{f}$ OSC , approximately 200 ps , and a range from -25.6 to 25.4 ns. Following a powerup or reset ( $\overline{\mathrm{RST}}$ pin or $R S T_{-} R E G$ register bit), the skew will revert to the reset value. Any further changes made in the skew register will be read and compared to the previously held value. The difference will be calculated and applied to the clock outputs. All skew changes are made in a glitch-free fashion.
When a phase adjustment is in progress, any new CLAT[7:0] values are ignored until the update is complete. The CLATPROG register bit is set to 1 during a coarse skew adjustment. The time for an adjustment to complete is dependent on bandwidth and the delta value in CLAT. To verify a written value into CLAT, the CLAT register should be read after the register is written. The time that it takes for the effects of a CLAT change to complete is proportional to the size of the change, at 83 msec for every unit change, assuming the lowest available loop bandwidth was selected. For example, if CLAT is zero and has the value 100 written to it, the changes will complete in $100 \times 83 \mathrm{msec}=8.3 \mathrm{sec}$.
If it is necessary to set the high-speed output clock divider N1_HS to divide-by-4 in order to achieve the desired overall multiplication ratio and output frequency, only phase increments are allowed and negative settings in the CLAT register or attempts to decrement the phase via writes to the CLAT register will be ignored. Because of this restriction, when there is a choice between using N1_HS = 4 and another N1_HS value that can produce the desired multiplication ratio, the other N1_HS value should be selected. This restriction also applies when using the INC pin.
With the INCDEC_PIN register bit set to 1 (pin control on), the INC and DEC pins function the same as they do for pin controlled parts. See "6.6. Output Phase Adjust (Si5323, Si5366)" on page 71.

### 7.7.1.1. Unlimited Coarse Skew Adjustment (Si5326, Si5368)

Using the following procedure, the CLAT register can be used to adjust the device clock output phase to an arbitrarily large value that is not limited by the size of the CLAT register:

1. Write a phase adjustment value to the CLAT register (Register 16). The DSPLLsim configuration software provides the size of a single step.
2. Wait until CLATPROGRESS $=0$ (register 130, bit 7), which indicates that the adjustment is complete (Maximum time for adjustment: 20 seconds for the Si 5326 or $\mathrm{Si5368}$ ).
3. Set INCDEC_PIN = 1 (Register 21, bit 7).
4. Write 0 to CLAT register (Register 16).
5. Wait until CLATPROGRESS $=0$.
6. Set $I N C D E C \_P I N=0$.
7. Repeat the above process as many times as desired.

Steps 3-6 will clear the CLAT register without changing the output phase. This allows for unlimited output clock phase adjustment using the CLAT register and repeating steps $1-3$ as many times as needed.
Note: The INC and DEC pins must stay low during this process.

### 7.7.2. Fine Skew Control (Si5326, Si5368)

An additional fine adjustment of the overall device skew can be used in conjunction with the INC and DEC pins or the $C L A T[7: 0]$ register bits to provide finer resolution output phase adjustments. Fine phase adjustment is available using the FLAT[14:0] bits. The nominal range and resolution of the FLAT[14:0] skew adjustment word are:
Range FLAT $= \pm 110 \mathrm{ps}$
Resolution FLAT $=9 \mathrm{ps}$

Before writing a new FLAT[14:0] value, the FLAT_VALID bit must be set to 0 to hold the existing FLAT[14:0] value while the new value is being written. Once the new value is written, set FLAT_VALID = 1 to enable its use.
To verify a written value into FLAT, the FLAT register should be read after the register is written.
Because the FLAT resolution varies with the frequency plan and selected bandwidth, DSPLLsim reports the FLAT resolution each time it creates a new frequency plan.

### 7.7.2.1. Output Phase Adjust (Si5324, Si5327, Si5369, Si5374)

Because of its very low loop bandwidth, the output phase of the Si5324, Si5327, Si5369, and Si5374 are not adjustable. This means that the Si5324, Si5327, Si5369, and Si5374 do not have any INC or DEC pins and that they do not have CLAT or FLAT registers.

### 7.7.3. Independent Skew (Si5324, Si5326, Si5368, Si5369, Si5374)

The phase of each clock output may be adjusted in relation to the phase of the other clock outputs, respectively. This feature is available when CK_CONFIG_REG $=0$. The resolution of the phase adjustment is equal to [NI HS/ $\mathrm{F}_{\mathrm{Vco}}$ ]. Since $\mathrm{F}_{\mathrm{VCO}}$ is approximately 5 GHz and $\mathrm{N} 1 \_\mathrm{HS}=(4,5,6, \ldots, 11)$, the resolution varies from approximately 800 ps to 2.2 ns depending on the PLL divider settings. Silicon Laboratories' PC-based configuration software (DSPLLsim) provides PLL divider settings for each frequency translation, if applicable. If more than one set of PLL divider settings is available, selecting the combination with the lowest N1_HS value provides the finest resolution for output clock phase offset control. The INDEPENDENTSKEWn[7:0] ( $\mathrm{n}=1$ to 5 ) register bits control the phase of the device output clocks. By programming a different phase offset for each output clock, output-to-output delays can easily be set.

### 7.7.4. Output-to-output Skew (Si5324, Si5326, Si5327, Si5368, Si5369, Si5374)

The output-to-output skew is guaranteed to be preserved only if the following two register bits are both high:

## Register Bit: Location

CKOUT_ALWAYS_ON
SQICAL
addr 0, bit 5
addr 3, bit 4
In addition, if SFOUT is changed, the output-to-output skew may be disturbed until after a successful ICAL.
Note: CKOUT5 phase is random unless it is used for Frame Sync (See section 7.8).

### 7.7.5. Input-to-Output Skew (All Devices)

The input-to-output skew for these devices is not controlled.

### 7.8. Frame Synchronization Realignment (Si5368 and CK_CONFIG_REG = 1)

Frame Synchronization Realignment is selected by setting CK_CONFIG_REG=1. In a typical frame synchronization application, CKIN1 and CKIN2 are high-speed input clocks from primary and secondary clock generation cards and CKIN3 and CKIN4 are their associated primary and secondary frame synchronization signals. The device generates four output clocks and a frame sync output FS_OUT. CKIN3 and CKIN4 control the phase of FS_OUT. When CK_CONFIG_REG = 1, the Si5368 can lock onto only CKIN1 or CKIN2. CKIN3 and CKIN4 are used only for purposes of frame synchronization.
The inputs supplied to CKIN3 and CKIN4 can range from 2 to 512 kHz . So that two different frame sync input frequencies can be accommodated, CKIN3 and CKIN4 each have their own input dividers, as shown in Figure 32. The CKIN3 and CKIN4 frequencies are set by the CKIN3RATE[2:0] and CKIN4RATE[2:0] register bits, as shown in Table 44. The frequency of FS_OUT can range from 2 kHz to 710 MHz and is set using the NC5_LS divider setting. FS_OUT must divide evenly into CKOUT2. For example, if CKOUT2 is 156.25 MHz , then 8 kHz would not be an acceptable frame rate because $156.25 \mathrm{MHz} / 8 \mathrm{kHz}=19,531.25$, which is not an integer. However, 2 kHz would be an acceptable frame rate because $156.25 \mathrm{MHz} / 2 \mathrm{kHz}=78,125$.

Table 44. CKIN3/CKIN4 Frequency Selection (CK_CONF = 1)

| CKLNnRATE[2:0] | CKINn Frequency (kHz) | Divisor |
| :---: | :---: | :---: |
| 000 | $2-4$ | 1 |
| 001 | $4-8$ | 2 |
| 010 | $8-16$ | 4 |
| 011 | $16-32$ | 8 |
| 100 | $32-64$ | 16 |
| 101 | $64-128$ | 32 |
| 110 | $128-256$ | 64 |
| 111 | $256-512$ | 128 |



Figure 32. Frame Sync Frequencies

The NC5_LS divider uses CKOUT2 as its clock input to derive FS_OUT. The limits for the NC5_LS divider are
NC5_LS $=\left[1,2,4,6, \ldots, 2^{19}\right]$
$\mathrm{f}_{\text {CKOUT2 }}<710 \mathrm{MHz}$
Note that when in frame synchronization realignment mode, writes to NC5_LS are controlled by FPW_VALID. See section "7.8.4. FS_OUT Polarity and Pulse Width Control (Si5368)".
Common NC5_LS divider settings on FS_OUT are shown in Table 45.
Table 45. Common NC5 Divider Settings

| CKOUT2 Frequency (MHz) | NC5 Divider Setting |  |
| :---: | :---: | :---: |
|  | 2 kHz FS_OUT | 8 kHz FS_OUT |
| 19.44 | 9720 | 2430 |
| 77.76 | 38880 | 9720 |
| 155.52 | 77760 | 19440 |
| 622.08 | 311040 | 77760 |

### 7.8.1. FSYNC Realignment (Si5368)

The FSYNC_ALIGN_PIN bit determines if the realignment will be pin-controlled via the FS_ALIGN pin or registercontrolled via the FSYNC_ALIGN_REG register bit. The active CKIN3 or CKIN4 edge to be used is controlled via the FSYNC_POL register bit.
In either FSYNC alignment control mode, the resolution of the phase realignment is 1 clock cycle of CKOUT2. If the realignment control is not active, the NC5 divider will continuously divide down its $\mathrm{f}_{\text {CKOUT2 }}$ input. This guarantees a fixed number of high-frequency clock (CKOUT2) cycles between each FS_OUT cycle.
At power-up, the device automatically performs a realignment of FS_OUT using the currently active sync input. After this, as long as the PLL remains in lock and a realignment is not requested, FS_OUT will include a fixed number of high-speed clock cycles, even if input clock switches are performed. If many clock switches are performed in phase build-out mode, it is possible that the input sync to output sync phase relationship will shift due to the accumulated residual phase transients of the phase build-out circuitry. The ALIGN_ERR[8:0] status register reports the deviation of the input-to-output sync phase skew from the desired FSYNC_SKEW[16:0] value in units of $\mathrm{f}_{\text {CKOUT2 }}$ periods. A programmable threshold to trigger the ALIGN_INT alarm can be set via the ALIGN_THR[2:0] bits, whose settings are given in Table 46. If the sync alignment error exceeds the threshold in either the positive or negative direction, the alarm becomes active. If it is then desired to reestablish the desired input-to-output sync phase relationship, a realignment can be performed. A realignment request may cause FS_OUT to instantaneously shift its output edge location in order to align with the active input sync phase.

Table 46. Alignment Alarm Trigger Threshold

| ALIGN_THR [2:0] | Alarm Trigger Threshold (Units of TCKOUT2) $^{\text {C }}$ |
| :---: | :---: |
| 000 | 4 |
| 001 | 8 |
| 010 | 16 |
| 011 | 32 |
| 100 | 48 |
| 101 | 64 |
| 110 | 96 |
| 111 | 128 |

## Si53xx-RM

For cases where phase skew is required, see Section "7.7. Output Phase Adjust (Si5326, Si5368)" for more details on controlling the sync input to sync output phase skew via the FSYNC_SKEW[16:0] bits. See Section "8.2. Output Clock Drivers" for information on the FS_OUT signal format, pulse width, and active logic level control.

### 7.8.2. FSYNC Skew Control (Si5368)

When CKIN3 and CKIN4 are configured as frame sync inputs (CK_CONFIG_REG = 1), phase skew of the sync input active edge to FS_OUT active edge is controllable via the FSYNC_SKEW[16:0] register bits. Skew control has a resolution of $1 / \mathrm{f}_{\text {CKOUT2 }}$ and a range of $131,071 / \mathrm{f}_{\text {CKOUT2 }}$. The entered skew value must be less than the period of CKIN3, CKIN4, and FS_OUT.
The skew should not be changed more than once per FS_OUT period. If a FSYNC realignment is being made, the skew should not be changed until the realignment is complete. The skew value and the FS_OUT pulse width should not be changed within the same FS_OUT period.
Before writing the three bytes needed to specify a new FSYNC_SKEW[16:0] value, the user should set the register bit FSKEW_VALID $=0$. This causes the alignment state machine to keep using the previous FSYNC_SKEW[16:0] value, ignoring the new register values as they are being written. Once the new FSYNC_SKEW[16:0] value has been completely written, the user should set FSKEW_VALID $=1$ at which time the alignment state machine will read the new skew alignment value. Note that when the new FSYNC_SKEW[16:0] value is used, a phase step will occur in FS_OUT.

### 7.8.3. Including FSYNC Inputs in Clock Selection (Si5368)

The frame sync inputs, CKIN3 and CKIN4, are both monitored for loss-of-signal (LOS3_INT and LOS4_INT) conditions. To include these LOS alarms in the input clock selection algorithm, set FSYNC_SWTCH_REG = 1. The LOS3_INT is logically ORed with LOS1_INT and LOS4_INT is ORed with LOS2_INT as inputs to the clock selection state machine. If it is desired not to include these alarms in the clock selection algorithm, set FSYNC_SWTCH_REG $=0$. The frequency offset (FOS) alarms for CKIN1 and CKIN2 can also be included in the state machine decision making as described in Section "7.11. Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)"; however, in frame sync mode (CK_CONFIG_REG = 1), the FOS alarms for CKIN3 and CKIN4 are ignored.

### 7.8.4. FS_OUT Polarity and Pulse Width Control (Si5368)

Additional output controls are available for FS_OUT. The active polarity of FS_OUT is set via the FS_OUT_POL register bit and the active duty cycle is set via the FSYNC_PW[9:0] register. Pulse width settings have a resolution of $1 / \mathrm{f}_{\text {CKOUT2 }}$, and a $50 \%$ duty cycle setting is provided. Pulse width settings can range from 1 to (NC5-1) CKOUT2 periods, providing the full range of pulse width possibilities for a given NC5 divider setting.
The FS_OUT pulse should not be changed more than once per FS_OUT period. If a FSYNC realignment is being made, the pulse width should not be changed until the realignment is complete. The FS_OUT pulse width and the skew value should not be changed within the same FS_OUT period.
Before writing a new value into FSYNC_PW[9:0], the user should set the register bit FPW_VALID $=0$. This causes the FS_OUT pulse width state machine to keep using the previous FSYNC_PW[9:0] value, ignoring the new register values as they are being written. Once the new FSYNC_PW[9:0] value has been completely written, the user should set FPW_VALID = 1, at which time the FS_OUT pulse width state machine will read the new pulse width value.
Writes to NC5_LS should be treated the same as writes to FSYNC_PW. Thus, all writes to NC5_LS should occur only when $F P W$ _VALID $=0$. Any such writes will not take effect until $F P W \_$VALID $=1$.
Note that $\mathrm{f}_{\text {CKOUT2 }}$ must be less than or equal to 710 MHz when CK_CONFIG_REG = 1; otherwise, the FS_OUT buffer and NC5 divider must be disabled.

### 7.8.5. Using FS_OUT as a Fifth Output Clock (Si5368)

In applications where the frame synchronization functionality is not needed (CK_CONFIG_REG = 0), FS_OUT can be used as a fifth clock output. In this case, no realignment requests should be made to the NC5 divider (hold FS_ALIGN $=0$ and FSYNC_ALIGN_REG $=0$ ). Output pulse width and polarity controls for FS_OUT are still available as described above. The $50 \%$ duty cycle setting would be used to generate a typical balanced output clock.

### 7.9. Output Clock Drivers (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)

The device includes a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML, and CMOS formats. The signal format of each output is individually configurable through the SFOUTn_REG[2:0] register bits, which modify the output common mode and differential signal swing.
Table 47 shows the signal formats based on the supply voltage and the type of load being driven. For the CMOS setting, both output pins drive single-ended in-phase signals and should be externally shorted together to obtain the maximum drive strength.

Table 47. Output Signal Format Selection

| SFOUTn REG[2:0] | Signal Format |
| :---: | :---: |
| 111 | LVDS |
| 110 | CML |
| 101 | LVPECL |
| 011 | Low-swing LVDS |
| 010 | CMOS |
| 000 | Disabled |
| All Others | Reserved |

The SFOUTn_REG[2:0] register bits can also be used to disable the outputs. Disabling the outputs puts the CKOUT+ and CKOUT- pins in a high-impedance state relative to $\mathrm{V}_{\mathrm{DD}}$ (common mode tri-state) while the two outputs remain connected to each other through a $200 \Omega$ on-chip resistance (differential impedance of $200 \Omega$ ). The clock output buffers and DSPLL output dividers NCn are powered down in disable mode.
The additional functions of "Hold Logic 1 " and "Hold Logic 0 ", which create static logic levels at the outputs, are available. For differential output buffer formats, the Hold Logic 1 state causes the positive output of the differential signal to remain at its high logic level while the negative output remains at the low logic level. For CMOS output buffer format, both outputs remain high during the Hold Logic 1 state. These functions are controlled by the HLOG_n bits. When entering or exiting the "Hold Logic 1" or "Hold Logic 0" states, no glitches or runt pulses are generated on the outputs. Changes to SFOUT or HLOG will change the output phase. An ICAL is required to reestablish the output phase. When SFOUT = 010 for CMOS, bypass mode is not supported.

### 7.9.1. Disabling CKOUTn

Disabling CKOUTn output powers down the output buffer and output divider. Individual disable controls are available for each output using the DSBLn_REG.

### 7.9.2. LVPECL TQFP Output Signal Format Restrictions at 3.3 V (Si5367, Si5368, Si5369)

The LVPECL and CMOS output formats draw more current than either LVDS or CML; therefore, there are restrictions in the allowed output format pin settings that limit the maximum power dissipation for the TQFP devices when they are operated at 3.3 V . When $\mathrm{Vdd}=3.3 \mathrm{~V}$ and there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When $\mathrm{Vdd}=3.3 \mathrm{~V}$ and there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. All other configurations are valid, including all with Vdd $=2.5 \mathrm{~V}$.

### 7.10. PLL Bypass Mode (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)

The device supports a PLL bypass mode in which the selected input clock is fed directly to the output buffers, bypassing the DSPLL. In PLL bypass mode, the input and output clocks will be at the same frequency. PLL bypass mode is useful in a laboratory environment to measure system performance with and without the jitter attenuation provided by the DSPLL. The BYPASS_REG bit controls enabling/disabling PLL bypass mode.
Before going into bypass mode, it is recommended that the part enter Digital Hold by setting DHOLD. Internally, the bypass path is implemented with high-speed differential signaling for low jitter. Note that the CMOS output format does not support bypass mode.

### 7.11. Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)

Summary alarms are available to indicate the overall status of the input signals and frame alignment (Si5368 only). Alarm outputs stay high until all the alarm conditions for that alarm output are cleared. The Register VALTIME controls how long a valid signal is re-applied before an alarm clears. Table 48 shows the available settings. Note that only for VALTIME[1:0] $=00$, hitless switching is not possible.

Table 48. Loss-of-Signal Validation Times

| VALTIME[1:0] | Clock Validation Time |
| :---: | :---: |
| 00 | 2 ms <br> (hitless switching not available) |
| 01 | 100 ms |
| 10 | 200 ms |
| 11 | 13 s |

### 7.11.1. Loss-of-Signal Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)

The device has loss-of-signal circuitry that continuously monitors CKINn for missing pulses. The LOS circuitry generates an internal LOSn_INT output signal that is processed with other alarms to generate CnB and ALARMOUT.
An LOS condition on CKIN1 causes the internal LOS1_INT alarm become active. Similarly, an LOS condition on CKINn causes the LOSn_INT alarm become active. Once a LOSn_INT alarm is asserted on one of the input clocks, it remains asserted until that input clock is validated over a designated time period. If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.
7.11.1.1. Narrowband LOS Algorithms (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

There are three options for LOS: LOS, LOS_A, and no LOS, which are selected using the LOSn_EN registers. The values for the LOSn_EN registers are given in Table 49.

Table 49. Loss-of-Signal Registers

| LOSn EN[1:0] | LOS Selection |
| :---: | :---: |
| 00 | Disable all LOS monitoring |
| 01 | Reserved |
| 10 | LOS_A enabled |
| 11 | LOS enabled |

### 7.11.1.2. Standard LOS (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

To facilitate automatic hitless switching, the LOS trigger time can be significantly reduced by using the default LOS option (LOSn_EN = 11). The LOS circuitry divides down each input clock to produce a 2 kHz to 2 MHz signal. The LOS circuitry over samples this divided down input clock using a 40 MHz clock to search for extended periods of time without input clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, an LOS alarm is declared. The LOSn trigger window is based on the value of the input divider N3. The value of N3 is reported by DSPLLsim.
The range over which LOS is guaranteed to not produce false positive assertions is 100 ppm . For example, if a device is locked to an input clock on CKIN1, the frequency of CKIN2 should differ by no more than 100 ppm to avoid false LOS2 assertions.
The frequency range over which FOS monitoring may occur is from 10 to 710 MHz .

### 7.11.1.3. LOSA (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

A slower response version of LOS called LOSA is available and should be used under certain conditions. Because LOSA is slower and less sensitive than LOS, its use should be considered for applications with quasi-periodic clocks (e.g., gapped clocks with one or more consecutive clock edges removed), when switching between input clocks with a large difference in frequency and any other application where false positive assertions of LOS may incorrectly cause the Any-Frequency device to be forced into Digital Hold.
For example, it is recommended that while in Free Run Mode LOSA be used instead of LOS because the two clock inputs will not be the same exact frequency. This will avoid false LOS assertions when the XA/XB frequency differs from the other clock inputs by more than 100 ppm . See Section 7.11.1.3 for more information on LOSA.

### 7.11.1.4. LOS disabled (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

For situations where no form of LOS is desired, LOS can be disabled by writing 00 to LOSn_EN. This mode is provided to support applications which implement custom LOS algorithms off-chip. If this approach is taken, the only remaining methods of entering Digital Hold will be FOS or by setting DHOLD (register 3, bit 5).

### 7.11.1.5. Wideband LOS Algorithm (Si5322, Si5365)

Each input clock is divided down to produce a 78 kHz to 1.2 MHz signal before entering the LOS monitoring circuitry. The same LOS algorithm as described in the above section is then used. FOS is not available in wideband devices.

### 7.11.1.6. LOS Alarm Outputs (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5369, Si5374, Si5375)

When LOS is enabled, an LOS condition on CKIN1 causes LOS1_INT to become active. Similarly, when LOS is enabled, an LOS condition on CKIN2 causes LOS2_INT to become active. Once a LOSn_INT alarm is asserted on one of the input clocks, it remains asserted until the input clock is validated over a designated time period. If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.

### 7.11.2. FOS Algorithm (Si5324, Si5325, Si5326, Si5368, Si5369, Si5374)

The frequency offset (FOS) alarms indicate if the input clocks are within a specified frequency range relative to the frequency of a reference clock. The reference clock can be provided by any of the four input clocks (two for Si5324, Si5325 or Si5326) or the XA/XB input. The default FOS reference is CKIN2. The frequency monitoring circuitry compares the frequency of the input clock(s) with the FOS reference clock If the frequency offset of an input clock exceeds a selected frequency offset threshold, an FOS alarm (FOS_INT register bit) is declared for that clock input. Be aware that large amounts of wander can cause false FOS alarms.
Note: For the Si5368, If CK_CONFIG_REG $=1$, only CKIN1 and CKIN2 are monitored; CKIN3 and CKIN4 are used for FSYNC and are not monitored.
The frequency offset threshold is selectable using the FOS_THR[1:0] bits. Settings are available for compatibility with SONET Minimum Clock (SCMD) or Stratum 3/3E requirements. See Table 8 on page 40. The device supports FOS hystereses per GR-1244-CORE, making the device less susceptible to FOS alarm chattering. A reference clock with suitable accuracy and drift specifications to support the intended application should be used. The FOS reference clock is set via the FOSREFSEL[2:0] bits as shown in Table 50. More than one input can be monitored against the FOS reference, i.e., there can be more than one monitored clock, but only one FOS reference. When the $X A / X B$ input is used as the FOS reference, there is only one reference frequency band that is allowed: from 37 MHz to 41 MHz .

Table 50. FOS Reference Clock Selection

| FOS Reference |  |  |
| :---: | :---: | :---: |
| FOSREFSEL[2:0] | Si5326 | Si5368 |
| 000 | XA/XB | XA/XB |
| 001 | CKIN1 | CKIN1 |
| 010 | CKIN2 (default) | CKIN2 (default) |
| 011 | Reserved | CKIN3 |
| 100 | Reserved | CKIN4 |
| all others | Reserved | Reserved |

Both the FOS reference and the FOS monitored clock must be divided down to the same clock rate and this clock rate must be between 10 MHz and 27 MHz . As can be seen in Figure 33, the values for P and Q must be selected so that the FOS comparison occurs at the same frequency. The registers that contain the values for P and Q are the CKINnRATE[2:0] registers.


Figure 33. FOS Compare
The frequency band of each input clock must be specified to use the FOS feature. The CLKNRATE registers specify the frequency of the device input clocks as shown in Table 51.
When the FOS reference is the XA/XB oscillator (either internal or external), the value of Q in Figure 33 is always 2, for an effective CLKINnRATE of 1, as shown in Table 51.

Table 51. CLKnRATE Registers

| CLKnRATE | Divisor, P or Q | Min Frequency, MHz | Max Frequency, MHz |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 10 | 27 |
| 1 | 2 | 25 | 54 |
| 2 | 4 | 50 | 105 |
| 3 | 8 | 95 | 215 |
| 4 | 16 | 190 | 435 |
| 5 | 32 | 375 | 710 |

For example, to monitor a 544 MHz clock at CKIN1 with a FOS reference of 34 MHz at CKIN2:
CLK1RATE = 5
CLK2RATE $=1$
FOSREFSEL[2:0] = 010

### 7.11.3. C1B, C2B (Si5319, Si5324, Si5325, Si5326, Si5327, Si5374, Si5375)

A LOS condition causes the associated LOS1_INT or LOS2_INT read only register bit to be set. A LOS condition on CKIN_1 will also be reflected onto C1B if CK1_BAD_PIN = 1. Likewise, a LOS condition on CKIN_2 will also be reflected onto C2B if CK2_BAD_PIN = 1 .
A FOS condition causes the associated FOS1_INT or FOS2_INT read only register bit to be set. FOS monitoring is enabled or disabled using the FOS_EN bit. If FOS is enabled ( $F O S$ _EN $=1$ ) and CK1_BAD_PIN = 1, a FOS condition will also be reflected onto its associated output pin, C1B or C2B. If FOS is disabled ( $F O S_{-} E N=0$ ), the FOS1_INT and FOS2_INT register bits do not affect the C1B and C2B alarm outputs, respectively.
Once an LOS or FOS alarm is asserted on one of the input clocks, it is held high until the input clock is validated over a designated time period. The validation time is programmable via the VALTIME[1:0] register bits as shown in Table 48 on page 96. If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.
[Si5326]: Note that hitless switching between input clocks applies only when the input clock validation time VALTIME[1:0] = 01 or higher.

### 7.11.4. LOS (Si5319, Si5375)

A LOS condition causes the LOS_INT read only register bit to be set. This LOS condition will also be reflected onto the INT_CB pin.

### 7.11.5. C1B, C2B, C3B, ALRMOUT (Si5367, Si5368, Si5369 [CK_CONFIG_REG = 0])

The generation of alarms on the $\mathrm{C} 1 \mathrm{~B}, \mathrm{C} 2 \mathrm{~B}, \mathrm{C} 3 \mathrm{~B}$, and ALRMOUT outputs is a function of the input clock configuration, and the frequency offset alarm enable as shown in Table 52. The LOSn_INT and FOSn_INT signals are the raw outputs of the alarm monitors. These appear directly in the device status registers. Sticky versions of these bits (LOSn_FLG, FOSn_FLG) drive the output interrupt and can be individually masked. When the device inputs are configured as four input clocks (CK_CONFIG $=0$ ), the ALRMOUT pin reflects the status of the CKIN4 input. The equations below assume that the output alarm is active high; however, the active polarity is selectable via the $C K \_B A D \_P O L$ bit.
Operation of the C1B, C2B, C3B, and ALRMOUT pins is enabled based on setting the C1B_PIN, C2B_PIN, C3B_PIN, and ALRMOUT_PIN register bits. Otherwise, the pin will tri-state. Also, if INT_PIN = 1, the interrupt functionality will override the appearance of ALRMOUT at the output even if $A L R M O U T \_P I N=1$.
Once an LOS or FOS alarm is asserted for one of the input clocks, it is held high until the input clock is validated over a designated time period. The validation time is programmable via the VALTIME[1:0] register bits as shown in Table 48 on page 96. If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.
Note that hitless switching between input clocks applies only when the input clock validation time VALTIME[1:0] = 01 or higher.
For details, see "Appendix D—Alarm Structure" on page 144.
Table 52. Alarm Output Logic Equations (Si5367, Si5368, and Si5369 [CONFIG_REG = 0])

| FOS EN | Alarm Output Equations |
| :---: | :---: |
| 0 | C1B $=$ LOS1_INT |
| (Disables FOS) | C2B $=$ LOS2_INT |
|  | C3B $=$ LOS3_INT |
|  | ALRMOUT $=$ LOS4_INT |
| 1 | C1B $=$ LOS1_INT or FOS1_INT |
|  | C2B $=$ LOS2_INT or FOS2_INT |
|  | C3B $=$ LOS3_INT or FOS3_INT |
|  | ALRMOUT $=$ LOS4_INT or FOS4_INT |
|  |  |

### 7.11.6. C1B, C2B, C3B, ALRMOUT (Si5368 [CK_CONFIG_REG = 1])

The generation of alarms on the C1B, C2B, C3B, and ALRMOUT outputs is a function of the input clock configuration, and the frequency offset alarm enable as shown in Table 53. The LOSn_INT and FOSn_INT signals are the raw outputs of the alarm monitors. These appear directly in the device status registers. Sticky versions of these bits (LOSn_FLG, FOSn_FLG) drive the output interrupt and can be individually masked. Since, CKIN3 and CKIN4 are configured as frame sync inputs (CK_CONFIG_REG = 1), ALRMOUT functions as the alignment alarm output (ALIGN_INT) as described in Section "7.8. Frame Synchronization Realignment (Si5368 and CK_CONFIG_REG = 1)". The equations below assume that the output alarm is active high; however, the active polarity is selectable via the $C K \_B A D \_P O L$ bit.
Operation of the C1B, C2B, C3B, and ALRMOUT pins is enabled based on setting the C1B_PIN, C2B_PIN, C3B_PIN, and ALRMOUT_PIN register bits. Otherwise, the pin will tri-state. Also, if INT_PIN = 1 , the interrupt functionality will override the appearance of ALRMOUT at the output even if ALRMOUT_PIN = 1 .
Once an LOS or FOS alarm is asserted for one of the input clocks, it is held high until the input clock is validated over a designated time period. The validation time is programmable via the VALTIME[1:0] register bits as shown in Table 8, "AC Characteristics-All Devices". If another error condition on the same input clock is detected during the validation time then the alarm remains asserted and the validation time starts over.
Note that hitless switching between input clocks applies only when the input clock validation time $\operatorname{VALTIME[1:0]~=~} 01$ or higher.

Table 53. Alarm Output Logic Equations [Si5368 and CKCONFIG REG =1]

| FOS_EN | Alarm Output Equations |
| :---: | :---: |
| 0 | C1B = LOS1_INT or (LOS3_INT and FSYNC_SWTCH_REG) |
| (Disables FOS) | C2B = LOS2_INT or (LOS4_INT and FSYNC_SWTCH_REG) |
| C3B tri-state, |  |
|  | ALRMOUT = ALIGN_INT |
| 1 | C1B = LOS1_INT or (LOS3_INT and FSYNC_SWTCH_REG) or |
| FOS1_INT |  |
|  | C2B = LOS2_INT or (LOS4_INT and FSYNC_SWTCH_REG) or |
| FOS2INT |  |
|  | C3B tri-state, |
|  | ALRMOUT $=$ ALIGN_INT |
|  |  |

### 7.11.7. LOS Algorithm for Reference Clock Input (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

The reference clock input on the XA/XB port is monitored for LOS. The LOS circuitry divides the signal at XA/XB by 128, producing a 78 kHz to 1.2 MHz signal, and monitors the signal for LOS using the same algorithm as described in Section "7.11.1. Loss-of-Signal Alarms (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)". The LOSX_INT read only bit reflects the state of a loss-of-signal monitor on the XA/XB port. For the Si5374 and Si5375, the XA/XB port refers to the OSC_P and OSC_N pins.

### 7.11.8. LOL (Si5319, Si5324, Si5326, Si5327, Si5368, Si5369, Si5374, Si5375)

The device has a PLL lock detection algorithm that indicates the lock status on the LOL output pin and the LOL_INT read-only register bit. The algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. A retriggerable one-shot is set each time a potential phase cycle slip condition is detected. If no potential phase cycle slip occurs for the retrigger time, the LOL output is set low, indicating the PLL is in lock. The LOL pin is held in the active state during an internal PLL calibration. The active polarity of the LOL output pin is set using the LOL_POL register bit (default active high).
The lock detect retrigger time is user-selectable, independent of the loop bandwidth. The LOCKT[2:0] register bits must be set by the user to the desired setting. Table 54 shows the lock detect retrigger time for both modes of operation. LOCKT is the minimum amount of time that LOL will be active.

Table 54. Lock Detect Retrigger Time (LOCKT)

| LOCKT[2:0] | Retrigger Time (ms) |
| :---: | :---: |
| 000 | 106 |
| 001 | 53 |
| 010 | 26.5 |
| 011 | 13.3 |
| 100 | 6.6 (value after reset) |
| 101 | 3.3 |
| 110 | 1.66 |
| 111 | .833 |

### 7.11.9. Device Interrupts

Alarms on internal real-time status bits such as LOS1_INT, FOS1_INT, etc. cause their associated interrupt flags (LOS1_FLG, FOS1_FLG, etc.) to be set and held. The interrupt flag bits can be individually masked or unmasked with respect to the output interrupt pin. Once an interrupt flag bit is set, it will remain high until the register location is written with a " 0 " to clear the flag.

### 7.12. Device Reset

Upon powerup or asserting Reset via the $\overline{\mathrm{RST}}$ pin or software, the device internally executes a power-on-reset (POR) which resets the internal device logic and tristates the device outputs. The device waits for configuration commands and the receipt of the ICAL $=1$ command to start its calibration. Any changes to the CMODE pin require that $\overline{\mathrm{RST}}$ be toggled to reset the part. The power-up default register values are given in the data sheets for these parts.

### 7.13. $I^{2} \mathrm{C}$ Serial Microprocessor Interface

When configured in $I^{2} C$ control mode ( $C M O D E=L$ ), the control interface to the device is a 2 -wire bus for bidirectional communication. The bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL). Both lines must be connected to the positive supply via an external pull-up. In addition, an output interrupt (INT) is provided with selectable active polarity (determined by $I N T_{-} P O L$ bit). Fast mode operation is supported for transfer rates up to 400 kbps as specified in the $\mathrm{I}^{2} \mathrm{C}$-Bus Specification standard. To provide bus address flexibility, three pins (A[2:0]) are available to customize the LSBs of the device address. The complete bus address for the device is as follows:
1101 A[2] A[1] A[0] R/W.
Figure 34 shows the command format for both read and write access. Data is always sent MSB first. The timing specifications and timing diagram for the $I^{2} \mathrm{C}$ bus can be found in the $\mathrm{I}^{2} \mathrm{C}$-Bus Specification standard (fast mode operation) (See: http://www.standardics.nxp.com/literature/books/i2c/pdf/i2c.bus.specification.pdf).
The maximum $\mathrm{I}^{2} \mathrm{C}$ clock speed is 400 kHz .

| S | Slave Address | 0 | A | Byte <br> Address | A | Data | A | Data | A | P |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

## Write Command

| S | Slave Address | 0 | A | Byte <br> Address | A | S | Slave Address | 1 | A | Data | A | Data | $\overline{\mathrm{A}}$ | P |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Read Command

-address auto incremented after each data read or write (this can be two separate transactions)


From master to slave
A - Acknowledge (SDA LOW)
S- START condition


From slave to master
P- STOP condition
Figure 34. $\mathrm{I}^{2} \mathrm{C}$ Command Format
In Figure 35, the value 68 is seven bits. The sequence of the example is: Write register 00 with the value $0 x A A$; then, read register 00 . Note that $0=W$ rite $=W$, and $1=$ Read $=R$.

| S | Slave Address | 0 | A | Byte Address | A | Data | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 68 | W | 00 |  | AA |  |  |

Write Command

| S | Slave Address | 0 | A | Byte Address | A | S | Slave Address | 1 | A | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 68 | W |  | 00 |  |  | 68 | R |  | AA |

Read Command
Figure 35. $\mathrm{I}^{2} \mathrm{C}$ Example

### 7.14. Serial Microprocessor Interface (SPI)

When configured in SPI control mode (CMODE = H), the control interface to the device is a 4-wire interface modeled after commonly available microcontroller and serial peripheral devices. The interface consists of a clock input (SCLK), slave select input (SSb), serial data input (SDI), and serial data output (SDO). In addition, an output interrupt (INT) is provided with selectable active polarity (determined by INT_POL bit).
Data is transferred a byte at a time with each register access consisting of a pair of byte transfers. Figure 36 and Figure 37 illustrate read and write/set address operations on the SPI bus, and AC SPEC gives the timing requirements for the interface. Table 55 shows the SPI command format.

Table 55. SPI Command Format

| Instruction(BYTE0) | Address/Data[7:0](BYTE1) |
| :---: | :---: |
| $00000000 —$ Set Address | AAAAAAAA |
| $01000000 —$ Write | DDDDDDDD |
| $01100000 —$ Write/Address Increment | DDDDDDDD |
| 10000000—Read | DDDDDDDD |
| $10100000 —$ Read/Address Increment | DDDDDDDD |

The first byte of the pair is the instruction byte. The "Set Address" command writes the 8 bit address value that will be used for the subsequent read or write. The "Write" command writes data into the device based on the address previously established and the "Write/Address Increment" command writes data into the device and then automatically increments the register address for use on the subsequent command. The "Read" command reads one byte of data from the device and the "Read/Address Increment" reads one byte and increments the register address automatically. The second byte of the pair is the address or data byte.
As shown in Figure 36 and Figure 37, SSb should be held low during the entire two byte transfer. Raising SSb resets the internal state machine; so, SSb can optionally be raised between each two byte transfers to guarantee the state machine will be reinitialized. During a read operation, the SDO becomes active on the falling edge of SCLK and the 8-bit contents of the register are driven out MSB first. The SDO is high impedance on the rising edge of SS. SDI is a "don't care" during the data portion of read operations. During write operations, data is driven into the device via the SDI pin MSB first. The SDO pin will remain high impedance during write operations. Data always transitions with the falling edge of the clock and is latched on the rising edge. The clock should return to a logic high when no transfer is in progress.
The SPI port supports continuous clocking operation where SSb is used to gate two or four byte transfers. The maximum speed supported by SPI is 10 MHz .


High Impedance
Figure 36. SPI Write/Set Address Command


Figure 37. SPI Read Command

### 7.14.1. Default Device Configuration

For ease of manufacture and bench testing of the device, the default register settings have been chosen to place the device in a fully-functional mode with an easily-observable output clock. Refer to the data sheet for your device.

### 7.15. Register Descriptions

See the device data sheet for a full description of the registers.

### 7.16. DSPLLsim Configuration Software

To simplify frequency planning, loop bandwidth selection, and general device configuration, of the Any-Frequency Precision Clocks. Silicon Laboratories has a configuration utility - DSPLLsim for the Si5319, Si5325, Si5326, Si5327, Si5367, Si5368 and Si5369. For the Si5374 and Si5375, there is a different configuration utility Si537xDSPLLsim. Both are available to download from www.silabs.com/timing.

## 8. High-Speed I/O

### 8.1. Input Clock Buffers

Any-Frequency Precision Clock devices provide differential inputs for the CKINn clock inputs. These inputs are internally biased to a common mode voltage and can be driven by either a single-ended or differential source. Figure 38 through Figure 41 show typical interface circuits for LVPECL, CML, LVDS, or CMOS input clocks. Note that the jitter generation improves for higher levels on CKINn (within the limits in Table 8, "AC Characteristics-All Devices").
AC coupling the input clocks is recommended because it removes any issue with common mode input voltages. However, either ac or dc coupling is acceptable. Figures 38 and 39 show various examples of different input termination arrangements.
Unused inputs should have an AC ground connection. For microprocessor-controlled devices, the $P D_{\text {_ }} C K n$ bits may be set to shut off unused input buffers to reduce power.


Figure 38. Differential LVPECL Termination


Figure 39. Single-Ended LVPECL Termination


Figure 40. CML/LVDS Termination (1.8, 2.5, 3.3 V)

CMOS Driver


VoD $\quad$ Notes
$3.3 \mathrm{~V} \quad 100$ ohm Locate R1 near CMOS driver
$2.5 \mathrm{~V} \quad 49.9 \mathrm{ohm} \quad$ Locate other components near Si5317
$1.8 \mathrm{~V} \quad 14.7$ ohm Recalculate resistor values for other drive strengths

## Additional Notes:

1. Attenuation circuit limits overshoot and undershoot.
2. Not to be used with non-square wave input clocks.

Figure 41. CMOS Termination (1.8, 2.5, 3.3 V)

### 8.2. Output Clock Drivers

The output clocks can be configured to be compatible with LVPECL, CML, LVDS, or CMOS as shown in Table 56. Unused outputs can be left unconnected. For microprocessor-controlled devices, it is recommended to write "disable" to SFOUTn to disable the output buffer and reduce power. When the output mode is CMOS, bypass mode is not supported.

Table 56. Output Driver Configuration

| Output Mode | SFOUTn Pin Settings <br> (Si5316, Si5322, Si5323, Si5365) | SFOUTn REG [2:0] Settings <br> (Si5319, Si5325, SI5326, Si5327, <br> Si5367, Si5368, Si5369, Si5374, <br> Si5375) |
| :---: | :---: | :---: |
| LVDS | HM | 111 |
| CML | HL | 110 |
| LVPECL | MH | 101 |
| Low-swing <br> LVDS | ML | 011 |
| CMOS | LH | 010 |
| Disabled | LM | 000 |
| Reserved | All Others | All Others |

Note: The LVPECL outputs are "LVPECL compatible." No DC biasing circuitry is required to drive a standard LVPECL load.

### 8.2.1. LVPECL TQFP Output Signal Format Restrictions at 3.3 V (Si5367, Si5368, Si5369)

The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When $\mathrm{Vdd}=3.3 \mathrm{~V}$ and there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When $\mathrm{Vdd}=3.3 \mathrm{~V}$ and there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. All other configurations are valid, including those with $\mathrm{Vdd}=2.5 \mathrm{~V}$.

### 8.2.2. Typical Output Circuits

It is recommended that the outputs be ac coupled to avoid common mode issues. This suggestion does not apply to the Si5366 and Si5368 when CKOUT5 is configured as FS_OUT (frame sync) because it can a have a duty cycle significantly different from $50 \%$.


Figure 42. Typical Output Circuit (Differential)


Figure 43. Differential Output Example Requiring Attenuation


Figure 44. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn- Together)
Unused output drivers should be powered down, per Table 57, or left floating.
The pin-controlled parts have a DBL2_BY pin that can be used to disable CKOUT2.
Table 57. Disabling Unused Output Driver

| Output Driver | Si5365, Si5366 | Si5325, Si5326, Si5367, Si5368 |
| :---: | :---: | :---: |
| CKOUT1 and CKOUT2 | N/A | Use SFOUT_REG to disable individ- |
| ual CKOUTn. |  |  |



Figure 45. CKOUT Structure
8.2.3. Typical Clock Output Scope Shots

Table 58. Output Format Measurements ${ }^{1,2}$

| Name | SFOUT Pin | SFOUT Code | Single <br> Vpk-pk | Diff Vpk-pk | Vocm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved | HH | - | - | - | - |
| LVDS | HM | 7 | . 35 | . 7 | 1.2 |
| CML | HLK | 6 | . 25 | . 5 | 3.05 |
| LVPECL | MH | 5 | . 75 | 1.5 | 2.10 |
| Reserved | MM | 4 | - | - | - |
| Low Swing LVDS | ML | 3 | . 25 | . 5 | 1.2 |
| CMOS | LH | 2 | 3.3 | - | 1.65 |
| Disable | LM | 1 | - | - | - |
| Reserved | LL | 0 | - | - | - |

Notes:

1. Typical measurements with an Si 5326 at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$.
2. For all measurements:

Vpk-pk on a single output, double the values for differential.
$\mathrm{Vdd}=3.3 \mathrm{~V}$.
$50 \Omega$ ac load to ground.

### 8.3. Typical Scope Shots for SFOUT Options



Figure 46. sfout_2, CMOS


Figure 47. sfout_3, lowSwingLVDS


Figure 48. sfout_5, LVPECL


Figure 49. sfout_6, CML


Figure 50. sfout_7, LVDS

### 8.4. Crystal/Reference Clock Interfaces (Si5316, Si5319, Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, Si5369, Si5374, and Si5375)

All devices other than the Si5374 and Si5375 can use an external crystal or external clock as a reference. The Si5374 and Si5375 are limited to an external reference oscillator and cannot use a crystal. If an external clock is used, it must be ac coupled. With appropriate buffers, the same external reference clock can be applied to CKINn. Although the reference clock input can be driven single ended (See Figure 51), best performance is with a crystal or differential LVPECL source. See Figure 55.
If the crystal is located close to a fan, it is recommended that the crystal be covered with some type of thermal cap. For various crystal vendors and part numbers, see " Appendix A—Narrowband References" on page 119.

1. For SONET applications, the best jitter performance is with a 114.285 MHz third overtone crystal. The Si5327 crystal is fundamental mode and is limited to values between 37 MHz and 41 MHz .
2. The jitter transfer for the external reference to CKOUT is nearly 1:1 (see " Appendix A—Narrowband References" on page 119.)
3. In digital hold or VCO freeze mode, the VCO tracks any changes in the external reference clock.


For 1.8 V operation, change $130 \Omega$ to $47.5 \Omega$.
For 2.5 V operation, change $130 \Omega$ to $82 \Omega$.
Figure 51. CMOS External Reference Circuit


Figure 52. Sinewave External Clock Circuit


Figure 53. Differential External Reference Input Example (Not for Si5374 or Si5375)


Figure 54. Differential OSC Reference Input Example for Si5374 and Si5375

### 8.5. Three-Level (3L) Input Pins (No External Resistors)



Figure 55. Three Level Input Pins

| Parameter | Symbol | Min | Max |
| :--- | :---: | :---: | :---: |
| Input Voltage Low | Vill | - | $.15 \times \mathrm{V}_{\mathrm{DD}}$ |
| Input Voltage Mid | Vimm | $.45 \times \mathrm{Vdd}$ | $.55 \times \mathrm{V}_{\mathrm{DD}}$ |
| Input Voltage High | Vihh | $.85 \times \mathrm{Vdd}$ | - |
| Input Low Current | lill | $-6 \mu \mathrm{~A}$ | - |
| Input Mid Current | limm | $-2 \mu \mathrm{~A}$ | $2 \mu \mathrm{~A}$ |
| Input High Current | lihh | - | $6 \mu \mathrm{~A}$ |

Note: The above currents are the amount of leakage that the 3 L inputs can tolerate from an external driver.

### 8.6. Three-Level (3L) Input Pins (With External Resistors)



One of eight resistors from a Panasonic EXB-D10C183J (or similar) resistor pack

Figure 56. Three Level Input Pins

| Parameter | Symbol | Min | Max |
| :--- | :---: | :---: | :---: |
| Input Low Current | lill | $-30 \mu \mathrm{~A}$ | - |
| Input Mid Current | limm | $-11 \mu \mathrm{~A}$ | $-11 \mu \mathrm{~A}$ |
| Input High Current | lihh | - | $-30 \mu \mathrm{~A}$ |

Note: The above currents are the amount of leakage that the 3 L inputs can tolerate from an external driver.

- Any resistor pack may be used.
- The Panasonic EXB-D10C183J is an example.
- PCB layout is not critical.
- Resistor packs are only needed if the leakage current of the external driver exceeds the listed currents.
- If a pin is tied to ground or Vdd, no resistors are needed.
- If a pin is left open (no connect), no resistors are needed.


## 9. Power Supply

These devices incorporate an on-chip voltage regulator to power the device from supply voltages of $1.8,2.5$, or 3.3 V. Internal core circuitry is driven from the output of this regulator while I/O circuitry uses the external supply voltage directly.
Figure 57 shows a typical power supply bypass network for the TQFP packages. Figure 58 shows a typical power supply bypass network for QFN.
In both cases, the center ground pad under the device must be electrically and thermally connected to the ground plane.


Figure 57. Typical Power Supply Bypass Network (TQFP Package)


Figure 58. Typical Power Supply Bypass Network (QFN Package)

Si53xx-RM

## 10. Packages and Ordering Guide

Refer to the respective data sheet for your device packaging and ordering information.

## Appendix A-Narrowband References

## Resonator/External Clock Selection

Table 59 shows the 114.285 MHz third overtone crystals that have been approved for use with the Si53xx jitter attenuating clocks.

Table 59. Approved Crystals

| Manufacturer | Part Number | Web Site | Stability | Initial <br> Accuracy |
| :---: | :---: | :--- | :---: | :---: |
| TXC | 7MA1400014 | http://www.txc.com.tw | 100 ppm | 100 ppm |
| Connor Winfield | CS-018 | http://www.conwin.com | 100 ppm | 100 ppm |
| Connor Winfield | CS-023 | http://www.conwin.com | 20 ppm | 20 ppm |
| NDK | EXS00A-CS00871 | http://www.ndk.com/en/ | 100 ppm | 100 ppm |
| NDK | EXS00A-CS00997 | http://www.ndk.com/en/ | 20 ppm | 20 ppm |
| Siward | XTL573200NLG- <br> $114.285 ~ M H z-O R ~$ | http://www.siward.com | 20 ppm | 20 ppm |
| Saronix/eCera | FLB420001 | http://www.pericom.com/saronix <br> http://www.ecera.tw | 100 ppm | 100 ppm |
| Mtron | M1253S071 | http://www.mtronpti.com | 100 ppm | 100 ppm |

Table 60. XAIXB Reference Sources and Frequencies

| RATE[1:0] | NB/WB | Type | Recommended | Lower limit | Upper limit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HH | WB | No crystal or external clock | - | - | - |
| HM | NB | Reserved | - | - | - |
| HL | NB | Reserved | - | - | - |
| MH | NB | External clock | 114.285 MHz | 109 MHz | 125.5 MHz |
| MM | NB | $3 r d$ overtone crystal | 114.285 MHz | - | - |
| ML | NB | Reserved | - | - | - |
| LH | NB | Reserved | - | - | - |
| LM | NB | External clock | 38.88 MHz | 37 MHz | 41 MHz |
| LL | NB | Fundamental mode crystal | 40 MHz | 37 MHz | 41 MHz |

In some applications, a crystal with frequencies other than 114.285 MHz may be used. Contact Silicon Labs for details and a current list of crystal vendors and approved part numbers.
External reference (and crystal) frequency values should be avoided that result in an output frequency that is an integer or near integer multiple of the reference frequency. See Appendix B for details.
Because the crystal is used as a jitter reference, rapid changes of the crystal temperature can temporarily disturb the output phase and frequency. For example, it is recommended that the crystal not be placed close to a fan that is being turned off and on. If a situation such as this is unavoidable, the crystal should be thermally isolated with an insulating cover.

## Fundamental Mode Crystals

For cost sensitive applications that do not have the most demanding jitter requirements, all of the narrow band devices can use fundamental mode crystals that are in the lowest frequency band ranging from 37 to 41 MHz (corresponding to RATE = LL). Unlike the other narrowband members of the family, the Si5327 is only capable of using fundamental mode crystals that are in this range. For a more detailed discussion of the trade-offs associated with this approach and a list of approved low frequency crystals, please see the application note AN591, which can be downloaded from www.silabs.com/timing.

## Reference Drift

During Digital Hold, long-term and temperature related drift of the reference input result in a one-to-one drift of the output frequency. That is, the stability of the any-frequency output is identical to the drift of the reference frequency. This means that for the most demanding applications where the drift of a crystal is not acceptable, an external temperature compensated or ovenized oscillator will be required. Drift is not an issue unless the device is in Digital Hold. Also, the initial accuracy of the reference oscillator (or crystal) is not relevant as long as it is within one of the frequency bands described in Table 60.

## Reference Jitter

Jitter on the reference input has a roughly one-to-one transfer function to the output jitter over the band from 100 Hz up to about 30 kHz . If the XA/XB pins implement a crystal oscillator, the reference will have suitably low jitter if a suitable crystal is used. If the XA/XB pins are connected to an external reference oscillator, the jitter of the external reference oscillator may also contribute significantly to the output jitter. A typical reference input-to-output jitter transfer function is shown in Figure 59.


Figure 59. Typical Reference Jitter Transfer Function

## Introduction

To achieve the best jitter performance from Narrowband Any-Frequency Clock devices, a few general guidelines should be observed:

## High f3 Value

f3 is defined as the comparison frequency at the Phase Detector. It is equal to the input frequency divided by N3. DSPLLsim automatically picks the frequency plan that has the highest possible f3 value and it reports f3 for every new frequency plan that it generates. f3 has a range from 2 kHz minimum up to 2 MHz maximum. The two main causes of a low f 3 are a low clock input frequency (which establishes an upper bound on f3) and a PLL multiplier ratio that is comprised of large and mutually prime nominators and denominators. Specifically, for CKOUT $=$ CKIN $x(P / Q)$, if $P$ and $Q$ are mutually prime and large in size, then $f 3$ may have a low value. Very low values of f 3 usually result in extra jitter as can be seen in Figure 60.


Figure 60. Jitter vs. f3
For the f3 study, the input, output and DCO frequencies were held constant while the dividers were manipulated by hand to artificially reduce the value of $\mathfrak{f}$. Two effects can be seen as f 3 approaches the 2 kHz lower limit: there are "spur like" spikes in the mid-band and the noise floor is elevated at the near end. It is also clear that once f3 is above roughly 50 kHz , there is very little benefit from further increasing f3. Note that the loop bandwidth for this study was 60 Hz and any noise below 60 Hz is a result of the input clock, not the Any-Frequency Precision Clock.

## Si53xx-RM

Figure 61 shows similar results and ties them to RMS jitter values. It also helps to illustrate one potential remedy for solutions with low f3. Note that $38.88 \mathrm{MHz} \times 5=194.4 \mathrm{MHz}$. In this case, an FPGA was used to multiply a 38.88 MHz input clock up by a factor of five to 194.4 MHz , using a feature such as the Xilinx DCM (Digital Clock Manager). Even though FPGAs are notorious for having jittered outputs, the jitter attenuating feature of the Narrowband Any-Frequency Clocks allow an FPGA's output to be used to produce a very clean clock, as can be seen from the jitter numbers below.


Dark blue-38.88 MHz in, f3 = $3.214 \mathbf{~ k H z}$
Light blue—194.4 MHz in, f3 = $\mathbf{1 6 . 1} \mathbf{~ k H z}$
Figure 61. Jitter vs. f3 with FPGA
Table 61. Jitter Values for Figure 61

|  | f3 = 3.214 kHz | f3 = 16.1 kHz |
| :---: | :---: | :---: |
|  | CKIN = 38.88 MHz | CKIN = 194.4 MHz |
| Jitter Bandwidth | Jitter, RMS | Jitter, RMS |
| OC-48, 12 kHz to 20 MHz | $1,034 \mathrm{fs}$ | 285 fs |
| OC-192, 20 kHz to 80 MHz | 668 fs | 300 fs |
| OC-192, 4 MHz to 80 MHz | 169 fs | 168 fs |
| OC-192, 50 kHz to 80 MHz | 374 fs | 287 fs |
| 800 Hz to 80 MHz | $3,598 \mathrm{fs}$ | 378 fs |

## Reference vs. Output Frequency

Because of internal coupling, output frequencies that are an integer multiple (or close to an integer multiple) of the XA/XB reference frequency (either internal or external) should be avoided. Figure 62 illustrates this by showing a 38.88 MHz reference being used to generate both a 622.08 MHz output (which is an integer multiple of 38.88 MHz ) and 696.399 MHz (which is not an integer multiple of 38.88 MHz ). Notice the mid-band spurs on the 622.08 MHz output, which contribute to the RMS phase noise for the SONET jitter masks. Their effect is more pronounced for the broadband case. For more information on this effect, see "Appendix G—Near Integer Ratios" on page 162.


Figure 62. Reference vs. Output Frequency
Table 62. Jitter Values for Figure 62

|  | $\mathbf{6 9 6 . 3 9 9} \mathbf{~ M H z ~ O u t ~}$ | $\mathbf{6 2 2 . 0 8} \mathbf{~ M H z ~ O u t ~}$ |
| :--- | :---: | :---: |
| Jitter Bandwidth | Yellow, fs RMS | Blue, fs RMS |
| SONET_OC48, 12 kHz to 20 MHz | 379 | 679 |
| SONET_OC192_A, 20 kHz to 80 MHz | 393 | 520 |
| SONET_OC192_B, 4 MHz to 80 MHz | 210 | 191 |
| SONET_OC192_C, 50 kHz to 80 MHz | 373 | 392 |
| Broadband, 800 Hz to 80 MHz | 484 | 1,196 |

The crystal frequency of 114.285 MHz was picked for its lack of integer relationship to most of the expected output frequencies. If, for instance, an output frequency of $457.14 \mathrm{MHz}(=4 \times 114.285 \mathrm{MHz})$ were desired, it would be preferable not to use the 114.285 MHz crystal as the reference. For a more detailed study of this, see "Appendix G-Near Integer Ratios" on page 162.

## Si53xx-RM

## High Reference Frequency

When selecting a reference frequency, with all other things being equal, the higher the reference frequency, the lower the output jitter. Figures 63 and 64 illustrate this. For a discussion of the available reference frequencies, see section " Resonator/External Clock Selection" on page 119.


Dark Blue- 37 MHz
Violet-55 MHz
Light Blue-109 MHz
Yellow-Green-163 MHz
Figure 63. Jitter vs. Reference Frequency (1 of 2)


Figure 64. Jitter vs. Reference Frequency (2 of 2)
All phase noise numbers are in fs, RMS

| External Reference Frequency: | $\mathbf{3 7}$ | $\mathbf{4 1}$ | $\mathbf{5 5}$ | $\mathbf{6 1}$ | $\mathbf{1 0 9}$ | $\mathbf{1 2 5 . 5}$ | $\mathbf{1 6 3}$ | $\mathbf{1 8 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jitter Bandwidth: | $\mathbf{M H z}$ |
| SONET_OC48, 12 kHz to 20 MHz | 1092 | 858 | 633 | 715 | 330 | 321 | 292 | 298 |
| SONET_OC192_A, 20 kHz to 80 MHz | 1086 | 855 | 639 | 698 | 356 | 335 | 325 | 331 |
| SONET_OC192_B, 4 MHz to 80 MHz | 226 | 229 | 232 | 221 | 217 | 183 | 221 | 226 |
| SONET_OC192_C, 50 kHz to 80 MHz | 1028 | 797 | 597 | 651 | 340 | 316 | 314 | 320 |
| BroadBand, 800 Hz to 80 MHz | 1165 | 956 | 728 | 773 | 423 | 375 | 393 | 393 |

## Appendix C-Typical Phase Noise Plots

## Introduction

The following are some typical phase noise plots. The clock input source is a Rohde and Schwarz model SML03 RF Generator. Except as noted, the phase noise analysis equipment is the Agilent E5052B. Also (except as noted), the Any-Frequency part was an Si5326 operating at 3.3 V with an ac-coupled differential PECL output and an accoupled differential sine wave input from the RF generator at 0 dBm . Note that, as with any PLL, the output jitter that is below the loop bandwidth of the Any-Frequency device is caused by the jitter of the input clock, not the AnyFrequency Precision Clock. Except as noted, the loop bandwidths were 60 Hz to 100 Hz .


Figure 65. 155.52 MHz In; 622.08 MHz Out


Figure 66. 155.52 MHz In; 622.08 MHz Out; Loop BW = 7 Hz, Si5324

## Si53xx-RM



Figure 67. 19.44 MHz In; 156.25 MHz Out; Loop BW = 80 Hz


Figure 68. 19.44 MHz In; 156.25 MHz Out; Loop BW = 5 Hz, Si5324


Figure 69. 27 MHz In; 148.35 MHz Out; Light Trace BW = 6 Hz; Dark Trace BW = 110 Hz, Si5324


Figure 70. 61.44 MHz In; 491.52 MHz Out; Loop BW = 7 Hz, Si5324


Figure 71. 622.08 MHz In; 672.16 MHz Out; Loop BW = $\mathbf{6 . 9}$ kHz


Figure 72. 622.08 MHz In; 672.16 MHz Out; Loop BW = $\mathbf{1 0 0} \mathbf{~ H z ~}$


Figure 73. 156.25 MHz In; 155.52 MHz Out


Figure 74. 78.125 MHz In; 644.531 MHz Out
Table 63. Jitter Values for Figure 74

| Jitter Bandwidth | 644.531 MHz <br> Jitter (RMS) |
| :---: | :---: |
| Broadband, 1 kHz to 10 MHz | 223 fs |
| OC-48, 12 kHz to 20 MHz | 246 fs |
| OC-192, 20 kHz to 80 MHz | 244 fs |
| OC-192, 4 MHz to 80 MHz | 120 fs |
| OC-192, 50 kHz to 80 MHz | 234 fs |
| Broadband, 800 Hz to 80 MHz | 248 fs |

## Si53xx-RM



Figure 75. 78.125 MHz In; 690.569 MHz Out
Table 64. Jitter Values for Figure 75

| Jitter Bandwidth | 690.569 MHz <br> Jitter (RMS) |
| :---: | :---: |
| Broadband, 1 kHz to 10 MHz | 244 fs |
| OC-48, 12 kHz to 20 MHz | 260 fs |
| OC-192, 20 kHz to 80 MHz | 261 fs |
| OC-192, 4 MHz to 80 MHz | 120 fs |
| OC-192, 50 kHz to 80 MHz | 253 fs |
| Broadband, 800 Hz to 80 MHz | 266 fs |



Figure 76. 78.125 MHz In; 693.493 MHz Out
Table 65. Jitter Values for Figure 76

| Jitter Bandwidth | 693.493 MHz <br> Jitter (RMS) |
| :---: | :---: |
| Broadband, 1 kHz to 10 MHz | 243 fs |
| OC-48, 12 kHz to 20 MHz | 265 fs |
| OC-192, 20 kHz to 80 MHz | 264 fs |
| OC-192, 4 MHz to 80 MHz | 124 fs |
| OC-192, 50 kHz to 80 MHz | 255 fs |
| Broadband, 800 Hz to 80 MHz | 269 fs |



Figure 77. 86.685 MHz In; 173.371 MHz and 693.493 MHz Out
Table 66. Jitter Values for Figure 77

| Jitter Bandwidth | 173.371 MHz <br> Jitter (RMS) | 693.493 MHz <br> Jitter (RMS) |
| :---: | :---: | :---: |
| Broadband, 1 kHz to 10 MHz | 262 fs | 243 fs |
| OC-48, 12 kHz to 20 MHz | 297 fs | 265 fs |
| OC-192, 20 kHz to 80 MHz | 309 fs | 264 fs |
| OC-192, 4 MHz to 80 MHz | 196 fs | 124 fs |
| OC-192, 50 kHz to 80 MHz | 301 fs | 255 fs |
| Broadband, 800 Hz to 80 MHz | 313 fs | 269 fs |



Figure 78. 86.685 MHz In; 173.371 MHz Out

## Si53xx-RM



Figure 79. 86.685 MHz In; 693.493 MHz Out
155.52 MHz and 156.25MHz in, 622.08 MHz out


Figure 80. 155.52 MHz and 156.25 MHz In; 622.08 MHz Out
Table 67. Jitter Values for Figure 80

| Jitter Bandwidth | 155.52 MHz Input <br> Jitter (RMS) | 156.25 MHz Input <br> Jitter (RMS) |
| :---: | :---: | :---: |
| Broadband, 100 Hz to 10 MHz | 4432 fs | 4507 fs |
| OC-48, 12 kHz to 20 MHz | 249 fs | 251 fs |
| OC-192, 20 kHz to 80 MHz | 274 fs | 271 fs |
| OC-192, 4 MHz to 80 MHz | 166 fs | 164 fs |
| OC-192, 50 kHz to 80 MHz | 267 fs | 262 fs |
| Broadband, 800 Hz to 80 MHz | 274 fs | 363 fs |



Figure 81. 10 MHz In; 1 GHz Out

## Digital Video (HD-SDI)

27 MHz in, 148.5 MHz out


| Jitter Band | Jitter |
| :--- | :---: |
| Brick Wall, 10 Hz to 20 MHz | $2.42 \mathrm{ps}, \mathrm{RMS}$ |
| Peak-to-peak | 14.0 ps |

Phase noise equipment: Agilent model JS500.

## Appendix D—Alarm Structure



Figure 82. Si5324 and Si5326 Alarm Diagram


Figure 83. Si5368 Alarm Diagram (1 of 2)


Figure 84. Si5368 Alarm Diagram (2 of 2)

## Appendix E—lnternal Pullup, Pulldown by Pin

Tables 68-79 show which 2-Level CMOS pins have pullups or pulldowns. Note the value of the pullup/pulldown resistor is typically $75 \mathrm{k} \Omega$.

Table 68. Si5316 Pullup/Down

| Pin \# | Si5316 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 11 | RATE0 | U, D |
| 14 | DBL2_BY | U, D |
| 15 | RATE1 | U, D |
| 21 | CS | U, D |
| 22 | BWSEL0 | U, D |
| 23 | BWSEL1 | U, D |
| 24 | FRQSEL0 | U, D |
| 25 | FRQSEL1 | U, D |
| 26 | CK1DIV | U, D |
| 27 | CK2DIV | U, D |
| 30 | SFOUT1 | U, D |
| 33 | SFOUT0 | U, D |

Table 69. Si5322 Pullup/Down

| Pin \# | Si5322 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 2 | FRQTBL | U, D |
| 9 | AUTOSEL | U, D |
| 14 | DBL2_BY | U, D |
| 21 | CS_CA | U, D |
| 22 | BWSELO | U, D |
| 23 | BWSEL1 | U, D |
| 24 | FRQSELO | U, D |
| 25 | FRQSEL1 | U, D |
| 26 | FRQSEL2 | U, D |
| 27 | FRQSEL3 | U, D |
| 30 | SFOUT1 | U, D |
| 33 | SFOUT0 | U, D |

Table 70. Si5323 Pullup/Down

| Pin \# | Si5323 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 2 | FRQTBL | U, D |
| 9 | AUTOSEL | U, D |
| 11 | RATE0 | U, D |
| 14 | DBL2_BY | U, D |
| 15 | RATE1 | U, D |
| 19 | DEC | D |
| 20 | INC | D |
| 21 | CS_CA | U, D |
| 22 | BWSEL0 | U, D |
| 23 | BWSEL1 | U, D |
| 24 | FRQSELO | U, D |
| 25 | FRQSEL1 | U, D |
| 26 | FRQSEL2 | U, D |
| 27 | FRQSEL3 | U, D |
| 30 | SFOUT1 | U, D |
| 33 | SFOUT0 | U, D |

Table 71. Si5319, Si5324, Pullup/Down

| Pin \# | Si5326 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 11 | RATE0 | U, D |
| 15 | RATE1 | U, D |
| 21 | CS_CA | U, D |
| 22 | SCL | D |
| 24 | A0 | D |
| 25 | A1 | D |
| 26 | A2_SS | D |
| 27 | SDI | D |
| 36 | CMODE | U, D |

Table 72. Si5325 Pullup/Down

| Pin \# | Si5325 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 21 | CS_CA | U, D |
| 22 | SCL | D |
| 24 | A0 | D |
| 25 | A1 | D |
| 26 | A2_SS | D |
| 27 | SDI | D |
| 36 | CMODE | U, D |

Table 73. Si5326 Pullup/Down

| Pin \# | Si5326 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 11 | RATE0 | U, D |
| 15 | RATE1 | U, D |
| 19 | DEC | D |
| 20 | INC | D |
| 21 | CS_CA | U, D |
| 22 | SCL | D |
| 24 | A0 | D |
| 25 | A1 | D |
| 26 | A2_SS | D |
| 27 | SDI | D |
| 36 | CMODE | U, D |

Table 74. Si5327 Pullup/Down

| Pin \# | Si5327 | Pull? |
| :---: | :---: | :---: |
| 1 | $\overline{\text { RST }}$ | U |
| 11 | RATEO | U, D |
| 15 | RATE1 | U, D |
| 21 | CS | U, D |
| 22 | SCL | D |
| 24 | A0 | D |
| 25 | A1 | D |
| 26 | A2_SS | D |
| 27 | SDI | D |
| 36 | CMODE | U, D |

Table 75. Si5365 Pullup/Down

| Pin \# | Si5365 | Pull? |
| :---: | :---: | :---: |
| 3 | $\overline{\text { RST }}$ | U |
| 4 | FRQTBL | U, D |
| 13 | CSO_C3A | D |
| 22 | AUTOSEL | U, D |
| 37 | DBL2_BY | U, D |
| 50 | DSBL5 | U, D |
| 57 | CS1_C4A | U, D |
| 60 | BWSEL0 | U, D |
| 61 | BWSEL1 | U, D |
| 66 | DIV34_0 | U, D |
| 67 | DIV34_1 | U, D |
| 68 | FRQSEL0 | U, D |
| 69 | FRQSEL1 | U, D |
| 70 | FRQSEL2 | U, D |
| 71 | FRQSEL3 | U, D |
| 80 | SFOUT1 | U, D |
| 85 | DBL34 | U |
| 95 | SFOUT0 | U, D |

Table 76. Si5366 Pullup/Down

| Pin \# | Si5366 | Pull? |
| :---: | :---: | :---: |
| 3 | $\overline{\text { RST }}$ | U |
| 4 | FRQTBL | U, D |
| 13 | CSO_C3A | D |
| 20 | FS_SW | D |
| 21 | FS_ALIGN | D |
| 22 | AUTOSEL | U, D |
| 32 | RATE0 | U, D |
| 37 | DBL2_BY | U, D |
| 42 | RATE1 | U, D |
| 50 | DBL_FS | U, D |
| 51 | CK_CONF | D |
| 54 | DEC | D |
| 55 | INC | D |
| 56 | FOS_CTL | U, D |
| 57 | CS1_C4A | U, D |
| 60 | BWSEL0 | U, D |
| 61 | BWSEL1 | U, D |
| 66 | DIV34_0 | U, D |
| 67 | DIV34_1 | U, D |
| 68 | FRQSELO | U, D |
| 69 | FRQSEL1 | U, D |
| 70 | FRQSEL2 | U, D |
| 71 | FRQSEL3 | U, D |
| 80 | SFOUT1 | U, D |
| 85 | DSBL34 | U |
| 95 | SFOUT0 | U, D |

Table 77. Si5367 Pullup/Down

| Pin \# | Si5367 | Pull? |
| :---: | :---: | :---: |
| 3 | $\overline{\text { RST }}$ | U |
| 13 | CS0_C3A | D |
| 57 | CS1_C4A | U, D |
| 60 | SCL | D |
| 68 | A0 | D |
| 69 | A1 | D |
| 70 | A2_SSB | D |
| 71 | SDI | D |
| 90 | CMODE | U, D |

Table 78. Si5368 Pullup/Down

| Pin \# | Si5368 | Pull? |
| :---: | :---: | :---: |
| 3 | $\overline{\text { RST }}$ | U |
| 13 | CSO_C3A | D |
| 21 | FS_ALIGN | D |
| 32 | RATE0 | U, D |
| 42 | RATE1 | U, D |
| 54 | DEC | D |
| 55 | INC | D |
| 57 | CS1_C4A | U, D |
| 60 | SCL | D |
| 68 | A0 | D |
| 69 | A1 | D |
| 70 | A2_SSB | D |
| 71 | SDI | D |
| 90 | CMODE | U, D |

Table 79. Si5369 Pullup/Down

| Pin \# | Si5368 | Pull? |
| :---: | :---: | :---: |
| 3 | $\overline{\text { RST }}$ | U |
| 13 | CSO_C3A | D |
| 21 | FS_ALIGN | D |
| 32 | RATE0 | U, D |
| 42 | RATE1 | U, D |
| 57 | CS1_C4A | U, D |
| 60 | SCL | D |
| 68 | A0 | D |
| 69 | A1 | D |
| 70 | A2_SSB | D |
| 71 | SDI | D |
| 90 | CMODE | U, D |

Table 80. Si5374/75 Pullup/Down

| Pin \# | Si5374/75 | Pull? |
| :---: | :---: | :---: |
| D4 | RSTL_A | U |
| D6 | RSTL_B | U |
| F6 | RSTL_C | U |
| F4 | RSTL_D | U |
| D1 | CS_CA_A | U/D |
| A6 | CS_CA_B | U/D |
| F9 | CS_CA_C | U/D |
| J4 | CS_CA_A | U/D |
| G5 | SCL | D |

This appendix is divided into the following four sections:

- Bypass Mode Performance
- Power Supply Noise Rejection
- Crosstalk
- Output Format Jitter


## Bypass: 622.08 MHz In, 622.08 MHz Out



Dark blue - normal, locked
Light blue - digital hold

Pink - bypass
Green - Marconi RF generator

|  | Normal, <br> Locked | In Digital Hold | In Bypass | Marconi RF <br> Source |
| :--- | :---: | :---: | :---: | :---: |
| Jitter Bandwidth | Jitter (RMS) | Jitter (RMS) | Jitter (RMS) | Jitter (RMS) |
| Broadband, 1000 Hz to 10 MHz | 296 fs | 294 fs | $2,426 \mathrm{fs}$ | 249 fs |
| OC-48, 12 kHz to 20 MHz | 303 fs | 304 fs | $2,281 \mathrm{fs}$ | 236 fs |
| OC-192, 20 kHz to 80 MHz | 321 fs | 319 fs | $3,079 \mathrm{fs}$ | 352 fs |
| OC-192,4 MHz to 80 MHz | 169 fs | 165 fs | $2,621 \mathrm{fs}$ | 305 fs |
| OC-192, 50 kHz to 80 MHz | 304 fs | 303 fs | $3,078 \mathrm{fs}$ | 340 fs |
| Broadband, 800 Hz to 80 MHz | 329 fs | 325 fs | $3,076 \mathrm{fs}$ | 370 fs |

## Power Supply Noise Rejection


38.88 MHz in, 155.52 MHz out; Bandwidth = 110 Hz

## Clock Input Crosstalk Results: Test Conditions

| Jitter Band | 155.52 MHz in, 622 MHz out, For reference, No crosstalk | $\begin{aligned} & \text { 155.521 MHz in, } \\ & \text { 622.084 MHz } \\ & \text { out, } \\ & \text { No crosstalk } \end{aligned}$ | $\begin{aligned} & \text { 155.521 MHz in, } \\ & \text { 622.084 MHz } \\ & \text { out, } \\ & \text { 155.52 MHz } \\ & \text { Xtalk, } \\ & \text { 99 Hz loop } \\ & \text { Bandwidth } \end{aligned}$ | 155.521 MHz in, <br> 622.084 MHz <br> out, <br> 155.52 MHz Xtalk, <br> 6.72 kHz loop Bandwidth | $\begin{aligned} & \text { 155.521 MHz in, } \\ & \text { 622.084 MHz } \\ & \text { out, } \\ & \text { 155.52 MHz } \\ & \text { Xtalk, } \\ & \text { In digital hold } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \mathrm{OC}-48, \\ 12 \mathrm{kHz} \text { to } 20 \mathrm{MHz} \end{array}$ | 262 fs | 262 fs | 269 fs | 422 fs | 255 fs |
| $\begin{aligned} & \mathrm{OC}-192, \\ & 20 \mathrm{kHz} \text { to } 80 \mathrm{MHz} \end{aligned}$ | 287 fs | 290 fs | 296 fs | 366 fs | 280 fs |
| Broadband, 800 Hz to 80 MHz | 285 fs | 289 fs | 298 fs | 1,010 fs | 277 fs |
| Measurement co <br> 1. Using Si5365 <br> 2. Clock input o <br> 3. Crosstalk int <br> 4. All differentia | ns: <br> VB. <br> N1, a OdBm sine w signal applied to coupled signals | ave from Rohde and CKIN3, a PECL outp | Schwarz RF Gener ut at 155.52 MHz | ator, model SML03 |  |

## Clock Input Crosstalk: Phase Noise Plots



Dark blue - No crosstalk
Light blue - With crosstalk, low bandwidth
Yellow - With crosstalk, high bandwidth
Red — With crosstalk, in digital hold

## Clock Input Crosstalk: Detail View



Dark blue - No crosstalk
Light blue - With crosstalk, low bandwidth
Yellow - With crosstalk, high bandwidth
Red - With crosstalk, in digital hold

## Clock Input Crosstalk: Wideband Comparison



Dark blue - Bandwidth = 6.72 kHz; no Xtalk
Light blue - Bandwidth $=6.72$ kHz; with Xtalk

| Jitter Band | Jitter, wl Xtlk | Jitter, no Xtlk |
| :--- | ---: | :---: |
| OC-48, 12 kHz to 20 MHz | 303 fs RMS | 422 fs RMS |
| OC-192, 20 kHz to 80 MHz | 316 fs RMS | 366 fs RMS |
| Broadband, 800 Hz to 80 MHz | 340 fs RMS | 1,010 fs RMS |

Clock Input Crosstalk: Output of Rohde and Schwartz RF


## Jitter vs. Output Format: 19.44 MHz In, 622.08 MHz Out



## Spectrum Analyzer: Agilent Model E4440A

Table 81. Output Format vs. Jitter

| Bandwidth | LVPECL Jitter <br> (RMS) | LVDS Jitter <br> (RMS) | CML Jitter (RMS) | Low Swing LVDS <br> Jitter (RMS) |
| :--- | :---: | :---: | :---: | :---: |
| Broadband, 1 kHz to 10 MHz | 282 fs | 269 fs | 257 fs | 261 fs |
| OC-48, 12 kHz to 20 MHz | 297 fs | 289 fs | 290 fs | 291 fs |
| OC-192, 20 kHz to 80 MHz | 315 fs | 327 fs | 358 fs | 362 fs |
| OC-192, 4 MHz to 80 MHz | 180 fs | 222 fs | 277 fs | 281 fs |
| OC-192, 50 kHz to 80 MHz | 299 fs | 313 fs | 348 fs | 351 fs |
| Broadband, 800 Hz to 80 MHz | 325 fs | 332 fs | 357 fs | 360 fs |

## Appendix G-Near Integer Ratios

To provide more details and to provide boundaries with respect to the "Reference vs. Output Frequency" issue described in Appendix B on page 121, the following study was performed and is presented below.

## Test Conditions

- XA/XB External Reference held constant at 38.88 MHz
- Input frequency centered at 155.52 MHz , then scanned. Scan Ranges and Resolutions:
- $\pm 50 \mathrm{ppm}$ with 2 ppm steps
- $\pm 200 \mathrm{ppm}$ with 10 ppm steps
- $\pm 2000$ ppm with 50 ppm steps
- Output frequency always exactly four times the input frequency
- Centered at 622.08 MHz

■ Jitter values are RMS, integrated from 800 Hz to 80 MHz
38.88 MHz External XA-XB Reference


Figure 85. $\pm 50$ ppm, 2 ppm Steps
38.88 MHz External XA-XB Reference


Figure 86. $\mathbf{\pm 2 0 0}$ ppm, 10 ppm Steps
38.88 MHz External XA-XB Reference

155.2155 .3155 .3155 .4155 .4155 .5155 .5155 .6155 .6155 .7155 .7155 .8155 .8155 .9155 .9 Input Frequency (MHz)
Input Frequency Variation $=\mathbf{\pm 2 0 0 0} \mathbf{p p m}$
Figure $87 . \pm 2000 \mathrm{ppm}, \mathbf{5 0} \mathrm{ppm}$ Steps

## Appendix H—Jitter Attenuation and Loop BW

The following illustrates the effects of different loop BW values on the jitter attenuation of the Any-Frequency devices. The jitter consists of sine wave modulation at varying frequencies. The RMS jitter values of the modulated sine wave input is compared to the output jitter of an Si5326 and an Si5324. For reference, the top entry in the table lists the jitter without any modulation. For each entry in the table, the corresponding phase noise plots are presented.

Table 82. Jitter Values

| Fmod | Fdev | Jitter Start | RF Gen | Si5326 | Si5324 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 500 Hz | 1.18 ps | 283 fs | 281 fs |
| 50 Hz | 50 Hz | 10 Hz | 181 ps | 169 ps | 10.6 ps |
| 100 Hz | 100 Hz | 50 Hz | 177 ps | 136 ps | 2.04 ps |
| 500 Hz | 500 Hz | 100 Hz | 175 ps | 18.6 ps | 295 fs |
| 1 kHz | 1 kHz | 500 Hz | 184 ps | 4.28 ps | 292 fs |
| 5 kHz | 5 kHz | 500 Hz | 138 ps | 297 fs | 302 fs |
| 10 kHz | 10 kHz | 500 Hz | 139 ps | 302 fs | 304 fs |

## Notes:

1. All phase noise plots are with 622.08 MHz input and 622.08 MHz output.

Si5326 bandwidth $=120 \mathrm{~Hz}$; Si5324 bandwidth $=7 \mathrm{~Hz}$.
2. FM modulation at $\mathrm{F}=\mathrm{Fmod}$ with modulation amplitude $=\mathrm{Fdev}$.
3. Jit start is the start of the brick wall integration band. All integration bands end at 50 MHz .
4. Phase noise measured by Agilent model E5052B.
5. RF Generator was Rohde and Schwarz model SMLO3.
622.08 MHz in, 622.08 MHz out


Blue $=$ RF Generator $\quad$ Green $=$ Si5326 $\quad$ Red $=$ Si5324
Figure 88. RF Generator, Si5326, Si5324; No Jitter (For Reference)


## Blue = RF Generator

Figure 89. RF Generator, Si5326, Si5324 (50 Hz Jitter)

### 622.08 MHz in, 622.08 MHz out



Figure 90. RF Generator, Si5326, Si5324 (100 Hz Jitter)
622.08 MHz in, 622.08 MHz out


Blue $=$ RF Generator $\quad$ Green $=$ Si5326 $\quad$ Red $=$ Si5324
Figure 91. RF Generator, Si5326, Si5324 (500 Hz Jitter)
622.08 MHz in, 622.08 MHz out


## Blue $=$ RF Generator $\quad$ Green $=$ Si5326 Red $=$ Si5324

Figure 92. RF Generator, Si5326, Si5324 (1 kHz Jitter)


$$
\text { Blue = RF Generator } \quad \text { Green }=\text { Si5326 } \quad \text { Red }=\text { Si5324 }
$$

Figure 93. RF Generator, Si5326, Si5324 (5 kHz Jitter)


Figure 94. RF Generator, Si5326, Si5324 (10 kHz Jitter)

## Appendix I—Si5374 and Si5375 PCB Layout Recommendations

The following is a set of recommendations and guidelines for printed circuit board layout with the Si5374 and Si5374 devices. Because the four DSPLLs are in close physical and electrical proximity to one another, PCB layout is critical to achieving the highest levels of jitter performance. The following images were taken from the Si537xEVB (evaluation board) layout. For more details about this board, refer to the Si537x-EVB Evaluation Board User's Guide.


The four Vdd supplies should be isolated from one another with four ferrite beads. They should be separately bypassed with capacitors that are located very close to the Si537x device.

## Figure 95. Vdd Plane

- Use a solid and undisturbed ground plane for the Si537x and all of the clock input and output return paths.
- For applications that wish to logically connect the four RSTL_x signals, do not tie them together underneath the BGA package. Instead connect them outside of the BGA footprint.
- Where possible, place the CKOUT and CKIN signals on separate PCB layers with a ground layer between them. The use of ground guard traces between all clock inputs and outputs is recommended.


These four resistors force the common RESET connection away from the BGA footprint
Figure 96. Ground Plane and Reset

The following is a set of recommendations and guidelines for printed circuit board layout with the Si5374 and Si5374 devices. Because the four DSPLLs are in close physical and electrical proximity to one another, PCB layout is critical to achieving the highest levels of jitter performance. The following images were taken from the Si537xEVB (evaluation board) layout. For more details about this board, please refer to the Si537x-EVB Evaluation Board User's Guide.


As much as is possible, do not route clock input and output signals underneath the BGA package. The clock output signals should go directly outwards from the BGA footprint.

Figure 97. Output Clock Routing


Avoid placing the OCS_P and OSC_N signals on the same layer as the clock outputs. Add grounded guard traces surrounding the OSC_P and OSC_N signals.

Figure 98. OSC_P, OSC_N Routing

## Appendix J—Si5374 and Si5375 Crosstalk

While the four DSPLLs of the Si5374 and Si5375 are in close physical and electrical proximity to one another, crosstalk interference between the DSPLLs is minimal. The following measurements show typical performance levels that can be expected for the Si5374 and Si5375 when all four of their DSPLLs are operating at frequencies that are close in value to one another, but not exactly the same.

## Si5374, Si5375 Crosstalk Test Bed

All four DSPLLs share the same frequency plan:
■ 38.88 MHz input.
■ 38.88 MHz x $4080 / 227=698.81 \mathrm{MHz}$ output (rounded).
There are four slightly different input frequencies:
■ DSPLL A: $\quad 38.88 \mathrm{MHz}+0 \mathrm{ppm}=>38.88000000 \mathrm{MHz}$
■ DSPLL B: $\quad 38.88 \mathrm{MHz}+1 \mathrm{ppm}=>38.88003888 \mathrm{MHz}$
■ DSPLL C: $\quad 38.88 \mathrm{MHz}+10 \mathrm{ppm}=>38.88038880 \mathrm{MHz}$
■ DSPLL D: $\quad 38.88 \mathrm{MHz}+20 \mathrm{ppm}=>38.88077760 \mathrm{MHz}$
Table 83. Si5374/75 Crosstalk Jitter Values

| DSPLL | Jitter, fsec RMS |
| :---: | :---: |
| A | 334 |
| B | 327 |
| C | 358 |
| D | 331 |

OSC_P, OSC_N Reference:

- Si530 at 121.109 MHz

Test equipment:

- Agilent E5052B

Si53xx-RM


Figure 99. Si5374, Si5375 DSPLL A


Figure 100. Si5374, Si5375 DSPLL B


Figure 101. Si5374, Si5375 DSPLL C


Figure 102. Si5374, Si5375 DSPLL D

## Document Change List

## Revision 0.3 to Revision 0.4

- Updated AC Specifications in Table 8, "AC Characteristics—All Devices"
- Added Si5365, Si5366, Si5367, and Si5368 operation at 3.3 V
- Updated Section "7.8. Frame Synchronization Realignment (Si5368 and CK_CONFIG_REG = 1)"
- Added input clock control diagrams in Section "7.4. Input Clock Control"
- Added new crystals into Table 59, "Approved Crystals"
- Updated "Appendix D—Alarm Structure" on page 144
- Added "Appendix F-Typical Performance: Bypass Mode, PSRR, Crosstalk, Output Format Jitter" on page 154


## Revision 0.4 to Revision 0.41

- Added Si5324.


## Revision 0.41 to Revision 0.42

- Moved Si5326 specifications to the Si5326 data sheet.
- Corrected Figure 23, "Jitter Tolerance Mask/ Template."
- Simplified Section "4. Device Specifications"
- Updated Figure 41, "CMOS Termination (1.8, 2.5, 3.3 V)."


## Revision 0.42 to Revision 0.5

- Added Si5327, Si5369, Si5374, and Si5375.
- Removed Si5319 and Si5323 from the spec tables.
- Updated the typical phase noise plots.
- Added new appendixes G, H, I, and J.
- Updated spec table values.
- Added examples and diagrams throughout.

Notes:

## CONTACT InFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.


#### Abstract

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.


Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

