Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M32C/83 Group (M32C/83, M32C/83T)

Hardware Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M32C/80 SERIES

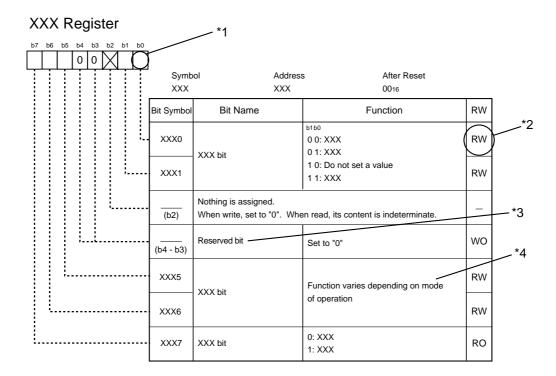
All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M32C/83 Group (M32C/83, M32C/83T) microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to the application

0: Set to "0"

1: Set to "1"

X: Nothing is assigned

*2

RW: Read and write

RO: Read only

WO: Write only

Nothing is assigned

*3

Reserved bit

Reserved bit. Set to specified value.

*4

· Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set a value

The operation is not guaranteed when a value is set.

• Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents		
Short Sheet	Hardware overview		
Data Sheet	Hardware overview and electrical characteristics		
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral		
	specifications, electrical characteristics, timing charts)		
Software Manual	Detailed description of assembly instructions and microcomputer perfor-		
	mance of each instruction		
Application Note	Application examples of peripheral functions		
	Sample programs		
	Introduction to the basic functions in the M16C family		
	Programming method with Assembly and C languages		
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.		

NOTES:

1. Before using this material, please visit the our website to confirm that this is the most current document available.

Table of Contents

Quick Reference by Address	B-1
1. Overview	1
1.1 Applications	
1.2 Performance Overview	2
1.3 Block Diagram	4
1.4 Product Information	5
1.5 Pin Assignment	
1.6 Pin Description	14
2. Central Processing Unit (CPU)	18
2.1 General Registers	
2.1.1 Data Registers (R0, R1, R2 and R3)	
2.1.2 Address Registers (A0 and A1)	
2.1.3 Static Base Register (SB)	
2.1.4 Frame Base Register (FB)	
2.1.5 Program Counter (PC)	
2.1.6 Interrupt Table Register (INTB)	
2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)	
2.1.8 Flag Register (FLG)2.2 High-Speed Interrupt Registers	
2.3 DMAC-Associated Registers	
_	
3. Memory	
4. Special Function Registers (SFR)	22
5. Reset	44
5.1 Hardware Reset	44
5.1.1 Reset on a Stable Supply Voltage	44
5.1.2 Power-on Reset	
5.2 Software Reset	
5.3 Watchdog Timer Reset	
5.4 Internal Space	
6. Processor Mode	48
6.1 Types of Processor Mode	
6.1.1 Single-chip Mode	
6.1.2 Memory Expansion Mode	
6.1.3 Microprocessor Mode	48

	6.2 Setting Processor Mode	48
	6.2.1 Applying VSS to CNVSS Pin	48
	6.2.2 Applying VCC to CNVSS Pin	48
7.	Bus	52
	7.1 Bus Settings	52
	7.1.1 Selecting External Address Bus	53
	7.1.2 Selecting External Data Bus	
	7.1.3 Selecting Separate/Multiplexed Bus	53
	7.2 Bus Control	55
	7.2.1 Address Bus and Data Bus	55
	7.2.2 Chip-Select Signal	55
	7.2.3 Read and Write Signals	57
	7.2.4 Bus Timing	58
	7.2.5 ALE Signal	62
	7.2.6 RDY Signal	62
	7.2.7 HOLD Signal	63
	7.2.8 External Bus State when Accessing Internal Space	64
	7.2.9 BCLK Output	64
	7.2.10 DRAM Control Signals (RAS, CASL, CASH and DW)	64
8.	Clock Generation Circuit	65
	8.1 Types of Clock Generation Circuits	65
	8.1.1 Main Clock	74
	8.1.2 Sub Clock	75
	8.1.3 On-chip Oscillator Clock	76
	8.1.4 PLL Clock	77
	8.2 CPU Clock and BCLK	79
	8.3 Peripheral Function Clock	79
	8.3.1 f1, f8, f32 and f2n	79
	8.3.2 fAD	79
	8.3.3 fC ₃₂	80
	8.4 Clock Output Function	80
	8.5 Power Consumption Control	80
	8.5.1 Normal Operation Mode	81
	8.5.2 Wait Mode	
	8.5.3 Stop Mode	84
9	Protection	88

10. Interrupts	89
10.1 Types of Interrupts	89
10.2 Software Interrupts	
10.2.1 Undefined Instruction Interrupt	89
10.2.2 Overflow Interrupt	89
10.2.3 BRK Interrupt	89
10.2.4 BRK2 Interrupt	90
10.2.5 INT Instruction Interrupt	90
10.3 Hardware Interrupts	90
10.3.1 Special Interrupts	90
10.3.2 Peripheral Function Interrupt	91
10.4 High-Speed Interrupt	91
10.5 Interrupts and Interrupt Vectors	91
10.5.1 Fixed Vector Tables	92
10.5.2 Relocatable Vector Tables	92
10.6 Interrupt Request Reception	95
10.6.1 I Flag and IPL	95
10.6.2 Interrupt Control Register and RLVL Regi	ster95
10.6.3 Interrupt Sequence	99
10.6.4 Interrupt Response Time	100
10.6.5 IPL Change when Interrupt Request is Ac	knowledged101
10.6.6 Saving a Register	102
10.6.7 Restoration from Interrupt Routine	102
10.6.8 Interrupt Priority	103
10.6.9 Interrupt Priority Level Select Circuit	
10.7 INT Interrupt	105
10.8 NMI Interrupt	106
10.9 Key Input Interrupt	106
10.10 Address Match Interrupt	
10.11 Intelligent I/O Interrupt and CAN Interrupt	108
11. Watchdog Timer	111
12. DMAC	4.4.4
12.1 Transfer Cycles	
12.1.1 Effect of Source and Destination Address	
12.1.2 Effect of the DS Register	
12.1.3 Effect of Software Wait State	
12.1.4 Effect of RDY Signal	

12.2 DMAC Transfer Cycles	123
12.3 Channel Priority and DMA Transfer Timing	123
13. DMAC II	125
13.1 DMAC II Settings	
13.1.1 RLVL Register	
13.1.2 DMAC II Index	
13.1.3 Interrupt Control Register for the Peripheral Function	129
13.1.4 Relocatable Vector Table for the Peripheral Function	
13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 11)	
13.2 DMAC II Performance	
13.3 Transfer Data	129
13.3.1 Memory-to-Memory Transfer	129
13.3.2 Immediate Data Transfer	130
13.3.3 Calculation Transfer	130
13.4 Transfer Modes	130
13.4.1 Single Transfer	130
13.4.2 Burst Transfer	130
13.4.3 Multiple Transfer	130
13.4.4 Chained Transfer	131
13.4.5 End-of-Transfer Interrupt	131
13.5 Execution Time	132
14. Timer	133
14.1 Timer A	
14.1.1 Timer Mode	141
14.1.2 Event Counter Mode	143
14.1.3 One-shot Timer Mode	147
14.1.4 Pulse Width Modulation Mode	149
14.2 Timer B	152
14.2.1 Timer Mode	155
14.2.2 Event Counter Mode	156
14.2.3 Pulse Period/Pulse Width Measurement Mode	158
15. Three-Phase Motor Control Timer Functions	161
16. Serial I/O	
16.1 Clock Synchronous Serial I/O Mode	
16.1.1 Selecting CLK Polarity	
16.1.1 Selecting CLK Polarity	
16.1.2 Selecting LSB First of MSB First	
16.1.4 Serial Data Logic Inverse	
10.1.7 Deliai Dala Edyic IIIVel 36	

46 2.4 Dit Data	188
16.2.1 Bit Rate	192
16.2.2 Selecting LSB First or MSB First	193
16.2.3 Serial Data Logic Inverse	193
16.2.4 TxD and RxD I/O Polarity Inverse	194
16.3 Special Mode 1 (I ² C Mode)	195
16.3.1 Detecting Start Condition and Stop Condition	200
16.3.2 Start Condition or Stop Condition Output	201
16.3.3 Arbitration	202
16.3.4 Transfer Clock	202
16.3.5 SDA Output	202
16.3.6 SDA Input	203
16.3.7 ACK, NACK	203
16.3.8 Transmit and Receive Reset	203
16.4 Special Mode 2	204
16.4.1 SSi Input Pin Function (i=0 to 4)	207
16.4.2 Clock Phase Setting Function	208
16.5 Special Mode 3 (GCI Mode)	210
16.6 Special Mode 4 (IE Mode)	214
16.7 Special Mode 5 (SIM Mode)	218
16.7.1 Parity Error Signal	222
16.7.2 Format	223
17 A/D Convertor	224
17. A/D Converter	
17. A/D Converter	
	234
17.1 Mode Description	234 234
17.1 Mode Description	234 234 234
17.1 Mode Description	234 234 234 235
17.1 Mode Description	
17.1.1 One-shot Mode	
17.1.1 One-shot Mode	

18. D/A Converter	240
19. CRC Calculation	243
20. X/Y Conversion	245
21. Intelligent I/O	
21.1 Base Timer	
21.2 Time Measurement Function (Group 0 and 1)	
21.3 Waveform Generation Function	
21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3)	27
21.3.2 Phase-Delayed Waveform Output Mode (Group 0 to 3)	27
21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode (Group	0 to 3) 28
21.3.4 Bit Modulation PWM Output Mode (Group 2 and 3)	28
21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3)	28
21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3)	28
21.4 Communication Unit 0 and 1 Communication Function	28
21.4.1 Clock Synchronous Serial I/O Mode (Groups 0 and 1)	29
21.4.2 Clock Asynchronous Serial I/O Mode (UART) (Groups 0 and 1) 29
21.4.3 HDLC Data Processing Mode (Group 0 and 1)	30
21.5 Group 2 Communication Function	30
21.5.1 Variable Clock Synchronous Serial I/O Mode (Group 2)	31
21.5.2 IEBus Mode (Group 2)	31
21.6 Group 3 Communication Function	31
21.6.1 8-bit or 16-bit Clock Synchronous Serial I/O Mode (Group 3).	32
22. CAN Module	324
22.1 CAN-Associated Registers	32
22.1.1 CAN0 Control Register 0 (C0CTLR0 Register)	32
22.1.2 CAN0 Control Register 1 (C0CTLR1 Register)	32
22.1.3 CAN0 Sleep Control Register (C0SLPR Register)	33
22.1.4 CAN0 Status Register (C0STR Register)	33
22.1.5 CAN0 Extended ID Register (C0IDR Register)	33
22.1.6 CAN0 Configuration Register (C0CONR Register)	33
22.1.8 CAN0 Transmit Error Count Register (C0TEC Register)	33
22.1.7 CAN0 Time Stamp Register (C0TSR Register)	33
22.1.9 CAN0 Receive Error Count Register (C0REC Register)	33
22.1.10 CAN0 Baud Rate Prescaler (C0BRP Register)	33
22.1.11 CAN0 Slot Interrupt Status Register (C0SISTR Register)	33
22.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)	34

22.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register	r)341
22.1.14 CAN0 Error Interrupt Status Register (C0EISTR Registe	er) 342
22.1.15 CAN0 Global Mask Register, CAN0 Local Mask Register A an	d CAN0 Local Mask
Register B (C0GMRj (j=0 to4), C0LMARj and C0LMBRj R	egisters) 343
22.1.16 CAN0 Message Slot i Control Register (C0MCTLi Regist	er) (i=0 to 15) 346
22.1.17 CAN0 Slot Buffer Select Register (C0SBS Register)	349
22.1.18 Message Slot Buffer	349
22.1.19 CAN0 Acceptance Filter Support Register (C0AFS Reg	ister)354
22.2.2 CAN Transmit Timing	355
22.2 Timing with CAN-Associated Registers	355
22.2.1 CAN Module Reset Timing	355
22.2.3 CAN Receive Timing	356
22.2.4 CAN Bus Error Timing	357
22.3 CAN Interrupts	357
23. DRAMC	359
23.1 DRAMC Multiplexed Address Output	361
23.2 Refresh	361
23.2.1 Refresh	361
23.2.2 Self-Refresh	361
24. Programmable I/O Ports	366
24.1 Port Pi Direction Register (PDi Register, i=0 to 15)	366
24.2 Port Pi Register (Pi Register, i=0 to 15)	
24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)	
24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)	
24.5 Function Select Register C (PSC Register)	367
24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)	367
24.7 Port Control Register (PCR Register)	367
24.8 Input Function Select Register (IPS Register)	367
24.9 Analog Input and Other Peripheral Function Input	367
25. Flash Memory Version	390
25.1 Memory Map	
25.1.1 Boot Mode	
25.2 Functions to Prevent the Flash Memory from Rewriting	392
25.2.1 ROM Code Protect Function	
25.2.2 ID Code Verify Function	392

25.3 CPU Rewrite Mode	394
25.3.1 Flash Memory Control Register 0 (FMR0 Register)	395
25.3.2 Status Register	397
25.3.3 Data Protect Function	398
25.3.4 How to Enter and Exit CPU Rewrite Mode	399
25.3.5 Software Commands	400
25.3.6 Full Status Check	406
25.3.7 Precautions in CPU Rewrite Mode	408
25.4 Standard Serial I/O Mode	409
25.4.1 Pin Function	409
25.4.2 ID Code Verify Function	409
25.4.3 Precautions in Standard Serial I/O Mode	414
25.4.4 Circuit Application in Standard Serial I/O Mode	414
25.5 Parallel I/O Mode	415
25.5.1 Boot ROM Area	415
25.5.2 ROM Code Protect Function	415
25.5.3 Precautions on Parallel I/O Mode	415
26. Electrical Characteristics	416
26.1 Electrical Characteristics (M32C/83)	416
26.2 Electrical Characteristics (M32C/83T)	
27. Precautions	462
27.1 Processor Mode	
27.1.1 Microprocessor Mode	462
27.2 Bus	
27.2.1 HOLD Signal	463
27.2.2 External Bus	463
27.3 SFR	464
27.3.1 100-Pin Package	464
27.3.2 Register Settings	464
27.4 Clock Generation Circuit	465
27.4.1 PLL Frequency Synthesizer	465
27.4.2 Power Consumption Control	465
27.4.3 Wait Mode	466
27.4.4 Stop Mode	466
27.5 Protection	467
27.6 Interrupts	468
27.6.1 ISP Setting	468
27.6.2 NMI Interrupt	468

27.6.3 INT Interrupt	468
27.6.4 Watchdog Timer Interrupt	469
27.6.5 Changing Interrupt Control Register	469
27.6.6 Changing IIOiIR Register (i = 0 to 11)	469
27.6.7 Changing RLVL Register	469
27.7 DMAC	470
27.8 Timer	471
27.8.1 Timers A and B	471
27.8.2 Timer A	471
27.8.3 Timer B	473
27.9 Three-Phase Motor Control Timer Functions	474
27.9.1 Changing TAi and TAi1 (i=1, 2, 4) Registers	474
27.10 Serial I/O	475
27.10.1 Clock Synchronous Serial I/O Mode	475
27.10.2 UART Mode	476
27.10.3 Special Mode 2	476
27.11 A/D Converter	477
27.12 Intelligent I/O	479
27.12.1 Register Setting	479
27.12.2 BTSR Register Setting	479
27.13 Programmable I/O Port	480
27.14 Flash Memory Version	481
27.14.1 Differences Between Flash Memory Version and Masked ROM Version	481
27.15 Noise	482
27.16 Low Voltage Operations	483
Package Dimensions	484
Register Index	486

	Address	Register	Page	Address	Register	Page
	000016				•	
000316 000416 000416 Processor Mode Register 1 (PM1) 49 000316 0	000116		1	003116		
000468 Processor Mode Register 0 (PM0) 49 Processor Mode Register 0 (PM1) 500 000568 Processor Mode Register 1 (PM1) 50 000768 System Clock Control Register 1 (CM0) 67 000768 Quarter Clock Control Register 1 (CM1) 68 000868 Wait Control Register 1 (CMC) 58 000869 Address Match Interrupt Enable Register (MEN) 107 000616 Wait Cock Control Register (MCD) 69 000616 Wait Cock Comptol Register (MCD) 70 000616 Waith Cock Division Register (MCD) 70 000161 Waith Color Division Register (MCD) 70 00161 Waith Color Division Register (MCD) 70 00	000216			003216		
000516 Processor Mode Register 1 (PMT) 50 000516 System Clock Control Register 0 (CM0) 68 000918 Wait Control Register 1 (WCR) 58 000918 Address Match Interrupt Enable Register (AIER) 107 000416 Protect Register (PRCR) 88 000510 Control Clock Division Register (CM2) 70 000616 Matchdog Timer Start Register (WDC) 112 00116 Address Match Interrupt Register (MDC) 117 00121e Address Match Interrupt Register (RMAD) 107 00131e Address Match Interrupt Register 1 (RMAD) 107 00131e Address Match Interrupt Register 1 (RMAD) 107 00131e Address Match Interrupt Register 2 (RMAD2) 107 00131e VDC Control Register 10 (VDC) 107 00131e Address Match Interrupt Register 3 (RMAD3) 107 00151e Address Match Interrupt Register 3 (RMAD3) 107 00151e OUCcontrol Register 0 (VDC) 104 00151e OUCcontrol Register 0 (VDC) 104 00151e 0UCco	000316			003316		
000616 System Clock Control Register 0 (CM0) 67 000716 System Clock Control Register 1 (CM1) 68 000916 Address Match Interrupt Enable Register (AIER) 107 000016 External Data Bus Wirdth Control Register (CM2) 52 000016 Main Clock Division Register (MCD) 69 000016 Watchdog Timer Start Register (WDTS) 70 0001616 Watchdog Timer Control Register (DRA) 107 0011616 Address Match Interrupt Register 0 (RMAD0) 107 0011616 Address Match Interrupt Register 1 (RMAD1) 107 001516 Address Match Interrupt Register 2 (RMAD2) 107 001516 DOC Control Register (VDCO) 72 001516 Address Match Interrupt Register 3 (RMAD3) 107 001516 Address Match Interrupt Register (MDC) <	000416	Processor Mode Register 0 (PM0)	49	003416		
000716 System Clock Control Register 1 (WCR) 58 000816 Valid Control Register 1 (WCR) 58 000816 Protect Register (PRCR) 88 000816 External Data Bus Width Control Register (MCD) 69 000016 Main Clock Division Register (MCD) 69 000016 Watchdog Timer Start Register (WDC) 70 001116 Address Match Interrupt Register of (RMAD) 117 001116 Address Match Interrupt Register (RMAD) 107 001318 Address Match Interrupt Register (RMAD) 107 001318 Address Match Interrupt Register (RMAD) 107 001518 Address Match Interrupt Register (RMAD) 107 001181 Address Match Interrupt Register (MDC) 004316	000516	Processor Mode Register 1 (PM1)	50	003516		
000816 Nati Control Register 1 (WCR) 58 000816 Address Match Interrupt Enabla Register (AIER) 107 000816 External Data Bus Width Control Register (DKC) 88 000816 External Data Bus Width Control Register (MCD) 70 000016 Oscillation Stop Detect Register (MCD) 70 000116 Watchdog Timer Control Register (WDC) 107 001116 Address Match Interrupt Register 0 (RMADD) 107 001118 Address Match Interrupt Register 1 (RMAD1) 107 00118 Address Match Interrupt Register 1 (RMAD1) 107 00118 Address Match Interrupt Register 2 (RMAD2) 107 00119 Address Match Interrupt Register 2 (RMAD2) 107 001116 Address Match Interrupt Register 2 (RMAD2) 107 00118 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00118 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00116 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00116 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00116 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00116 OD151 Address Match Interrupt Register 3 (RMAD3) 107 00116 OD151 Address Match Interrupt Register (WDC) 100 MD16 (MD16)<	000616	System Clock Control Register 0 (CM0)	67	003616		
000466 Address Match Interrupt Enable Register (AIER) 107 000460 Protect Register (PRCR) 88 000016 Exemal Data Bus Width Control Register (DS) 52 00016 Main Clock Division Register (MCD) 69 00016 Watchdog Timer Start Register (WDC) 70 000116 Watchdog Timer Control Register (WDC) 112 001116 Online Address Match Interrupt Register 0 (RMADD) 117 001316 Online Address Match Interrupt Register 1 (RMADD) 107 001416 Online Address Match Interrupt Register 1 (RMADD) 107 001510 Online Address Match Interrupt Register 2 (RMADD) 107 001516 Online Address Match Interrupt Register 2 (RMADD) 72 001518 Online Address Match Interrupt Register 2 (RMADD) 72 001519 Address Match Interrupt Register 3 (RMADD) 107 001510 Online 000510 Online 001510 Address Match	000716	System Clock Control Register 1 (CM1)	68	003716		
0000146 Once Protect Register (PRCR) External Data Bus Wirdth Control Register (MCD) 69 52 000016 Machodg Timer Start Register (MCD) 000016 Watchdog Timer Start Register (WDC) 00116 001146	000816	Wait Control Register 1 (WCR)	58	003816		
0000161 0000160 00000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 0000160 00000160 00000160 00000160 00000160 00000160 00000160 00000160 00000160 00000160 00000160 00000160 00000000	000916	Address Match Interrupt Enable Register (AIER)	107	003916		
000016 Main Clock Division Register (MCD) 69 000016 Watchdog Timer Star Register (WDTS) 112 001016 Octobrol Register (MCD) 112 00016 Watchdog Timer Star Register (WDC) 1107 00116 Octobrol Register (MCD) 1107 00116 Octobrol Register (MCD) 1107 001316 Octobrol Register (MCD) 1107 001316 Octobrol Register (MCD) 1107 001516 Octobrol Register (MCD) 107 001516 Octobrol Register (MCD) 107 001716 Octobrol Register (MCD) 107 001816 Octobrol Register (MCD) 107 001816 Octobrol Register (MCD) 107 001916 Octobrol Register (MCD) 004 001916	000A16	Protect Register (PRCR)	88	003A16		
00016 0 Ocillation Stop Detect Register (CM2) 0000F16 Watchdog Timer Start Register (WDTS) 001016	000B16	External Data Bus Width Control Register (DS)	52	003B16		
000E16 Watchdog Timer Start Register (WDC) 003E16 003F16 004M Control Register (REFCNT) 00416 004M Refresh Interval Set Register (REFCNT) 004216 004416	000C16	Main Clock Division Register (MCD)	69	003C16		
000166 000166 000166 000166 000166 000166 000166 000166 000166 000166 000166 000166 000166 000166 00016	000D16	Oscillation Stop Detect Register (CM2)	70	003D16		
0001-16 0010	000E16	Watchdog Timer Start Register (WDTS)		003E16		
001116 001216	000F16	Watchdog Timer Control Register (WDC)	112	003F16		
001116 001216 001216 001316	001016			004016	DRAM Control Register (DRAMCONT)	360
001316 001416 001416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004518 004518 004518 004518 004518 004716 004716 004716 004716 004716 004716 004716 004716 004716 004716 004818 004716 004816 004716 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004416<	001116	Address Match Interrupt Register 0 (RMAD0)	107	004116	DRAM Refresh Interval Set Register (REFCNT)	300
001316 001416 001416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004416 004518 004518 004518 004518 004518 004716 004716 004716 004716 004716 004716 004716 004716 004716 004716 004818 004716 004816 004716 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004816 004416<	001216			004216		
001516 01616				004316		
001616 001716 VDC Control Register for PLL (PLV) 72 001816 Address Match Interrupt Register 2 (RMAD2) 107 001816 VDC Control Register 0 (VDC0) - 001016 Address Match Interrupt Register 3 (RMAD3) 107 001016 Address Match Interrupt Register 3 (RMAD3) 107 001166 004816 004816 001161 004016 004016 001161 004016 004016 001161 004016 004016 001161 004016 004016 001161 004016 004016 001161 004016 004016 001161 004016 004016 001162 004016 004016 001163 004016 004016 001164 005016 005016 0001165 005016 005016 0001166 005016 005016 0001176 005016 005016 0001176 005016 005016 0001176 005016 <td>001416</td> <td></td> <td></td> <td>004416</td> <td></td> <td></td>	001416			004416		
001616 001716 VDC Control Register for PLL (PLV) 72 004816 004716 004816 005816<	001516	Address Match Interrupt Register 1 (RMAD1)	107	004516		
001816 001918 001A16 Address Match Interrupt Register 2 (RMAD2) 107 004916 004916 004916 004916 004416 004916 004916 004916 004916 004916 004916 00491	001616			004616		
001816 001918 001A16 Address Match Interrupt Register 2 (RMAD2) 107 004916 004916 004916 004916 004416 004916 004916 004916 004916 004916 004916 00491		VDC Control Register for PLL (PLV)	72	004716		
001A16 VDC Control Register 0 (VDCO) 0 004B16 004B16 004B16 004B16 004B16 004B16 004B16 004B16 004B16 004C16 004C16 004C16 004C16 004D16 004B16 005B16				004816		
001A16 VDC Control Register 0 (VDCO) 0 004B16 004B16 004B16 004B16 004B16 004B16 004C16 004C16 004C16 004C16 004C16 004D16 004C16 004D16 004D16 004D16 004E16 005E16	001916	Address Match Interrupt Register 2 (RMAD2)	107	004916		
001B16 VDC Control Register 0 (VDC0) 004B16 004C16 004C16 004C16 004C16 004C16 004C16 004C16 004D16 004E16 004E16 004E16 004E16 004E16 004E16 004E16 005C16 005	001A16			004A16		
001C16 001D16 001E16 Address Match Interrupt Register 3 (RMAD3) 107 004C16 004D16 004D16 004E16 004D16 004E16 004E16 004E16 004E16 004E16 004E16 004E16 004E16 005E16 004E16 005E16 005E16 005E16		VDC Control Register 0 (VDC0)		004B16		
001E16 004E16 004E16 004E16 004F16 004F16 004F16 004F16 005016<	001C16			004C16		
001F16 004F16 004F16 005016 005016 005016 005016 005016 00516 00516	001D16	Address Match Interrupt Register 3 (RMAD3)	107	004D16		
002016 005016 005016 005116 005116 005116 005116 005116 005116 005116 005116 005216<	001E16			004E16		
002016 005016 005016 005116<	001F16			004F16		
002116 005116 005216<			1	005016		
002316 002416 005316 005416 005416 005416 005416 005516 005516 005516 005516 005616 005616 005616 005616 005716 Flash Memory Control Register 0 (FMR0) 395 395 005816 005916 005916 005916 00581			1	005116		
002316 005316 005316 005416 005416 005516<	002216		1	005216		
002516 005516 005516 005616 005616 005616 005616 005616 005616 005716 Flash Memory Control Register 0 (FMR0) 395 395 395 005816 005916 005916 005916 005916 005916 005816 </td <td></td> <td></td> <td>1 </td> <td>005316</td> <td></td> <td></td>			1	005316		
002516 005516 005616 005616 005616 005716 Flash Memory Control Register 0 (FMR0) 395 395 395 005816 005916 005816 005916 005816 </td <td>002416</td> <td></td> <td>1 </td> <td>005416</td> <td></td> <td></td>	002416		1	005416		
002616 005616 005616 005716 Flash Memory Control Register 0 (FMR0) 395 002816 005816 005816 005816 005916 005916 005916 005816<			1	005516		
002716 005716 Flash Memory Control Register 0 (FMR0) 395 002816 005816 005816 005916 002A16 005A16 005A16 005B16 002B16 005B16 005B16 005C16 002D16 005D16 005D16 005E16			1			1
002816 005816 002916 005916 002A16 005A16 002B16 005B16 002C16 005C16 002D16 005D16 002E16 005E16			1		Flash Memory Control Register 0 (FMR0)	395
002A16 005A16 002B16 005B16 002C16 005C16 002D16 005D16 002E16 005E16	002816		1	005816		
002A16 005A16 002B16 005B16 002C16 005C16 002D16 005D16 002E16 005E16			1			1
002B16 005B16 002C16 005C16 002D16 005D16 002E16 005E16			1			1
002C16 005C16 002D16 005D16 002E16 005E16			1 l			1
002D16 005D16 002E16 005E16			1			1
002E16 005E16			1			1
			1			1
	002F16		1	005F16		1

Blank spaces are reserved. No access is allowed.

Address	Register	Page	
006016	Ü		
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006716	DMA0 Interrupt Control Register (DM0IC)		
006916	Timer B5 Interrupt Control Register (TB5IC)		
006A16	DMA2 Interrupt Control Register (DM2IC)		
006B16	UART2 Receive /ACK Interrupt Control Register (S2RIC)		
006C16	Timer A0 Interrupt Control Register (TA0IC)		
006D16	UART3 Receive /ACK Interrupt Control Register (S3RIC)		
006E16	Timer A2 Interrupt Control Register (TA2IC)		
006F16	UART4 Receive /ACK Interrupt Control Register (S4RIC)		
007016	Timer A4 Interrupt Control Register (TA4IC)		
007116	UARTO Bus Conflict Detect Interrupt Control Register (BCN0IC)/	96	
	UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC)		
007216	UART0 Receive/ACK Interrupt Control Register (S0RIC)		
007316	A/D0 Conversion Interrupt Control Register (AD0IC)		
007416	UART1 Receive/ACK Interrupt Control Register (S1RIC)		
007516	Intelligent I/O Interrupt Control Register 0 (IIO0IC)		
007616	Timer B1 Interrupt Control Register (TB1IC)		
007716	Intelligent I/O Interrupt Control Register 2 (IIO2IC)		
007816	Timer B3 Interrupt Control Register (TB3IC)		
007916	Intelligent I/O Interrupt Control Register 4 (IIO4IC)		
007A16	INT5 Interrupt Control Register (INT5IC)	97	
007B16	Intelligent I/O Interrupt Control Register 6 (IIO6IC)	96	
007C16	INT3 Interrupt Control Register (INT3IC)	97	
007D16	Intelligent I/O Interrupt Control Register 8 (IIO8IC)	96	
007E16	INT1 Interrupt Control Register (INT1IC)	97	
	Intelligent I/O Interrupt Control Register 10 (IIO10IC)/		
007F16	CAN Interrupt 1 Control Register (CAN1IC)	96	
008016			
0001	Intelligent I/O Interrupt Control Register 11 (IIO11IC)/	00	
008116	CAN Interrupt 2 Control Register (CAN2IC)	96	
008216			
008316			
008416			
008516			
008616	A/D1 Conversion Interrupt Control Register (AD1IC)	96	
008716			
008816	DMA1 Interrupt Control Register (DM1IC)		
008916	UART2 Transmit /NACK Interrupt Control Register (S2TIC)		
008A16	DMA3 Interrupt Control Register (DM3IC)		
	008B16 UART3 Transmit /NACK Interrupt Control Register (S3TIC)		
008C16	Timer A1 Interrupt Control Register (TA1IC)	96	
008D16	UART4 Transmit /NACK Interrupt Control Register (S4TIC)	1	
008E16	Timer A3 Interrupt Control Register (TA3IC)		
008F16	UART2 Bus Conflict Detect Interrupt Control Register (BCN2IC)		
3301 10	5 2 240 30111101 201001 Interrupt Gorittor Register (DONZIO)		

Address	Register	Page
009016	UART0 Transmit /NACK Interrupt Control Register (S0TIC)	
000146	UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/	
009116	UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)	
009216	UART1 Transmit/NACK Interrupt Control Register (S1TIC)	
009316	Key Input Interrupt Control Register (KUPIC)	
009416	Timer B0 Interrupt Control Register (TB0IC)	00
009516	Intelligent I/O Interrupt Control Register 1 (IIO1IC)	96
009616	Timer B2 Interrupt Control Register (TB2IC)	
009716	Intelligent I/O Interrupt Control Register 3 (IIO3IC)	
009816	Timer B4 Interrupt Control Register (TB4IC)	
009916	Intelligent I/O Interrupt Control Register 5 (IIO5IC)	
009A16	INT4 Interrupt Control Register (INT4IC)	97
009B16	Intelligent I/O Interrupt Control Register 7 (IIO7IC)	96
009C16	INT2 Interrupt Control Register (INT2IC)	97
_	Intelligent I/O Interrupt Control Register 9 (IIO9IC)/	
009D16	CAN Interrupt 0 Control Register (CAN0IC)	96
009E16		97
009F16	Exit Priority Control Register (RLVL)	98
00A016	Interrupt Request Register 0 (IIO0IR)	
00A116	Interrupt Request Register 1 (IIO1IR)	
00A216	Interrupt Request Register 2 (IIO2IR)	
00A316	Interrupt Request Register 3 (IIO3IR)	
00A416	Interrupt Request Register 4 (IIO4IR)	
00A516	Interrupt Request Register 5 (IIO5IR)	
00A616	Interrupt Request Register 6 (IIO6IR)	109
00A716	Interrupt Request Register 7 (IIO7IR)	
00A716	Interrupt Request Register 8 (IIO8IR)	
00A916	Interrupt Request Register 9 (IIO9IR)	
00AA16	· · · · · · · · · · · · · · · · · · ·	
00AA16	Interrupt Request Register 11 (IIO11IR)	
00AC16	micrapi request register 11 (no 1111)	
00AD16		
00AE16		
00AE16		
00B016	Interrupt Enable Register 0 (IIO0IE)	
00B016	Interrupt Enable Register 1 (IIO1IE)	
00B116	Interrupt Enable Register 2 (IIO2IE)	
00B216	Interrupt Enable Register 3 (IIO3IE)	
00B416	Interrupt Enable Register 4 (IIO4IE)	
00B516	Interrupt Enable Register 5 (IIO5IE)	
00B516	Interrupt Enable Register 6 (IIO6IE)	110
00B016	Interrupt Enable Register 7 (IIO7IE)	
00B716	Interrupt Enable Register 7 (11071E)	
00B016	Interrupt Enable Register 9 (IIO9IE)	
00B916	Interrupt Enable Register 9 (IIO9IE)	
00BA16	, , ,	
	Interrupt Enable Register 11 (IIO11IE)	
00BC16		
00BD16		
00BE16		
00BF16		

Blank spaces are reserved. No access is allowed.

Address	Register	Page
00C016	Group 0 Time Measurement Register 0 (G0TM0)/	
00C116	Group 0 Waveform Generation Register 0 (G0PO0)	
00C216	Group 0 Time Measurement Register 1 (G0TM1)/	
00C316	Group 0 Waveform Generation Register 1 (G0PO1)	
00C416	Group 0 Time Measurement Register 2 (G0TM2)/	
00C516	Group 0 Waveform Generation Register 2 (G0PO2)	
00C616	Group 0 Time Measurement Register 3 (G0TM3)/	
00C716	Group 0 Waveform Generation Register 3 (G0PO3)	259/
00C816	Group 0 Time Measurement Register 4 (G0TM4)/	261
00C916	Group 0 Waveform Generation Register 4 (G0PO4)	
00CA16	Group 0 Time Measurement Register 5 (G0TM5)/	
00CB16	Group 0 Waveform Generation Register 5 (G0PO5)	
00CC16	Group 0 Time Measurement Register 6 (G0TM6)/	
00CD16	Group 0 Waveform Generation Register 6 (G0PO6)	
00CE16	Group 0 Time Measurement Register 7 (G0TM7)/	
00CF16	Group 0 Waveform Generation Register 7 (G0PO7)	
00D016	Group 0 Waveform Generation Control Register 0 (G0POCR0)	
00D116	Group 0 Waveform Generation Control Register 1 (G0POCR1)	
00D216	Group 0 Waveform Generation Control Register 2 (G0POCR2)	
00D316	Group 0 Waveform Generation Control Register 3 (G0POCR3)	259
00D416	Group 0 Waveform Generation Control Register 4 (G0POCR4)	200
00D516	Group 0 Waveform Generation Control Register 5 (G0POCR5)	
00D616	Group 0 Waveform Generation Control Register 6 (G0POCR6)	
00D716	Group 0 Waveform Generation Control Register 7 (G0POCR7)	
00D816	Group 0 Time Measurement Control Register 0 (G0TMCR0)	
00D916	Group 0 Time Measurement Control Register 1 (G0TMCR1)	
00DA16	Group 0 Time Measurement Control Register 2 (G0TMCR2)	
00DB16	Group 0 Time Measurement Control Register 3 (G0TMCR3)	258
00DC16	Group 0 Time Measurement Control Register 4 (G0TMCR4)	200
00DD16	Group 0 Time Measurement Control Register 5 (G0TMCR5)	
00DE16	Group 0 Time Measurement Control Register 6 (G0TMCR6)	
00DF16	Group 0 Time Measurement Control Register 7 (G0TMCR7)	
00E016	2 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
00E116	Group 0 Base Timer Register (G0BT)	253
00E216	Group 0 Base Timer Control Register 0 (G0BCR0)	
00E316	Group 0 Base Timer Control Register 1 (G0BCR1)	254
00E416	Group 0 Time Measurement Prescaler Register 6 (G0TPR6)	258
00E516	Group 0 Time Measurement Prescaler Register 7 (G0TPR7)	_00
00E616	Group 0 Function Enable Register (G0FE)	262
00E716	Group 0 Function Select Register (G0FS)	-02
00E816	Group 0 SI/O Receive Buffer Register (G0RB)	291
00E916	Croup o dive rederve Barrer register (Core)	201
00EA16	Group 0 Transmit Buffer/Receive Data Register (G0TB/G0DR)	294
00EB16		
00EC16	Group 0 Receive Input Register (G0RI)	289
00ED16	Group 0 SI/O Communication Mode Register (G0MR)	291
00EE16	Group 0 Transmit Output Register (G0TO)	289
00EF16	Group 0 SI/O Communication Control Register (G0CR)	290

00F016 Group 0 Data Compare Register 0 (G0CMP0) 00F116 Group 0 Data Compare Register 1 (G0CMP1) 00F216 Group 0 Data Compare Register 2 (G0CMP2) 00F316 Group 0 Data Compare Register 3 (G0CMP3) 00F416 Group 0 Data Mask Register 0 (G0MSK0) 00F516 Group 0 Data Mask Register 1 (G0MSK1)	295
00F216 Group 0 Data Compare Register 2 (G0CMP2) 00F316 Group 0 Data Compare Register 3 (G0CMP3) 00F416 Group 0 Data Mask Register 0 (G0MSK0)	
00F316 Group 0 Data Compare Register 3 (G0CMP3) 00F416 Group 0 Data Mask Register 0 (G0MSK0)	
00F416 Group 0 Data Compare Register 3 (G0CMP3) 00F416 Group 0 Data Mask Register 0 (G0MSK0)	
	295
00F516 Group 0 Data Mask Register 1 (G0MSK1)	295
	295
00F616	295
00F716	295
00F816	295
00F916 Group 0 Receive CRC Code Register (G0RCRC)	295
100EA16	
00FB16 Group 0 Transmit CRC Code Register (G0TCRC)	
00FC16 Group 0 SI/O Extended Mode Register (G0EMR)	292
00FD16 Group 0 SI/O Extended Receive Control Register (G0ERC)	293
OOFE16 Group 0 SI/O Special Communication Interrupt Detect Register (G0IRF)	294
	292
010016 Group 1 Time Measurement Register 0 (G1TM0)/	
010116 Group 1 Waveform Generation Register 0 (G1PO0)	
010216 Group 1 Time Measurement Register 1 (G1TM1)/	
010316 Group 1 Waveform Generation Register 1 (G1PO1)	
010416 Group 1 Time Measurement Register 2 (G1TM2)/	
0105 ₁₆ Group 1 Waveform Generation Register 2 (G1PO2)	
010616 Group 1 Time Measurement Register 3 (G1TM3)/	
	259/
	261
010916 Group 1 Waveform Generation Register 4 (G1PO4)	
010A ₁₆ Group 1 Time Measurement Register 5 (G1TM5)/	
010B ₁₆ Group 1 Waveform Generation Register 5 (G1PO5)	
010C16 Group 1 Time Measurement Register 6 (G1TM6)/	
010D16 Group 1 Waveform Generation Register 6 (G1PO6)	
010E16 Group 1 Time Measurement Register 7 (G1TM7)/	
010F ₁₆ Group 1 Waveform Generation Register 7 (G1PO7)	
011016 Group 1 Waveform Generation Control Register 0 (G1POCR0)	
011116 Group 1 Waveform Generation Control Register 1 (G1POCR1)	
011216 Group 1 Waveform Generation Control Register 2 (G1POCR2)	
011316 Group 1 Waveform Generation Control Register 3 (G1POCR3)	
011416 Group 1 Waveform Generation Control Register 4 (G1POCR4)	259
011516 Group 1 Waveform Generation Control Register 5 (G1POCR5)	
011616 Group 1 Waveform Generation Control Register 6 (G1POCR6)	
011716 Group 1 Waveform Generation Control Register 7 (G1POCR7)	
011816 Group 1 Time Measurement Control Register 0 (G1TMCR0)	
011916 Group 1 Time Measurement Control Register 1 (G1TMCR1)	
011A16 Group 1 Time Measurement Control Register 2 (G1TMCR2)	
011B16 Group 1 Time Measurement Control Register 3 (G1TMCR3)	
	258
011D16 Group 1 Time Measurement Control Register 5 (G1TMCR5)	
011E16 Group 1 Time Measurement Control Register 6 (G1TMCR6)	
011F16 Group 1 Time Measurement Control Register 7 (G1TMCR7)	

Address	Register	Page
012016	Crown 4 Dags Times Devictor (CADT)	
012116	Group 1 Base Timer Register (G1BT)	253
012216	Group 1 Base Timer Control Register 0 (G1BCR0)	
012316	Group 1 Base Timer Control Register 1 (G1BCR1)	254
012416	Group 1 Time Measurement Prescaler Register 6 (G1TPR6)	050
012516	Group 1 Time Measurement Prescaler Register 7 (G1TPR7)	258
012616	Group 1 Function Enable Register (G1FE)	262
012716	Group 1 Function Select Register (G1FS)	202
012816	Group 1 SI/O Receive Buffer Register (G1RB)	291
012916	Croup 1 0% Crossive Buildi Register (CTRB)	201
012A16	Group 1 Transmit Buffer/Receive Data Register (G1TB/G1DR)	294
012B16		
012C16	Group 1 Receive Input Register (G1RI)	289
012D16	Group 1 SI/O Communication Mode Register (G1MR)	291
012E ₁₆	Group 1 Transmit Output Register (G1TO)	289
012F16	Group 1 SI/O Communication Control Register (G1CR)	290
013016	Group 1 Data Compare Register 0 (G1CMP0)	
013116	Group 1 Data Compare Register 1 (G1CMP1)	
013216	Group 1 Data Compare Register 2 (G1CMP2)	295
013316	Group 1 Data Compare Register 3 (G1CMP3)	295
013416	Group 1 Data Mask Register 0 (G1MSK0)	
013516	Group 1 Data Mask Register 1 (G1MSK1)	
013616		
013716		
013816		
013916	Group 1 Receive CRC Code Register (G1RCRC)	
013A ₁₆		295
013B ₁₆	Group 1 Transmit CRC Code Register (G1TCRC)	
013C ₁₆	Group 1 SI/O Extended Mode Register (G1EMR)	292
013D16	Group 1 SI/O Extended Receive Control Register (G1ERC)	293
013E ₁₆	Group 1 SI/O Special Communication Interrupt Detect Register (G1IRF)	294
013F16	Group 1 SI/O Extended Transmit Control Register (G1ETC)	292
014016		
014116	Group 2 Waveform Generation Register 0 (G2PO0)	
014216		
014316	Group 2 Waveform Generation Register 1 (G2PO1)	
014416		
014516	Group 2 Waveform Generation Register 2 (G2PO2)	
014616		
014716	Group 2 Waveform Generation Register 3 (G2PO3)	261
014816		∠0 I
014916	Group 2 Waveform Generation Register 4 (G2PO4)	
014A ₁₆		
014B ₁₆	Group 2 Waveform Generation Register 5 (G2PO5)	
014C ₁₆		
014D16	Group 2 Waveform Generation Register 6 (G2PO6)	
014E ₁₆		
014F16	Group 2 Waveform Generation Register 7 (G2PO7)	

Address	Register	Page
015016	Group 2 Waveform Generation Control Register 0 (G2POCR0)	
015116	Group 2 Waveform Generation Control Register 1 (G2POCR1)	
015216	Group 2 Waveform Generation Control Register 2 (G2POCR2)	
015316	Group 2 Waveform Generation Control Register 3 (G2POCR3)	260
015416	Group 2 Waveform Generation Control Register 4 (G2POCR4)	200
015516	Group 2 Waveform Generation Control Register 5 (G2POCR5)	
015616	Group 2 Waveform Generation Control Register 6 (G2POCR6)	
015716	Group 2 Waveform Generation Control Register 7 (G2POCR7)	
015816		
015916		
015A16		
015B ₁₆		
015C16		
015D16		
015E16		
015F16		
016016		
016116	Group 2 Base Timer Register (G2BT)	253
016216	Group 2 Base Timer Control Register 0 (G2BCR0)	
016316	Group 2 Base Timer Control Register 1 (G2BCR1)	255
016416	Base Timer Start Register (BTSR)	257
016516	Zuoo Timio. Giant riogistor (Z 1911)	
016616	Group 2 Function Enable Register (G2FE)	262
016716	Group 2 RTP Output Buffer Register (G2RTP)	263
016816	Croup 2 TVTT Catput Barret Trogrator (CETVTT)	
016916		
016A ₁₆	Group 2 SI/O Communication Mode Register (G2MR)	
016B ₁₆	Group 2 SI/O Communication Control Register (G2CR)	307
016C16	Croup 2 01/0 Communication Control Register (C2017)	
016D16	Group 2 SI/O Transmit Buffer Register (G2TB)	
016E16		306
016F16	Group 2 SI/O Receive Buffer Register (G2RB)	
017016		
017016	Group 2 IEBus Address Register (IEAR)	308
017116	Group 2 IEBus Control Register (IECR)	300
017216	Group 2 IEBus Control Register (IECR) Group 2 IEBus Transmit Interrupt Cause Detect Register (IETIF)	
017316	Group 2 IEBus Receive Interrupt Cause Detect Register (IERIF)	309
017416	Croup 2 ILDUS Neceive IIIIeirupi Cause Delect Negister (IERIF)	
017516		
017616		
	Input Function Colort Posicios (IDC)	202
017816	Input Function Select Register (IPS)	383
017916	Consum 2 CI/O Communication Made Basician (COMB)	
017A16	Group 3 SI/O Communication Mode Register (G3MR)	318
017B ₁₆	Group 3 SI/O Communication Control Register (G3CR)	
017C16	Group 3 SI/O Transmit Buffer Register (G3TB)	
017D16	,	317
017E16	Group 3 SI/O Receive Buffer Register (G3RB)	
017F16		

Blank spaces are reserved. No access is allowed.

Address	Register	Page
018016	Croup 2 Wayeform Congration Register 0 (C2RO0)	
018116	Group 3 Waveform Generation Register 0 (G3PO0)	
018216	Crown 2 Wayefarm Consention Register 4 (C2RO1)	
018316	Group 3 Waveform Generation Register 1 (G3PO1)	
018416	Crown 2 Wayeform Consention Register 2 (C2RO2)	
018516	Group 3 Waveform Generation Register 2 (G3PO2)	
018616	Crawa 2 Wayafarra Cananatian Bariston 2 (C2BC2)	
018716	Group 3 Waveform Generation Register 3 (G3PO3)	261
018816	Crawa 2 Wayafara Cananatian Baristan 4 (C2BC4)	_0.
018916	Group 3 Waveform Generation Register 4 (G3PO4)	
018A16	Craws 2 Waysfarm Consenting Bariston E (C2BOE)	
018B16	Group 3 Waveform Generation Register 5 (G3PO5)	
018C16	Construction Desirator (CORDO)	
018D16	Group 3 Waveform Generation Register 6 (G3PO6)	
018E ₁₆	Constant 2 Wasseferms Constant Desister 7 (C2DO7)	
018F16	Group 3 Waveform Generation Register 7 (G3PO7)	
019016	Group 3 Waveform Generation Control Register 0 (G3POCR0)	
019116	Group 3 Waveform Generation Control Register 1 (G3POCR1)	
019216	Group 3 Waveform Generation Control Register 2 (G3POCR2)	
019316	Group 3 Waveform Generation Control Register 3 (G3POCR3)	260
019416	Group 3 Waveform Generation Control Register 4 (G3POCR4)	200
019516	Group 3 Waveform Generation Control Register 5 (G3POCR5)	
019616	Group 3 Waveform Generation Control Register 6 (G3POCR6)	
019716	Group 3 Waveform Generation Control Register 7 (G3POCR7)	
019816		
019916	Group 3 Waveform Generation Mask Register 4 (G3MK4)	
019A ₁₆		
019B16	Group 3 Waveform Generation Mask Register 5 (G3MK5)	261
019C16		201
019D16	Group 3 Waveform Generation Mask Register 6 (G3MK6)	
019E ₁₆		
019F ₁₆	Group 3 Waveform Generation Mask Register 7 (G3MK7)	
01A016	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
01A116	Group 3 Base Timer Register (G3BT)	253
01A216	Group 3 Base Timer Control Register 0 (G3BCR0)	
01A316	Group 3 Base Timer Control Register 1 (G3BCR1)	256
01A416		
01A516		
01A616	Group 3 Function Enable Register 1 (G3FE)	262
01A716	Group 3 RTP Output Buffer Register 1 (G3RTP)	263
01A816		
01A916		
01AA16		
01AB16		
01AC16		
01AD16	Group 3 SI/O Communication Flag Register (G3FLG)	319
01AE16		
01AF16		

Address	Register	Page
01B016		
01B116		
01B216		
01B316		
01B416		
01B516		
01B616		
01B716		
01B816		
01B916		
01BA ₁₆		
01BB16		
01BC16		
01BD16		
01BE16		
01BF16		
01C016		
01C016	A/D1 Register 0 (AD10)	
01C216		
01C316	A/D1 Register 1 (AD11)	
01C416		
01C516	A/D1 Register 2 (AD12)	
01C616		
01C716	A/D1 Register 3 (AD13)	
01C716		233
01C916	A/D1 Register 4 (AD14)	
01CA ₁₆		
01CB ₁₆	A/D1 Register 5 (AD15)	
01CC16		
01CD16	A/D1 Register 6 (AD16)	
01CE16		
01CF16	A/D1 Register 7 (AD17)	
01D016		
01D016		
01D116		
01D216		
01D316	A/D1 Control Register 2 (AD1CON2)	233
01D416	7001 Control Register 2 (ADTOON2)	200
01D316	A/D1 Control Register 0 (AD1CON0)	231
01D016	A/D1 Control Register 1 (AD1CON1)	232
01D716	// Control Register 1 (AD100141)	202
01D016		
01D916		
01DA16		
01DB16		
01DC16		
01DD16		
01DF16		

Address	Register	Page
01E016	CAN0 Message Slot Buffer 0 Standard ID0 (C0SLOT0_0)	050
01E116	CAN0 Message Slot Buffer 0 Standard ID1 (C0SLOT0_1)	350
01E216	CAN0 Message Slot Buffer 0 Extended ID0 (C0SLOT0_2)	254
01E316	CAN0 Message Slot Buffer 0 Extended ID1 (C0SLOT0_3)	351
01E416	CAN0 Message Slot Buffer 0 Extended ID2 (C0SLOT0_4)	050
01E516	CAN0 Message Slot Buffer 0 Data Length Code (C0SLOT0_5)	352
01E616	CAN0 Message Slot Buffer 0 Data 0 (C0SLOT0_6)	
01E7 ₁₆	CAN0 Message Slot Buffer 0 Data 1 (C0SLOT0_7)	
01E816	CAN0 Message Slot Buffer 0 Data 2 (C0SLOT0_8)	
01E916	CAN0 Message Slot Buffer 0 Data 3 (C0SLOT0_9)	
01EA ₁₆	CAN0 Message Slot Buffer 0 Data 4 (C0SLOT0_10)	050
01EB ₁₆	CAN0 Message Slot Buffer 0 Data 5 (C0SLOT0_11)	353
01EC16	CAN0 Message Slot Buffer 0 Data 6 (C0SLOT0_12)	
01ED16	CAN0 Message Slot Buffer 0 Data 7 (C0SLOT0_13)	
01EE16	CAN0 Message Slot Buffer 0 Time Stamp High-Order (C0SLOT0_14)	
01EF16	CAN0 Message Slot Buffer 0 Time Stamp Low-Order (C0SLOT0_15)	
01F016	CAN0 Message Slot Buffer 1 Standard ID0 (C0SLOT1_0)	0.50
01F116	CAN0 Message Slot Buffer 1 Standard ID1 (C0SLOT1_1)	350
01F216	CAN0 Message Slot Buffer 1 Extended ID0 (C0SLOT1_2)	054
01F316	CAN0 Message Slot Buffer 1 Extended ID1 (C0SLOT1_3)	351
01F416	CAN0 Message Slot Buffer 1 Extended ID2 (C0SLOT1_4)	0.50
01F516	CAN0 Message Slot Buffer 1 Data Length Code (C0SLOT1_5)	352
01F616	CAN0 Message Slot Buffer 1 Data 0 (C0SLOT1_6)	
01F7 ₁₆	CAN0 Message Slot Buffer 1 Data 1 (C0SLOT1_7)	
01F816	CAN0 Message Slot Buffer 1 Data 2 (C0SLOT1_8)	
01F9 ₁₆	CAN0 Message Slot Buffer 1 Data 3 (C0SLOT1_9)	
01FA ₁₆	CAN0 Message Slot Buffer 1 Data 4 (C0SLOT1_10)	0.50
01FB ₁₆	CAN0 Message Slot Buffer 1 Data 5 (C0SLOT1_11)	353
01FC16	CAN0 Message Slot Buffer 1 Data 6 (C0SLOT1_12)	
01FD16	CAN0 Message Slot Buffer 1 Data 7 (C0SLOT1_13)	
01FE ₁₆	CAN0 Message Slot Buffer 1 Time Stamp High-Order (C0SLOT1_14)	
01FF16	CAN0 Message Slot Buffer 1 Time Stamp Low-Order (C0SLOT1_15)	
020016	OANIO O a start Da sistera (OOOTI DO)	000
020116	CAN0 Control Register0 (C0CTLR0)	326
020216	CANO Ctatus Baristan (COCTD)	224
020316	CAN0 Status Register (C0STR)	331
020416	CANO Extended ID Projector (COIDD)	200
020516	CAN0 Extended ID Register (C0IDR)	333
020616	CANO Configuration Position (CCCOND)	224
020716	CAN0 Configuration Register (C0CONR)	334
020816	CANO Timo Stomp Bogister (COTSD)	
020916	CAN0 Time Stamp Register (C0TSR)	336
020A16	CAN0 Transmit Error Count Register (C0TEC)	
020B16	CAN0 Receive Error Count Register (C0REC)	337
020C16	CANO Slot Interrupt Status Desister (COSISTE)	220
020D16	CAN0 Slot Interrupt Status Register (C0SISTR)	338
020E16		
020F16		

021016 021116 021216 021216 021216 021318 021410 021410 021516 021410 021516 021710 021616 021711 021816 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 021916 022116 022116 022216 022216 022216 022216 022216 022216 022216 022216 022217 022210 023210 023310	Address	Register	Page
021116 021216 021316 021316 021416 CAN0 Error Interrupt Mask Register (COEIMKR) 341 021516 CAN0 Error Interrupt Status Register (COEISTR) 342 021616 021716 CAN0 Baud Rate Prescaler (COBPR) 337 021816 021916 021916 0211816 021916 0211816 0211816 0211816 0211816 0211816 0211816 0211816 0211816 0211816 0211816 0211816 02121816 02121816 02121816 02221816 023181 02408 CAN0 Global Mask Register Standard ID1 (COGMR2) 022818 CAN0 Global Mask Register Extended ID0 (COGMR2) 022818 CAN0 Global Mask Register Extended ID1 (COGMR3) 022C16 CAN0 Global Mask Register Extended ID1 (COGMR3) 022D16 022D16 022D16 023016 02AN0 Global Mask Register A Standard ID1 (COGMR4) 023016 CAN0 Message Slot 0 Control Register (COMCTL0)/ CAN0 Local Mask Register A Standard ID1 (COLMAR0) 343 023016 CAN0 Message Slot 1 Control Register (COMCTL1)/ CAN0 Local Mask Register A Standard ID1 (COLMAR1) 023316 CAN0 Message Slot 2 Control Register (COMCTL2)/ CAN0 Local Mask Register A Extended ID1 (COLMAR3) 023316 CAN0 Message Slot 3 Control Register (COMCTL2)/ CAN0 Local Mask Register A Extended ID1 (COLMAR3) 023316 CAN0 Message Slot 4 Control Register (COMCTL2)/ CAN0 Local Mask Register A Extended ID1 (COLMAR3) 023316 CAN0 Message Slot 5 Control Register (COMCTL4)/ CAN0 Local Mask Register A Extended ID2 (COLMAR4) 023316 CAN0 Message Slot 5 Control Register (COMCTL5)/ CAN0 Local Mask Register A Extended ID2 (COLMAR4) 023316 CAN0 Message Slot 5 Control Register (COMCTL5)/ CAN0 Message Slot 6 Control Register (COMCTL5)/ CAN0 Message Slot 7 Control Register (COMCTL5)/ CAN0 Message Slot 7 Control Register (COMCTL5)/ CAN0 Message Slot 8 Control Register (COMCTL8)/ 023616 CAN0 Message Slot 8 Control Register (COMCTL8)/ 023616 CAN0 Message Slot 8 Control Register (COMCTL8)/	021016	CANO Clat Interrupt Mosk Degister (COSIMICD)	240
021316 CAN0 Error Interrupt Mask Register (C0EIMKR) 341 021516 CAN0 Error Interrupt Status Register (C0EISTR) 342 021616 CAN0 Baud Rate Prescaler (C0BPR) 337 021816 021916 021416 021916 021416 021816 021B16 021616 021616 021D16 021616 021616 021D16 021616 021716 022116 022116 022116 022216 02216 022216 022316 022416 022316 022416 022516 022516 022516 CAN0 Global Mask Register Standard ID1 (C0GMR0) 343 022916 CAN0 Global Mask Register Extended ID2 (C0GMR1) 344 022916 CAN0 Global Mask Register Extended ID1 (C0GMR2) 345 02216 CAN0 Global Mask Register Extended ID1 (C0GMR2) 345 02216 CAN0 Global Mask Register Extended ID1 (C0GMR2) 345 02216 CAN0 Global Mask Register Extended ID1 (C0GMR3) 345 02216 CAN0 Mossage Slot 1 Control Register (C0MCT	021116	CANO Slot Interrupt Mask Register (Coshvikk)	340
021416 CANO Error Interrupt Mask Register (COEIMKR) 341 021516 CANO Error Interrupt Status Register (COEISTR) 342 021616	021216		
021516 CANO Error Interrupt Status Register (COEISTR) 342 021616 CANO Baud Rate Prescaler (COBPR) 337 021816 021916 021816 021916 021A16 021B16 021B16 021C16 021C16 021C16 021D16 021E16 021E16 02216 022216 022316 022216 022316 022216 022316 022216 022316 022516 022516 022516 022616 022716 022816 022716 022816 022616 022716 022816 020018 343 344 022916 02400 Global Mask Register Standard ID0 (COGMR0) 343 344 022916 02N0 Global Mask Register Extended ID0 (COGMR2) 344 022B16 02N0 Global Mask Register Extended ID1 (COGMR3) 345 022E16 022E16 020E16 022E16	021316		
021616 CANO Baud Rate Prescaler (COBPR) 337 021816 021916 337 021816 021916 021446 021416 021816 021516 021D16 021E16 021F16 02216 022116 022216 022216 022318 022416 022216 022516 022516 022216 022716 022816 022816 CANO Global Mask Register Standard ID0 (COGMRQ) 343 022916 CANO Global Mask Register Extended ID0 (COGMR2) 344 022916 CANO Global Mask Register Extended ID1 (COGMR3) 345 02216 CANO Global Mask Register Extended ID2 (COGMR4) 345 02216 CANO Global Mask Register Extended ID2 (COGMR4) 345 02216 CANO Global Mask Register Extended ID2 (COGMR4) 345 02216 CANO Global Mask Register Extended ID2 (COMR4) 345 02216 CANO Global Mask Register A Standard ID0 (COLMAR0) 343 02316 CANO Message Slot 1 Control Register (COMCTL1)/ CANO Local Mask Register A Extended ID2 (COLMAR1) 346/ CANO Local Ma	021416	CAN0 Error Interrupt Mask Register (C0EIMKR)	341
021716	021516	CAN0 Error Interrupt Status Register (C0EISTR)	342
021816 021916 02116 02116 02116 02116 02116 02116 02116 02116 02116 02116 022116 022216 022316 022316 022316 022416 022516 022516 022616 022716 022816 CANO Global Mask Register Standard ID0 (COGMRO) 343 022916 CANO Global Mask Register Extended ID1 (COGMR1) 02216 02216 022716 022216 022316 022616 022716 022616 022716 022816 CANO Global Mask Register Standard ID1 (COGMR1) 022616 022616 022616 022616 022616 022616 022616 022616 026616 0	021616		
021916	021716	CAN0 Baud Rate Prescaler (C0BPR)	337
021A16	021816		
021B16	021916		
021C16	021A16		
021D16 021E16 022I16 022116 022216 022216 022316 022216 022316 022416 022516 022516 022616 022716 022616 022716 022816 CANO Global Mask Register Standard ID0 (COGMRO) 343 022916 CANO Global Mask Register Standard ID1 (COGMR1) 022A16 CANO Global Mask Register Extended ID0 (COGMR2) 022B16 CANO Global Mask Register Extended ID0 (COGMR2) 022B16 CANO Global Mask Register Extended ID2 (COGMR4) 022D16 CANO Global Mask Register Extended ID2 (COGMR4) 022D16 022E16 022E16 022E16 023016 CANO Message Slot 0 Control Register (COMCTL0)/ CANO Local Mask Register A Standard ID0 (COLMAR0) 343 023116 CANO Message Slot 1 Control Register (COMCTL1)/ CANO Local Mask Register A Standard ID1 (COLMAR1) 023216 CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended ID0 (COLMAR2) 023316 CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) 345 023416 CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) 023516 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 6 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL8) 023616 CANO Message Slot 8 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL8) 023616 CANO Messa	021B ₁₆		
021E16 022I16 022216 022216 022316 022416 022516 022516 022516 022516 022516 022616 022716 022816 022716 022816 CANO Global Mask Register Standard ID0 (COGMR0) 343 022916 CANO Global Mask Register Standard ID1 (COGMR1) 022A16 CANO Global Mask Register Extended ID0 (COGMR2) 022B16 CANO Global Mask Register Extended ID1 (COGMR3) 022C16 CANO Global Mask Register Extended ID2 (COGMR4) 022D16 022E16 022E16 022E16 022E16 023016 CANO Message Slot 0 Control Register (COMCTL0)/ CANO Local Mask Register A Standard ID0 (COLMAR0) 343 023116 CANO Message Slot 1 Control Register (COMCTL1)/ CANO Local Mask Register A Standard ID1 (COLMAR1) 023216 CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended ID0 (COLMAR2) 023316 CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) 345 023416 CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) 345 023416 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 6 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL5) 023616 CANO Message Slot 7 Control Register (COMCTL5) 023616 CANO Message Slot 8 Control Register (COMCTL8) 023616 CANO	021C ₁₆		
022116 022116 022216 022216 022316 022316 022316 022416 022516 022516 022516 022516 022616 022716 022816 CANO Global Mask Register Standard ID0 (C0GMR0) 343 022916 CANO Global Mask Register Extended ID0 (C0GMR1) 022A16 CANO Global Mask Register Extended ID0 (C0GMR2) 022B16 CANO Global Mask Register Extended ID1 (C0GMR3) 022C16 CANO Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022E16 022E16 023016 CANO Message Slot 0 Control Register (C0MCTL0)/ CANO Local Mask Register A Standard ID0 (C0LMAR0) 343 023116 CANO Message Slot 1 Control Register (C0MCTL1)/ CANO Local Mask Register A Standard ID1 (C0LMAR1) 023216 CANO Message Slot 2 Control Register (C0MCTL2)/ CANO Local Mask Register A Extended ID0 (C0LMAR2) 023316 CANO Message Slot 3 Control Register (C0MCTL3)/ CANO Local Mask Register A Extended ID1 (C0LMAR3) 023416 CANO Message Slot 4 Control Register (C0MCTL4)/ CANO Local Mask Register A Extended ID2 (C0LMAR4) 023416 CANO Message Slot 5 Control Register (C0MCTL5)/ CANO Local Mask Register A Extended ID2 (C0LMAR4) 023516 CANO Message Slot 5 Control Register (C0MCTL5) 023616 CANO Message Slot 6 Control Register (C0MCTL5) 023616 CANO Message Slot 7 Control Register (C0MCTL5) 023616 CANO Message Slot 7 Control Register (C0MCTL5) 023616 CANO Message Slot 8 Control Register (C0MCTL5) 023616 CANO Message Slot 7 Control Register (C0MCTL5) 023616 CANO Message Slot 8 Control Register (C0MCTL8) 023616 CANO Message Slot 8 Control Register (C0MC	021D16		
022016	021E ₁₆		
022116	021F16		
022216 022316 022416 022516 022516 022616 022716 022716 022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 343 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 344 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 345 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 345 022D16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 345 022D16 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 346/ 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 346/ 346/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 346/ 346/ 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 346/ 346/ 023416 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 346/ 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 346/ 346/ 023716 CAN0 Message Slot 7 Control Register (C0MCTL5)	022016		
022416 022416 022516 022616 022716 022816 CANO Global Mask Register Standard ID0 (C0GMR0) 343 022916 CANO Global Mask Register Standard ID1 (C0GMR1) 022A16 CANO Global Mask Register Extended ID1 (C0GMR2) 022B16 CANO Global Mask Register Extended ID1 (C0GMR3) 022C16 CANO Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022E16 023016 CANO Message Slot 0 Control Register (C0MCTL0)/ CANO Local Mask Register A Standard ID0 (C0LMAR0) 343 023116 CANO Message Slot 1 Control Register (C0MCTL1)/ CANO Local Mask Register A Standard ID1 (C0LMAR1) 023216 CANO Message Slot 2 Control Register (C0MCTL2)/ CANO Local Mask Register A Extended ID0 (C0LMAR2) 023316 CANO Message Slot 3 Control Register (C0MCTL3)/ CANO Local Mask Register A Extended ID1 (C0LMAR3) 023416 CANO Message Slot 4 Control Register (C0MCTL4)/ CANO Local Mask Register A Extended ID2 (C0LMAR4) 023516 CANO Message Slot 5 Control Register (C0MCTL5) 023616 CANO Message Slot 6 Control Register (C0MCTL6) 023716 CANO Message Slot 7 Control Register (C0MCTL7) 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 7 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023716 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0MCTL8)/ 346/ 023816 CANO Message Slot 8 Control Register (C0M	022116		
022516 022516 022516 022516 022716 022716 022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 343 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL5) 023616 CAN0 Message Slot 7 Control Register (C0MCTL5) 023716 CAN0 Message Slot 8 Control Register (C0MCTL5) 023716 CAN0 Message Slot 7 Control Register (C0MCTL5) 023716 CAN0 Message Slot 8 Control Register (C0MCTL8) 023716 CAN0 Message Slot 8 Control Register (C0MCTL8) 023716 CAN0 Message Slot 8 Control Register (C0MCTL8) 023816	022216		
022516 022616 022716 022816 022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 343 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 344 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 344 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 345 022D16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 345 022D16 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 346/ 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 346/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 346/ 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ 346/ 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 6 Control Register (C0MCTL5) 346/ 346/	022316		
022616 022716 022716 022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 343 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 344 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 344 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 345 022D16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 345 022D16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 346/ 022E16 CAN0 Local Mask Register Extended ID2 (C0LMAR0) 346/ 023016 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 023116 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 023216 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345 023316 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 023416 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 023516 CAN0 Message Slot 6 Control Register (C0MCTL5) 346/ 023616 CAN0 Message Slot 7 Contro	022416		
022716 022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 343 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 344 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 344 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 345 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 345 022D16 022E16 022E16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 346/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 2023316 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ 346/ 2023416 023416 CAN0 Message Slot 5 Control Register (C0MCTL5)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 2023616 023616 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 2023616 023716 CAN0 Message Slot 6 Control Register (C0MCTL5) 346/ 2023616 023716 CAN0 Message Slot 7 Control Regi	022516		
022816 CAN0 Global Mask Register Standard ID0 (C0GMR0) 022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 023316 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023416 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL7) 023816 CAN0 Message Slot 7 Control Register (C0MCTL7)	022616		
022916 CAN0 Global Mask Register Standard ID1 (C0GMR1) 022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 023316 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023416 CAN0 Message Slot 5 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 023716 CAN0 Message Slot 7 Control Register (C0MCTL7)	022716		
022A16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 022B16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023216 CAN0 Message Slot 3 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR2) 023316 CAN0 Message Slot 4 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 023716 CAN0 Message Slot 7 Control Register (C0MCTL7)	022816	CAN0 Global Mask Register Standard ID0 (C0GMR0)	343
022B16 CAN0 Global Mask Register Extended ID0 (C0GMR2) 022C16 CAN0 Global Mask Register Extended ID1 (C0GMR3) 022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023216 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 023316 CAN0 Message Slot 4 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023416 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 023716 CAN0 Message Slot 7 Control Register (C0MCTL7)	022916	CAN0 Global Mask Register Standard ID1 (C0GMR1)	0.4.4
022C16 CAN0 Global Mask Register Extended ID2 (C0GMR4) 022D16 022E16 022F16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 346/ 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 346/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ 346/ 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 6 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 7 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 8 Control Register (C0MCTL5) 346/ 346/	022A16	CAN0 Global Mask Register Extended ID0 (C0GMR2)	344
022C16 CANO Global Mask Register Extended ID2 (COGMR4) 022D16 022E16 022F16 023016 CANO Message Slot 0 Control Register (COMCTL0)/ CANO Local Mask Register A Standard ID0 (COLMAR0) 343 023116 CANO Message Slot 1 Control Register (COMCTL1)/ CANO Local Mask Register A Standard ID1 (COLMAR1) 344/ 023216 CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended ID0 (COLMAR2) 023316 CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) 345/ 023416 CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) 023516 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 6 Control Register (COMCTL6) 023716 CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 7 Control Register (COMCTL7) 023816 CANO Message Slot 8 Control Register (COMCTL5) 023816 CANO Message Slot 8 Control Register (COMCTL8)/	022B16	CAN0 Global Mask Register Extended ID1 (C0GMR3)	0.45
022E16 022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 346/ 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 346/ 346/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 346/ 346/ 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ 346/ 346/ 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 6 Control Register (C0MCTL5) 346/ 346/ 023716 CAN0 Message Slot 7 Control Register (C0MCTL7) 346/ 346/	022C16	CAN0 Global Mask Register Extended ID2 (C0GMR4)	345
022F16 023016 CAN0 Message Slot 0 Control Register (C0MCTL0)/ CAN0 Local Mask Register A Standard ID0 (C0LMAR0) 343 023116 CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023416 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL5) 023716 CAN0 Message Slot 7 Control Register (C0MCTL6) 023716 CAN0 Message Slot 8 Control Register (C0MCTL7)	022D16		
CANO Message Slot 0 Control Register (COMCTL0)/ CANO Local Mask Register A Standard ID0 (COLMAR0) CANO Local Mask Register A Standard ID0 (COLMAR0) CANO Local Mask Register A Standard ID1 (COLMAR1) CANO Local Mask Register A Standard ID1 (COLMAR1) CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended ID0 (COLMAR2) CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) CANO Message Slot 5 Control Register (COMCTL5) CANO Message Slot 5 Control Register (COMCTL5) CANO Message Slot 6 Control Register (COMCTL6) CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL8)/	022E16		
023016CAN0 Local Mask Register A Standard ID0 (C0LMAR0)343023116CAN0 Message Slot 1 Control Register (C0MCTL1)/ CAN0 Local Mask Register A Standard ID1 (C0LMAR1)344/023216CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2)346/023316CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3)345023416CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4)346/023516CAN0 Message Slot 5 Control Register (C0MCTL5)346023616CAN0 Message Slot 6 Control Register (C0MCTL6)346023716CAN0 Message Slot 7 Control Register (C0MCTL7)346/023816CAN0 Message Slot 8 Control Register (C0MCTL8)/346/	022F16		
CANO Local Mask Register A Standard IDO (COLMARO) O23116 CANO Message Slot 1 Control Register (COMCTL1)/ CANO Local Mask Register A Standard ID1 (COLMAR1) O23216 CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended IDO (COLMAR2) CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) O23316 CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) O23416 CANO Message Slot 5 Control Register (COMCTL5) O23616 CANO Message Slot 6 Control Register (COMCTL6) O23716 CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL8)/ O23816	0000	CAN0 Message Slot 0 Control Register (C0MCTL0)/	346/
023116 CAN0 Local Mask Register A Standard ID1 (C0LMAR1) 344/ 023216 CAN0 Message Slot 2 Control Register (C0MCTL2)/ CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 346/ 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345/ 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346/ 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 346 023716 CAN0 Message Slot 7 Control Register (C0MCTL7) 346/ 023816 CAN0 Message Slot 8 Control Register (C0MCTL8)/ 346/	023016	CAN0 Local Mask Register A Standard ID0 (C0LMAR0)	343
CANO Local Mask Register A Standard ID1 (COLMAR1) O23216 CANO Message Slot 2 Control Register (COMCTL2)/ CANO Local Mask Register A Extended ID0 (COLMAR2) O23316 CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) O23416 CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) O23516 CANO Message Slot 5 Control Register (COMCTL5) O23616 CANO Message Slot 6 Control Register (COMCTL6) O23716 CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL7) O23816	000446	CAN0 Message Slot 1 Control Register (C0MCTL1)/	
023216 CAN0 Local Mask Register A Extended ID0 (C0LMAR2) 023316 CAN0 Message Slot 3 Control Register (C0MCTL3)/ CAN0 Local Mask Register A Extended ID1 (C0LMAR3) 345 023416 CAN0 Message Slot 4 Control Register (C0MCTL4)/ CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 346/ 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 346 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 346 023716 CAN0 Message Slot 7 Control Register (C0MCTL7) 346/ 023816 CAN0 Message Slot 8 Control Register (C0MCTL8)/ 346/	023116	CAN0 Local Mask Register A Standard ID1 (C0LMAR1)	344/
CANO Local Mask Register A Extended IDD (COLMAR2) CANO Message Slot 3 Control Register (COMCTL3)/ CANO Local Mask Register A Extended ID1 (COLMAR3) CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) CANO Message Slot 5 Control Register (COMCTL5) CANO Message Slot 6 Control Register (COMCTL6) CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL8)/	000046	CAN0 Message Slot 2 Control Register (C0MCTL2)/	346/
O23316 CANO Local Mask Register A Extended ID1 (C0LMAR3) O23416 CANO Message Slot 4 Control Register (C0MCTL4)/ CANO Local Mask Register A Extended ID2 (C0LMAR4) O23516 CANO Message Slot 5 Control Register (C0MCTL5) O23616 CANO Message Slot 6 Control Register (C0MCTL6) O23716 CANO Message Slot 7 Control Register (C0MCTL7) CANO Message Slot 8 Control Register (C0MCTL8)/ O23816	023216	CAN0 Local Mask Register A Extended ID0 (C0LMAR2)	
CANO Local Mask Register A Extended ID1 (COLMAR3) 345 CANO Message Slot 4 Control Register (COMCTL4)/ CANO Local Mask Register A Extended ID2 (COLMAR4) 023516 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 6 Control Register (COMCTL6) 023716 CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL8)/ 023816	000046	CAN0 Message Slot 3 Control Register (C0MCTL3)/	
023416 CAN0 Local Mask Register A Extended ID2 (C0LMAR4) 023516 CAN0 Message Slot 5 Control Register (C0MCTL5) 023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 023716 CAN0 Message Slot 7 Control Register (C0MCTL7) CAN0 Message Slot 8 Control Register (C0MCTL8)/ 023816	023316	CAN0 Local Mask Register A Extended ID1 (C0LMAR3)	345
CANO Local Mask Register A Extended ID2 (COLMAR4) 023516 CANO Message Slot 5 Control Register (COMCTL5) 023616 CANO Message Slot 6 Control Register (COMCTL6) 023716 CANO Message Slot 7 Control Register (COMCTL7) CANO Message Slot 8 Control Register (COMCTL8)/ 023816	0004	CAN0 Message Slot 4 Control Register (C0MCTL4)/	346/
023616 CAN0 Message Slot 6 Control Register (C0MCTL6) 346 023716 CAN0 Message Slot 7 Control Register (C0MCTL7) CAN0 Message Slot 8 Control Register (C0MCTL8)/ 346/	023416	CAN0 Local Mask Register A Extended ID2 (C0LMAR4)	
023716 CAN0 Message Slot 7 Control Register (C0MCTL7) CAN0 Message Slot 8 Control Register (C0MCTL8)/ 346/	023516	CAN0 Message Slot 5 Control Register (C0MCTL5)	
CANO Message Slot 8 Control Register (C0MCTL8)/ 346/	023616	CAN0 Message Slot 6 Control Register (C0MCTL6)	346
1023846	023716	CAN0 Message Slot 7 Control Register (C0MCTL7)	
CANO Local Mask Register B Standard ID0 (C0LMBR0) 343	022012	CAN0 Message Slot 8 Control Register (C0MCTL8)/	346/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U23816	CAN0 Local Mask Register B Standard ID0 (C0LMBR0)	343

Blank spaces are reserved. No access is allowed.

Δ.1.1	5	
Address	Register	Page
023916	CANO Message Slot 9 Control Register (COMCTL9)/	
	CANO Local Mask Register B Standard ID1 (C0LMBR1)	344
023A16	CANO Message Slot 10 Control Register (COMCTL10)/	346/
	CAN0 Local Mask Register B Extended ID0 (C0LMBR2)	
023B16	CAN0 Message Slot 11 Control Register (C0MCTL11)/	
	CAN0 Local Mask Register B Extended ID1 (C0LMBR3)	345
023C16	CAN0 Message Slot 12 Control Register (C0MCTL12)/	346/
020010	CAN0 Local Mask Register B Extended ID2 (C0LMBR4)	
023D16	CAN0 Message Slot 13 Control Register (C0MCTL13)	
023E16	CAN0 Message Slot 14 Control Register (C0MCTL14)	346
023F16	CAN0 Message Slot 15 Control Register(C0MCTL15)	
024016	CAN0 Slot Buffer Select Register (C0SBS)	349
024116	CAN0 Control Register 1 (C0CTLR1)	329
024216	CAN0 Sleep Control Register (C0SLPR)	330
024316		
024416 024516	CAN0 Acceptance Filter Support Register (C0AFS)	354
02.0.0		

Address	Register	Page
02C016	VO Bogistor VO Bogistor (VOB VOB)	
02C116	X0 Register Y0 Register (X0R,Y0R)	
02C216	VA Desister VA Desister (VAD VAD)	
02C316	X1 Register Y1 Register (X1R,Y1R)	
02C416	VO De sistem VO De sistem (VOD VOD)	
02C516	X2 Register Y2 Register (X2R,Y2R)	
02C616	Vo De sistem Vo De sistem (VOD VOD)	
02C716	X3 Register Y3 Register (X3R,Y3R)	
02C816	VA Decistor VA Decistor (VAD VAD)	
02C916	X4 Register Y4 Register (X4R,Y4R)	
02CA16	VE De sistem VE De sistem (VED VED)	
02CB16	X5 Register Y5 Register (X5R,Y5R)	
02CC16	Vo B Vo B (VoB VoB)	
02CD16	X6 Register Y6 Register (X6R,Y6R)	
02CE16	V7 D (V7 D (V7 D	
02CF16	X7 Register Y7 Register (X7R,Y7R)	0.40
02D016	V6 5 1 1 1 (4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	246
02D116	X8 Register Y8 Register (X8R,Y8R)	
02D216		
02D316	X9 Register Y9 Register (X9R,Y9R)	
02D416		
02D516	X10 Register Y10 Register (X10R,Y10R)	
02D616		
02D716	X11 Register Y11 Register (X11R,Y11R)	
02D816	W. D. J. W. D. J. W. W. D. W.	
02D916	X12 Register Y12 Register (X12R,Y12R)	
02DA16	W. D. J. W. D. J. W. W. D. W.	
02DB16	X13 Register Y13 Register (X13R,Y13R)	
02DC16	V44 B V44 B (V44 B V44 B)	
02DD16	X14 Register Y14 Register (X14R,Y14R)	
02DE16		
02DF16	X15 Register Y15 Register (X15R,Y15R)	
02E016	XY Control Register (XYC)	245
02E116		
02E216		
02E316		
02E416	UART1 Special Mode Register 4 (U1SMR4)	180
02E516	UART1 Special Mode Register 3 (U1SMR3)	179
02E616	UART1 Special Mode Register 2 (U1SMR2)	178
02E716	UART1 Special Mode Register (U1SMR)	177
02E816	UART1 Transmit/Receive Mode Register (U1MR)	475
02E916	UART1 Baud Rate Register (U1BRG)	175
02EA16	WART - W. D. W. D. W. WINTEN	4
02EB ₁₆	UART1 Transmit Buffer Register (U1TB)	174
02EC ₁₆	UART1 Transmit/Receive Control Register 0 (U1C0)	176
02ED16	UART1 Transmit/Receive Control Register 1 (U1C1)	177
02EE16	WART D D	4
02EF16	6 UART1 Receive Buffer Register (U1RB)	174

Address	Register	Page
02F016		
02F116		
02F216		
02F316		
02F416	UART4 Special Mode Register 4 (U4SMR4)	180
02F516	UART4 Special Mode Register 3 (U4SMR3)	179
02F616	UART4 Special Mode Register 2 (U4SMR2)	178
02F716	UART4 Special Mode Register (U4SMR)	177
02F816	UART4 Transmit/Receive Mode Register (U4MR)	
02F916	UART4 Baud Rate Register (U4BRG)	175
02FA ₁₆		
02FB16	UART4 Transmit Buffer Register (U4TB)	174
02FC16	UART4 Transmit/Receive Control Register 0 (U4C0)	176
02FD16	UART4 Transmit/Receive Control Register 1 (U4C1)	177
02FE ₁₆		
02FF16	UART4 Receive Buffer Register (U4RB)	174
030016	Timer B3,B4,B5 Count Start Flag (TBSR)	154
030116		
030216		
030316	Timer A1-1 Register (TA11)	
030416		
030516	Timer A2-1 Register (TA21)	167
030616		
030716	Timer A4-1 Register (TA41)	
030816	Three-Phase PWM Control Register 0 (INVC0)	164
030916	Three-Phase PWM Control Register 1 (INVC1)	165
030A16	Three-Phase Output Buffer Register 0 (IDB0)	
030B16	Three-Phase Output Buffer Register 1 (IDB1)	166
030C16	Dead Time Timer (DTT)	
030D16	Timer B2 Interrupt Generation Frequency Set Counter (ICTB2)	167
030E16	, , , ,	
030F16		
031016		
031116	Timer B3 Register (TB3)	
031216		
031316	Timer B4 Register (TB4)	152
031416		
031516	Timer B5 Register (TB5)	
031616		
031716		
031816		
031916		
031A16		
031B ₁₆	Timer B3 Mode Register (TB3MR)	
031C ₁₆	Timer B4 Mode Register (TB4MR)	153
031D16	Timer B5 Mode Register (TB5MR)	
031E16		
031F16	External Interrupt Cause Select Register (IFSR)	105
L 10	======= (ii Oit)	.00

032016 032116 032216 032216 032216 032216 032216 032216 032216 032216 032216 032216 032216 032216 032516 UART3 Special Mode Register 3 (U3SMR3) 179 032616 UART3 Special Mode Register 2 (U3SMR2) 178 032716 UART3 Special Mode Register (U3SMR) 177 032816 UART3 Special Mode Register (U3SMR) 177 032816 UART3 Special Mode Register (U3BRG) 032216 UART3 Baud Rate Register (U3BRG) 174 032216 UART3 Transmit/Receive Mode Register 0 (U3C0) 176 032216 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032216 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032516 UART3 Receive Buffer Register (U3RB) 174 032516 UART3 Receive Buffer Register (U3RB) 174 033016 033016 033016 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033616 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Special Mode Register (U2SMR) 177 033616 UART2 Transmit/Receive Mode Register (U2MR) 033916 UART2 Paud Rate Register (U2BRG) 175 033616 UART2 Transmit/Receive Mode Register (U2C0) 176 033016 UART2 Transmit/Receive Control Register 0 (U2C0) 176 034016 Count Start Flag (TABSR) 137 034216 One-Shot Start Flag (TABSR) 138 034516 034616	Address	Register	Page
032216 032316 032416 UART3 Special Mode Register 4 (U3SMR4) 180 032516 UART3 Special Mode Register 3 (U3SMR3) 179 032616 UART3 Special Mode Register 2 (U3SMR2) 178 032716 UART3 Special Mode Register (U3SMR) 177 032616 UART3 Special Mode Register (U3SMR) 177 032816 UART3 Transmit/Receive Mode Register (U3MR) 032916 UART3 Transmit/Receive Mode Register (U3MR) 032616 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032616 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032616 UART3 Receive Buffer Register (U3RB) 174 033016 UART3 Receive Buffer Register 2 (U3SMR3) 178 033316 UART2 Special Mode Register 3 (U2SMR3) 179 033516 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register 2 (U2SMR3) 179 033616 UART2 Special Mode Register (U2SMR) 177 033616 UART2 Special Mode Register (U2SMR3) 179 033616 UART2 Special Mode Register (U2SMR3) 177 033616 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Transmit Buffer Register (U2BRG) 175 033016 UART2 Transmit Buffer Register (U2BRG) 176 033016 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033016 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033616 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033616 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034116 Up-Down Flag (UDF) 138 034316 Up-Down Flag (UDF) 138 034316 Up-Down Flag (UDF) 138 034916 Up-Down Flag (UDF) 13	032016		
032316 032416	032116		
032416 UART3 Special Mode Register 4 (U3SMR4) 180 032516 UART3 Special Mode Register 3 (U3SMR3) 179 032616 UART3 Special Mode Register 2 (U3SMR2) 178 032716 UART3 Special Mode Register (U3SMR) 177 032816 UART3 Transmit/Receive Mode Register (U3MR) 175 032916 UART3 Baud Rate Register (U3BRG) 174 032216 UART3 Transmit Buffer Register (U3TB) 174 032C16 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032E16 UART3 Receive Buffer Register (U3RB) 174 033016 UART3 Receive Buffer Register (U3RB) 174 033016 UART3 Receive Buffer Register (U3RB) 174 033016 UART2 Special Mode Register 3 (U2SMR4) 180 033516 UART2 Special Mode Register (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR2) 178 033716 UART2 Transmit/Receive Mode Register (U2MR) 175 033816 UART2 Transmit Buffer Register (U2BR) 175 <	032216		
032516 UART3 Special Mode Register 3 (U3SMR3) 179 032616 UART3 Special Mode Register 2 (U3SMR2) 178 032716 UART3 Special Mode Register (U3SMR) 177 032816 UART3 Transmit/Receive Mode Register (U3MR) 175 032916 UART3 Baud Rate Register (U3BRG) 175 032A16 UART3 Transmit Buffer Register (U3TB) 174 032C16 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032E16 UART3 Receive Buffer Register (U3RB) 174 033D16 UART3 Receive Buffer Register (U3RB) 174 033016 U3RT3 Receive Buffer Register (U3RB) 174 033016 U3RT3 Receive Buffer Register (U3RB) 174 033016 U3RT3 Receive Buffer Register (U2SMR3) 179 033516 U3RT2 Special Mode Register (U2SMR3) 179 033716 U3RT2 Special Mode Register (U2SMR) 177 033616 U3RT2 Transmit/Receive Mode Register (U2MR) 175 033916 U3RT2 Transmit Buffer Register (U2BRG) 175 <td>032316</td> <td></td> <td></td>	032316		
032616	032416	UART3 Special Mode Register 4 (U3SMR4)	180
032716	032516	UART3 Special Mode Register 3 (U3SMR3)	179
032816	032616	UART3 Special Mode Register 2 (U3SMR2)	178
032916	032716	UART3 Special Mode Register (U3SMR)	177
032916 UART3 Baud Rate Register (U3BRG) 032B16 UART3 Transmit Buffer Register (U3TB) 174 032C16 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032E16 032F16 UART3 Receive Buffer Register (U3RB) 174 033016 033016 174 033316 033116 174 033316 033216 174 033316 033416 180 033516 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register (U2SMR3) 179 033616 UART2 Special Mode Register (U2SMR) 177 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Transmit/Receive Mode Register (U2BRG) 175 033416 UART2 Transmit/Receive Control Register 0 (U2C0) 176 03316 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 U3AT12 Fransmit/Receive Control Register 1 (U2C1) </td <td>032816</td> <td>UART3 Transmit/Receive Mode Register (U3MR)</td> <td></td>	032816	UART3 Transmit/Receive Mode Register (U3MR)	
032A16 032B16 UART3 Transmit Buffer Register (U3TB) 174 032C16 UART3 Transmit/Receive Control Register 0 (U3C0) 176 032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032E16 032F16 UART3 Receive Buffer Register (U3RB) 174 033016 U33016 174 033116 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033616 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Transmit/Receive Control Register (U2C0) 176 03316 UART2 Transmit/Receive Control Register 0 (U2C0) 176 03316 UART2 Receive Buffer Register (U2RB) 174 033C16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 U3AT12 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (CNSF)	032916	UART3 Baud Rate Register (U3BRG)	175
032C16	032A16		
032D16 UART3 Transmit/Receive Control Register 1 (U3C1) 177 032E16 UART3 Receive Buffer Register (U3RB) 174 033016 033116 174 033216 033216 174 033316 033216 174 033316 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register (U2SMR) 177 033716 UART2 Special Mode Register (U2SMR) 177 033916 UART2 Resister (U2BRG) 175 033416 UART2 Transmit/Receive Control Register (U2CI) 176 033D16 UART2 Transmit/Receive Control Register (U2CI) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (ONSF) 13	032B16	UART3 Transmit Buffer Register (U3TB)	174
032E16	032C16	UART3 Transmit/Receive Control Register 0 (U3C0)	176
032F16	032D16	UART3 Transmit/Receive Control Register 1 (U3C1)	177
032F16 033016 033116 033216 033316 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 033916 UART2 Baud Rate Register (U2BRG) 175 033A16 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034616 034616 034616 034616 034616 034616 Timer A0 Register (TA0) 136 034616 034816 Timer A1 Register (TA2) 136 034C16 034D16 Timer A2 Register (TA2) 136 034E16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4) 1034E16 Timer A4	032E16		
033116 033216 033316 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 174 033A16 UART2 Transmit/Receive Control Register 0 (U2CO) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034016 Count Start Flag (TABSR) 137 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034516 Timer A0 Register (TA0) 138 034916 Timer A1 Register (TA1) 136 034D16 Timer A2 Register (TA4)	032F16	UAR13 Receive Buffer Register (U3RB)	1/4
033216 033316 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 174 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034016 Count Start Flag (TABSR) 137 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A1 Register (TA1) 136 034016 Timer A2 Register (TA2) 136	033016		
033316 033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 174 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034016 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A	033116		
033416 UART2 Special Mode Register 4 (U2SMR4) 180 033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 174 033A16 UART2 Transmit/Receive Control Register 0 (U2CO) 176 033C16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034016 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034516 Timer A0 Register (TA0) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register	033216		
033516 UART2 Special Mode Register 3 (U2SMR3) 179 033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 175 033A16 UART2 Transmit/Receive Control Register 0 (U2CO) 176 033C16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034016 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA1) 136 034816 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4)	033316		
033616 UART2 Special Mode Register 2 (U2SMR2) 178 033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 175 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034C16 Count Start Flag (TABSR) 137 034016 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 136 034816 Timer A1 Register (TA1) 136 034C16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136	033416	UART2 Special Mode Register 4 (U2SMR4)	180
033716 UART2 Special Mode Register (U2SMR) 177 033816 UART2 Transmit/Receive Mode Register (U2MR) 175 033916 UART2 Baud Rate Register (U2BRG) 175 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 03416 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033516	UART2 Special Mode Register 3 (U2SMR3)	179
033816 UART2 Transmit/Receive Mode Register (U2MR) 033916 UART2 Baud Rate Register (U2BRG) 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034016 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 136 034816 Timer A1 Register (TA1) 136 034C16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136	033616	UART2 Special Mode Register 2 (U2SMR2)	178
033916 UART2 Baud Rate Register (U2BRG) 175 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033716	UART2 Special Mode Register (U2SMR)	177
033916 UART2 Baud Rate Register (U2BRG) 175 033A16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033816	UART2 Transmit/Receive Mode Register (U2MR)	
033B16 UART2 Transmit Buffer Register (U2TB) 174 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 138 034616 034616 134 034816 Timer A1 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4) Timer A4 Register (TA4)	033916		175
033B16 033C16 UART2 Transmit/Receive Control Register 0 (U2C0) 176 033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 138 034616 034616 134916 136 034816 Timer A1 Register (TA1) 136 034C16 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033A16		
033D16 UART2 Transmit/Receive Control Register 1 (U2C1) 177 033E16 UART2 Receive Buffer Register (U2RB) 174 034D16 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 138 034816 Timer A1 Register (TA1) 136 034816 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033B ₁₆	UART2 Transmit Buffer Register (U2TB)	174
033E16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 034616 138 034716 Timer A0 Register (TA0) 138 034816 Timer A1 Register (TA1) 136 034B16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033C16	UART2 Transmit/Receive Control Register 0 (U2C0)	176
033F16 UART2 Receive Buffer Register (U2RB) 174 034016 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 034816 Timer A2 Register (TA2) 136 034B16 Timer A3 Register (TA3) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033D16	UART2 Transmit/Receive Control Register 1 (U2C1)	177
033+16 034016 Count Start Flag (TABSR) 137 034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 Timer A0 Register (TA0) 138 034816 Timer A1 Register (TA1) 136 034816 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033E16		
034116 Clock Prescaler Reset Flag (CPSRF) 71 034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 034516 034616 034916 Timer A0 Register (TA0) 034816 Timer A1 Register (TA1) 034A16 Timer A2 Register (TA2) 136 034C16 Timer A3 Register (TA3) 136 034E16 Timer A4 Register (TA4) 136	033F16	UART2 Receive Buffer Register (U2RB)	174
034216 One-Shot Start Flag (ONSF) 138 034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 136 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034016	Count Start Flag (TABSR)	137
034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 136 034C16 034C16 034D16 Timer A3 Register (TA3)	034116	Clock Prescaler Reset Flag (CPSRF)	71
034316 Trigger Select Register (TRGSR) 139 034416 Up-Down Flag (UDF) 138 034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 136 034C16 034C16 034D16 Timer A3 Register (TA3)	034216	One-Shot Start Flag (ONSF)	138
034416 Up-Down Flag (UDF) 138 034516 034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034A16 Timer A2 Register (TA2) 136 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034316	= 1 1	139
034616 034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 136 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034416		138
034716 Timer A0 Register (TA0) 034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034516		
034816 034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034616		
034916 Timer A1 Register (TA1) 034A16 034B16 Timer A2 Register (TA2) 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034716	Timer A0 Register (TA0)	
034A16 034B16 034B16 034C16 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034816		
034B16 Timer A2 Register (TA2) 136 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034916	Timer A1 Register (TA1)	
034B16 034C16 034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034A16		
034D16 Timer A3 Register (TA3) 034E16 Timer A4 Register (TA4)	034B16	Timer A2 Register (TA2)	136
034D16 034E16 Timer A4 Register (TA4)	034C16		
Timer A4 Register (TA4)	034D16	Timer A3 Register (TA3)	
034F ₁₆ Timer A4 Register (TA4)	034E16	T: A4B : (TA4)	
	034F16	Timer A4 Register (TA4)	

Blank spaces are reserved. No access is allowed.

Address	Register	Page
035016	Ŭ	
035116	Timer B0 Register (TB0)	
035216		
035316	Timer B1 Register (TB1)	152
035416		
035516	Timer B2 Register (TB2)	
035616	Timer A0 Mode Register (TA0MR)	
035716	Timer A1 Mode Register (TA1MR)	
035816	Timer A2 Mode Register (TA2MR)	137
035916	Timer A3 Mode Register (TA3MR)	
035A16	Timer A4 Mode Register (TA4MR)	
035B16	Timer B0 Mode Register (TB0MR)	
035C16	Timer B1 Mode Register (TB1MR)	153
035D16	Timer B2 Mode Register (TB2MR)	
035E16	Timer B2 Special Mode Register (TB2SC)	167
035F16	Count Source Prescaler Register (TCSPR)	71
036016		
036116		
036216		
036316		
036416	UART0 Special Mode Register 4 (U0SMR4)	180
036516	UART0 Special Mode Register 3 (U0SMR3)	179
036616	UART0 Special Mode Register 2 (U0SMR2)	178
036716	UART0 Special Mode Register (U0SMR)	177
036816	UART0 Transmit/Receive Mode Register (U0MR)	
036916	UART0 Baud Rate Register (U0BRG)	175
036A16	3 11 11 11 11 11	
036B16	UART0 Transmit Buffer Register (U0TB)	174
036C16	UART0 Transmit/Receive Control Register 0 (U0C0)	176
036D16	UART0 Transmit/Receive Control Register 1 (U0C1)	177
036E16	(****	
036F16	UART0 Receive Buffer Register (U0RB)	174
037016		
037116		
037216		
037316		
037416		
037516		
037616	PLL Control Register 0 (PLC0)	72
037716	PLL Control Register 1 (PLC1)	73
037816	DMA0 Cause Select Register (DM0SL)	
037916	DMA1 Cause Select Register (DM1SL)	
037A16	DMA2 Cause Select Register (DM2SL)	116
037B16	DMA3 Cause Select Register (DM3SL)	
037C16		
037D16	CRC Data Register (CRCD)	243
037E16	CRC Input Register (CRCIN)	

Address	Register	Page				
038016	A/D0 D (AD00)					
038116	A/D0 Register0 (AD00)					
038216	A/D0 D 4 (AD04)	1				
038316	A/D0 Register1 (AD01)					
038416	A/D0 Register2 (AD02)					
038516	6 A/D0 Register2 (AD02)					
038616	A/D0 Register3 (AD03)					
038716	A/D0 Register3 (AD03)	000				
038816	A/D0 Dominton4 (AD04)	230				
038916	A/D0 Register4 (AD04)					
038A16	A/DO Dogistors (ADOS)					
038B16	A/D0 Register5 (AD05)					
038C16	A/DO Dogistors (ADOS)					
038D16	A/D0 Register6 (AD06)					
038E16						
038F16	A/D0 Register7 (AD07)					
039016						
039116						
039216						
039316						
039416	A/D0 Control Register 2 (AD0CON2)	230				
039516						
039616	A/D0 Control Register 0 (AD0CON0)	228				
039716	A/D0 Control Register 1 (AD0CON1)	229				
039816	D/A Register 0 (DA0)	242				
039916						
039A16	D/A Register 1 (DA1)	242				
039B16						
039C16	D/A Control Register (DACON)	242				
039D16						
039E16		J				
039F16						

03A116 Function Select Register A9 (PS9) 3 03A216 03A316 03A316 03A316 03A416 03A516 03A516 03A516 03A516 03A716 03A916 03A916 03AA16 03AA16 03AA16 03AD16 03AC16 03AE16 03AF16 Function Select Register A0 (PS0) 3 03B116 Function Select Register A1 (PS1) 3 03B216 Function Select Register B0 (PSL0) 3 03B316 Function Select Register B1 (PSL1) 3 03B316 Function Select Register A2 (PS2) 3 03B516 Function Select Register B2 (PSL2) 3 03B716 Function Select Register B3 (PSL3) 3 03B716 Function Select Register A5 (PS5) 3 03B416 03B916 Function Select Register A6 (PS6) 3 03B416 03B016 Function Select Register A7 (PS7) 3 03B716 Function Select Register PS 3 03B716 Function Select Register PS 3	Page
03A216 03A316 03A416 03A516 03A516 03A516 03A716 03A816 03A916 03AA16 03AB16 03AC16 03AD16 03AE16 03AF16 Function Select Register A0 (PSO) 03B11 Function Select Register B1 (PSL) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register B3 (PSL3) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 Function Select Register A5 (PS5) 03B16 03B916 Function Select Register A6 (PS6) 03B16 03B16 03B16 03B16 03B16 03B17 03B1	376
03A316 03A416 03A516 03A516 03A616 03A716 03A816 03A916 03A916 03AA16 03AB16 03AB16 03AC16 03AD16 03AE16 03AE16 03B016 Function Select Register A0 (PSO) 03B116 Function Select Register B0 (PSL0) 03B216 Function Select Register B1 (PSL1) 03B316 Function Select Register A2 (PS2) 03B416 Function Select Register A3 (PS3) 03B516 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B816 03B916 03B916 Function Select Register A6 (PS6) 03B916 Function Select Register A7 (PS7) 03B16 O3C016 03B916 Function Select Register (P6) 03B916 Function Select Register (PO6) 03C016 Port P6 Register (PO) 03C116 Port P7 Register (PO) <t< td=""><td>377</td></t<>	377
03A416 03A516 03A516 03A616 03A716 03A816 03A916 03A916 03AA16 03AB16 03AC16 03AD16 03AF16 Function Select Register C (PSC) 03B016 Function Select Register A0 (PSO) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 33B316 03B916 Function Select Register A5 (PS5) 03B16 Function Select Register A6 (PS6) 03B16 Function Select Register A7 (PS7) 03B16 Function Select Register (P6) 03B16 Function Select Register (P6) 03B16 Function Register (PD6) 03C16 Port P6 Register (P7) 03C216 Port P7 Direction Register (PD7)	
03A516 03A616 03A716 03A816 03A916 03A916 03A916 03A916 03AB16 03AB16 03AC16 03AC16 03AF16 Function Select Register A0 (PSO) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B316 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B16 03B916 03B916 Function Select Register A7 (PS7) 03B16 03B916 03B916 Function Select Register A7 (PS7) 03B16 03C016 03B916 Function Select Register (P6) 03C16 Port P6 Register (P6) 03C16 Port P7 Direction Register (PD6) 03C316 Port P8 Register (PB)	
03A616 03A716 03A816 03A816 03AA916 03AA16 03AA16 03AA16 03AC16 03AC16 03AF16 Function Select Register C (PSC) 03B016 Function Select Register A0 (PS0) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B416 03B916 03B416 03B916 03B416 03B916 03B416 03B916 03B416 03B916 03B516 Function Select Register A5 (PS5) 03B516 Function Select Register A6 (PS6) 03B516 Function Select Register PS7 03B516 O3C016 03B516 Port P6 Register (P6) 03C16 Port P7 Register (P7) 03C216 <td< td=""><td></td></td<>	
03A716 03A816 03A916 03A916 03AA16 03AB16 03AB16 03AC16 03AE16 03AE16 03AF16 Function Select Register A0 (PSO) 03B16 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B916 Function Select Register A6 (PS6) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register (P6) 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03A816 03A916 03AA16 03AB16 03AB16 03AB16 03AB16 03AB16 03AB16 03AB16 03B16 Function Select Register A0 (PS0) 03B116 Function Select Register B0 (PSL0) 03B216 Function Select Register B1 (PSL1) 03B316 Function Select Register A2 (PS2) 03B416 Function Select Register A3 (PS3) 03B516 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B16 03B916 03B916 Function Select Register A6 (PS6) 03B16 03B916 03B916 Function Select Register A7 (PS7) 03B916 03B916 03B916 Function Select Register (PS7) 03B916 Function Select Register (PS7) 03C016 Port P6 Register (P6) 03C116 Port P7 Direction Register (PD7) 03C216 Port P8 Register (PB)	
03A916 03AA16 03AB16 03AB16 03AD16 03AD16 03AE16 03AE16 03AF16 Function Select Register A0 (PSO) 03B016 Function Select Register A1 (PS1) 03B116 Function Select Register B0 (PSL0) 03B216 Function Select Register B1 (PSL1) 03B316 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B516 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B916 Function Select Register A6 (PS6) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register (P6) 03B916 O3C016 03B916 Function Select Register (PD6) 03C16 Port P6 Register (P6) 03C16 Port P7 Direction Register (PD6) 03C316 Port P8 Register (P8)	
03AA16 03AB16 03AC16 03AD16 03AE16 03AF16 03AF16 Function Select Register A0 (PS0) 03B016 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B916 Function Select Register A6 (PS6) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register A7 (PS7) 03B916 Function Select Register (P6) 03C016 Port P6 Register (P6) 03C16 Port P7 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03AB16 03AC16 03AD16 03AE16 03AF16 Function Select Register C (PSC) 36 03B016 Function Select Register A0 (PS0) 37 03B116 Function Select Register A1 (PS1) 37 03B216 Function Select Register B0 (PSL0) 38 03B316 Function Select Register B1 (PSL1) 37 03B316 Function Select Register A2 (PS2) 38 03B316 Function Select Register B2 (PSL2) 38 03B316 Function Select Register B3 (PSL3) 38 03B316 Function Select Register A5 (PS5) 38 03B316 Function Select Register A5 (PS5) 38 03B316 Function Select Register A6 (PS6) 38 03B316 Function Select Register A7 (PS7) 38 03B316 03B316 03B316 03B316 03B316 Function Select Register (PS) 39 03B316 Function Select Register (PS7) 30 03B316 Function Select Register (PS6) 30 03C316 Port P6 Register (PS6) 30	
03AC16 03AD16 03AF16 Function Select Register C (PSC) 03B016 Function Select Register A0 (PS0) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BD16 03BD16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03C016 03C016 Port P6 Register (P6) 03C16 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03AD16 03AE16 03AF16 Function Select Register C (PSC) 03B016 Function Select Register A0 (PS0) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BB16 03BB16 03BB16 03BB16 03BB16 03BB16 03BB16 03BC16 Function Select Register A6 (PS6) 03BB16 03BB16 03BC16 Function Select Register A7 (PS7) 03BE16 03C16 03C16 Port P6 Register (P6) 03C16 Port P7 Register (P7) 03C216 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03AE16 03AF16 Function Select Register C (PSC) 38 03B016 Function Select Register A0 (PS0) 33 03B116 Function Select Register A1 (PS1) 33 03B216 Function Select Register B0 (PSL0) 33 03B316 Function Select Register B1 (PSL1) 33 03B416 Function Select Register A2 (PS2) 33 03B516 Function Select Register B2 (PSL2) 33 03B616 Function Select Register B3 (PSL3) 33 03B816 03B816 33 03B816 03B816 33 03B816 03B816 33 03B816 33 34 03B816 34 34 03B816 35 35 03B816 35 35 03B816 35 35 03B816 36 36	
03AF16 Function Select Register C (PSC) 36 03B016 Function Select Register A0 (PS0) 3 03B116 Function Select Register A1 (PS1) 3 03B216 Function Select Register B0 (PSL0) 3 03B316 Function Select Register B1 (PSL1) 3 03B416 Function Select Register A2 (PS2) 3 03B516 Function Select Register B2 (PSL2) 3 03B516 Function Select Register B3 (PSL3) 3 03B716 Function Select Register A5 (PS5) 3 03B816 3 3 03B716 Function Select Register A6 (PS6) 3 03B716 Function Select Register A7 (PS7) 3 03B716 Function Select Register A7 (PS7) 3 03B716 Function Select Register (P6) 3 03B716 Function Select Register (P6) 3 03B716 Port P6 Register (P6) 3 03C116 Port P7 Register (P7) 3 03C216 Port P6 Direction Register (PD7) 3 03C316 Port P8 Register (P8)	
03B016 Function Select Register A0 (PS0) 03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B16 03B916 03B916 Function Select Register A6 (PS6) 03B916 Function Select Register A7 (PS7) 03B16 O3C016 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03B16 03B016 03B16 Function Select Register A6 (PS6) 03B16 03B016 03B016 Function Select Register A7 (PS7) 03B16 03B016 03B016 Function Select Register A7 (PS7) 03B16 03C016 03C016 Port P6 Register (P6) 03C016 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	380
03B116 Function Select Register A1 (PS1) 03B216 Function Select Register B0 (PSL0) 03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register B2 (PSL2) 03B616 Function Select Register B3 (PSL3) 03B716 Function Select Register A5 (PS5) 03B816 33B816 03B916 Function Select Register A5 (PS5) 03BA16 33BB16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 33BB16 03C016 Port P6 Register (P6) 03C016 Port P7 Register (P6) 03C116 Port P7 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BC16 03BD16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03C016 03C016 Port P6 Register (P6) 03C016 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	373
03B316 Function Select Register B1 (PSL1) 03B416 Function Select Register A2 (PS2) 03B516 Function Select Register B3 (PSL2) 03B616 Function Select Register B3 (PSL3) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BB16 03BB16 03BD16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C16 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BB16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	378
03B516 Function Select Register A3 (PS3) 03B616 Function Select Register B2 (PSL2) 03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BB16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03B716 Function Select Register B3 (PSL3) 03B816 03B916 03B916 Function Select Register A5 (PS5) 03BA16 03BB16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C016 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	374
03B/16 Function Select Register B3 (PSL3) 03B816 03B916 03BA16 03BA16 03BL6 03BC16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03B916 Function Select Register A5 (PS5) 3° 03BA16 03BB16 3° 03BC16 Function Select Register A6 (PS6) 3° 03BD16 Function Select Register A7 (PS7) 3° 03BE16 03BF16 03C016 03C016 Port P6 Register (P6) 3° 03C116 Port P7 Register (P7) 3° 03C216 Port P6 Direction Register (PD6) 3° 03C316 Port P7 Direction Register (PD7) 3° 03C416 Port P8 Register (P8) 3°	379
03BA16 03BC16 Function Select Register A6 (PS6) 03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03BB16 03BC16 Function Select Register A6 (PS6) 3 03BD16 Function Select Register A7 (PS7) 3 03BE16 03BF16 03C016 03C016 Port P6 Register (P6) 3 03C116 Port P7 Register (P7) 3 03C216 Port P6 Direction Register (PD6) 3 03C316 Port P7 Direction Register (PD7) 3 03C416 Port P8 Register (P8)	375
03BC16 Function Select Register A6 (PS6) 3' 03BD16 Function Select Register A7 (PS7) 3' 03BE16 03BF16 03C016 03C016 Port P6 Register (P6) 3' 03C116 Port P7 Register (P7) 3' 03C216 Port P6 Direction Register (PD6) 3' 03C316 Port P7 Direction Register (PD7) 3' 03C416 Port P8 Register (P8)	
03BD16 Function Select Register A7 (PS7) 03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (PB)	
03BE16 03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	375
03BF16 03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	376
03C016 Port P6 Register (P6) 03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03C116 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	
03C216 Port P7 Register (P7) 03C216 Port P6 Direction Register (PD6) 03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	070
03C316 Port P7 Direction Register (PD7) 03C416 Port P8 Register (P8)	372
03C316 Port P7 Direction Register (PD7)	074
03C416 Port P8 Register (P8)	371
	270
03C516 Port P9 Register (P9)	372
03C616 Port P8 Direction Register (PD8)	274
03C716 Port P9 Direction Register (PD9)	371
03C816 Port P10 Register (P10)	270
03C916 Port P11 Register (P11)	372
03CA ₁₆ Port P10 Direction Register (PD10)	274
03CB ₁₆ Port P11 Direction Register(PD11)	371
03CC16 Port P12 Register (P12)	270
03CD16 Port P13 rRegister (P13)	372
03CE16 Port P12 Direction Register (PD12)	274
03CF16 Port P13 Direction Register (PD13)	371

Address	Register	Page
03D016	Port P14 Register (P14)	372
03D116	Port P15 Register (P15)	372
03D216	Port P14 Direction Register (PD14)	371
03D316	Port P15 Direction Register (PD15)	371
03D416		
03D516		
03D616		
03D716		
03D816		
03D916		
03DA16	Pull-Up Control Register 2 (PUR2)	381
03DB16	Pull-Up Control Register 3 (PUR3)	202
03DC16	Pull-Up Control Register 4 (PUR4)	382
03DD16		
03DE16		
03DF16		
03E016	Port P14 Register (P0)	070
03E116	Port P14 Register (P1)	372
03E216	Port P14 Direction Register (PD0)	
03E316	Port P14 Direction Register (PD1)	371
03E416	Port P14 Register (P2)	
03E516	Port P14 Register (P3)	372
03E616	Port P14 Direction Register (PD2)	
	Port P14 Direction Register (PD3)	371
	Port P14 Register (P4)	
03E916	Port P14 Register (P5)	372
	Port P14 Direction Register (PD4)	
03EB ₁₆	Port P14 Direction Register (PD5)	371
03EC16	-	
03ED16		
03EE16		
03EF16		
03F016	Pull-Up Control Register 0 (PUR0)	
03F116	Pull-Up Control Register 1 (PUR1)	381
03F216		
03F316		
03F416		
03F516		
03F616		
03F716		
03F816		
03F916		
03FA ₁₆		
03FB ₁₆		
03FC16		
03FD16		
03FE16		
03FF16	Port Control Register (PCR)	383
JUI 10	i or control regioter (1 Ort)	505

M32C/83 Group (M32C/83, M32C/83T)

SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

1. Overview

The M32C/83 Group (M32C/83, M32C/83T) microcomputer is a single-chip control unit that utilizes high-performance silicon gate CMOS technology with the M32C/80 Series CPU core. The M32C/83 Group (M32C/83, M32C/83T) is available in 144-pin and 100-pin plastic molded LQFP/QFP packages.

With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed.

It includes a multiplier and DMAC adequate for office automation, communication devices and industrial equipments, and other high-speed processing applications.

1.1 Applications

Automobiles, audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.2 Performance Overview

Tables 1.1 and 1.2 list performance overview of the M32C/83 Group (M32C/83, M32C/83T).

Table 1.1 M32C/83 Group (M32C/83, M32C/83T) Performance (144-Pin Package)

	Characteristic	Performance				
		M32C/83	M32C/83T			
CPU	Basic Instructions	108 instructions				
	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 to 5.5 V) ⁽³⁾ 31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 to 5.5 V) 50 ns (f(BCLK)=20 MHz, Vcc=3.0 to 5.5 V)				
	Operating Mode	Single-chip mode, Memory expansion mode and Microprocessor mode	Single-chip mode			
	Address Space	16 Mbytes	L			
	Memory Capacity	See Table 1.3				
Peripheral		123 I/O pins and 1 input pin				
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 16	6 bits x 6 channels			
		Three-phase motor control circuit				
	Intelligent I/O	Time measurement function: 16 bits x 12	channels			
		Waveform generating function: 16 bits x 2	8 channels			
		Communication function (Clock synchron				
		rial I/O, HDLC data processing, Clock s				
		IEBus ⁽¹⁾ , 8-bit or 16-bit Clock synchronou				
	Serial I/O	5 Channels	,			
		Clock synchronous serial I/O, Clock async	chronous serial I/O. IEBus ⁽¹⁾ . I ² C bus ⁽²⁾			
	CAN Module	1 channel Supporting CAN 2.0B specifi				
	A/D Converter	10-bit A/D converter: 2 circuit, 34 channel				
	D/A Converter	8 bits x 2 channels	-			
	DMAC	4 channels				
	DMAC II	Can be activated by all peripheral function interrupt sources				
		Immediate transfer, Calculation transfer and Chain transfer functions				
	DRAM	CAS before RAS refresh, Self-reflesh, EDO, EP				
C	CRC Calculation Circuit	CRC-CCITT				
	X/Y Converter	16 bits x 16 bits				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	42 internal and 8 external sources, 5 software sources, Interrupt priority level: 7				
	Clock Generation Circuit	4 circuits				
		Main clock oscillation circuit(*), Sub clock oscillation circuit(*), On-chip oscillator,				
		Main clock oscillation circuit(*), Sub clock oscillation circuit(*), On-chip oscillator, PLL frequency synthesizer				
		(*)Equipped with a built-in feedback resistor. Ceramic resonator or crystal oscill				
		tor must be connected externally	•			
	Oscillation Stop Detect Function	Main clock oscillation stop detect function				
Electrical	•	4.2 to 5.5 V (f(BCLK)=32 MHz)	4.2 to 5.5 V (f(BCLK)=32 MHz)			
Charact-		3.0 to 5.5 V (f(BCLK)=20 MHz, through VDC)				
eristics		3.0 to 3.6 V (f(BCLK)=20 MHz,				
		not through VDC)				
	Power Consumption	41 mA (Vcc=5 V, f(BCLK)=32 MHz)	41 mA (Vcc=5 V, f(BCLK)=32 MHz)			
		38 mA (Vcc=5 V, f(BCLK)=30 MHz)	38 mA (Vcc=5 V, Vf(BCLK)=30 MHz)			
		26 mA (Vcc=3.3 V, f(BCLK)=20 MHz)	470 μA (VCC=5 V, f(XCIN)=32 kHz,			
		470 μA (Vcc=5 V, f(Xcin)=32 kHz,	in wait mode)			
		in wait mode)	0.4 μA (VCC=5 V, stop mode)			
		340 μA (VCC=3.3 V, f(XCIN)=32 kHz,				
		through VDC, in wait mode)				
	T. Control of the con					
		5.0 μA (Vcc=3.3 V, f(Xcin)=32 kHz,				
		not through VDC, in wait mode)				
		not through VDC, in wait mode) 0.4 μA (Vcc=5 V, stop mode)				
Flash	Program/Erase Supply Voltage	not through VDC, in wait mode)	5.0 ± 0.5 V			
Flash Memory	Program/Erase Supply Voltage Program and Erase Endurance	not through VDC, in wait mode) 0.4 μA (Vcc=5 V, stop mode) 0.4 μA (Vcc=3.3 V, stop mode)	5.0 ± 0.5 V			
Memory		not through VDC, in wait mode) 0.4 μA (Vcc=5 V, stop mode) 0.4 μA (Vcc=3.3 V, stop mode) 3.3 ± 0.3 V or 5.0 ± 0.5 V	5.0 ± 0.5 V -40 to 85°C (T version)			

NOTES:

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. Contact our sales office if 30-MHz or higher frequency is required.

All options are on a request basis.

Table 1.2 M32C/83 Group (M32C/83, M32C/83T) Performance (100-Pin Package)

	Characteristic	Performance				
		M32C/83	M32C/83T			
CPU	Basic Instructions	108 instructions				
	Minimum Instruction Execution Time	31.3 ns (f(BCLK) = 32 MHz, Vcc = 4.2 to 5.5 V)	31.3 ns (f(BCLK) = 32 MHz, Vcc=4.2 to 5.5 V)			
		50 ns (f(BCLK) = 20 MHz, Vcc = 3.0 to 5.5 V)				
	Operating Mode	Single-chip mode, Memory expansion	Single-chip mode			
		mode and Microprocessor mode	•			
	Address Space	16 Mbytes				
	Memory Capacity	See Table 1.3				
Peripheral	I/O Port	87 I/O pins and 1 input pin				
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 1	6 bits x 6 channels			
		Three-phase motor control circuit				
	Intelligent I/O	Time measurement function: 16 bits x 5 c	channels			
		Waveform generating function: 16 bits x	10 channels			
			nous serial I/O, Clock asynchronous se-			
		rial I/O, HDLC data processing, Clock				
		IEBus ⁽¹⁾)	,			
	Serial I/O	5 Channels				
		Clock synchronous serial I/O, Clock asy	rnchronous serial I/O, IEBus ⁽¹⁾ , I ² C bus ⁽²⁾			
	CAN Module	1 channel Supporting CAN 2.0B speci				
	A/D Converter	10-bit A/D converter: 2 circuits, 26 chann				
	D/A Converter	8 bits x 2 channels	<u> </u>			
	DMAC	4 channels				
	DMAC II	Can be activated by all peripheral function interrupt sources				
		Immediate transfer, Calculation transfer and Chain transfer functions				
	CRC Calculation Circuit	CRC-CCITT				
	X/Y Converter	16 bits x 16 bits				
	Watchdog Timer	15 bits x 1 channel (with prescaler)				
	Interrupt	42 internal and 8 external sources, 5 software sources				
	·	Interrupt priority level: 7				
	Clock Generation Circuit	4 circuits				
		Main clock oscillation circuit(*), Sub cloc	k oscillation circuit(*). On-chip oscillator.			
		PLL frequency synthesizer	(),			
		(*)Equipped with a built-in feedback resistor. Ceramic resonator or crystal oscillato				
	Ossillation Chan Data at Everation	must be connected externally				
Flactwicel	Oscillation Stop Detect Function	Main clock oscillation stop detect function 4.2 to 5.5 V (f(BCLK)=32 MHz) 4.2 to 5.5 V (f(BCLK)=32 MHz)				
Electrical	Supply Voltage	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	4.2 to 5.5 V (f(BCLK)=32 MHZ)			
Charact-		3.0 to 5.5 V (f(BCLK)=20 MHz, through VDC)				
eristics	Power Consumption	3.0 to 3.6 V (f(BCLK)=20 MHz, not through VDC) 41 mA (VCC=5 V, f(BCLK)=32 MHz)	41 mA (Vcc=5 V, f(BCLK)=32 MHz)			
	Power Consumption	38 mA (Vcc=5 V, f(BCLK)=32 MHz)	38 mA (VCC=5 V, Vf(BCLK)=30 MHz)			
		26 mA (VCC=3 V, I(BCLK)=30 MHz)	470 μA (VCC=5 V, V(BCLK)=30 MHz)			
			in wait mode)			
		470 μA (Vcc=5 V, f(Xcin)=32 kHz, in wait mode)	0.4 μA (Vcc=5 V, stop mode)			
		340 μA (Vcc=3.3 V, f(Xcin)=32 kHz,	0.4 μA (VCC=5 V, Stop mode)			
		through VDC, in wait mode)				
		5.0 μA (Vcc=3.3 V, f(Xcin)=32 kHz,				
		not through VDC, in wait mode)				
		0.4 μA (Vcc=5 V, stop mode)				
		0.4 μA (VCC=3 V, stop mode) 0.4 μA (VCC=3.3 V, stop mode)				
Flash	Program/Erase Supply Voltage	3.3 ± 0.3 V or 5.0 ± 0.5 V	5.0 ± 0.5 V			
Memory	Program and Erase Endurance	100 times	0.0 ± 0.0 v			
	Ambient Temperature	-20 to 85°C, -40 to 85°C (optional)	-40 to 85°C (T version)			
Package	Ambient Temperature	100-pin plastic molded LQFP/QFP	+0 t0 00 O (1 Version)			
I ackage		100-pili piastic molded EQFF/QFP				

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. Contact our sales office if 30-MHz or higher frequency is required.

All options are on a request basis.

1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/83 Group (M32C/83, M32C/83T) microcomputer.

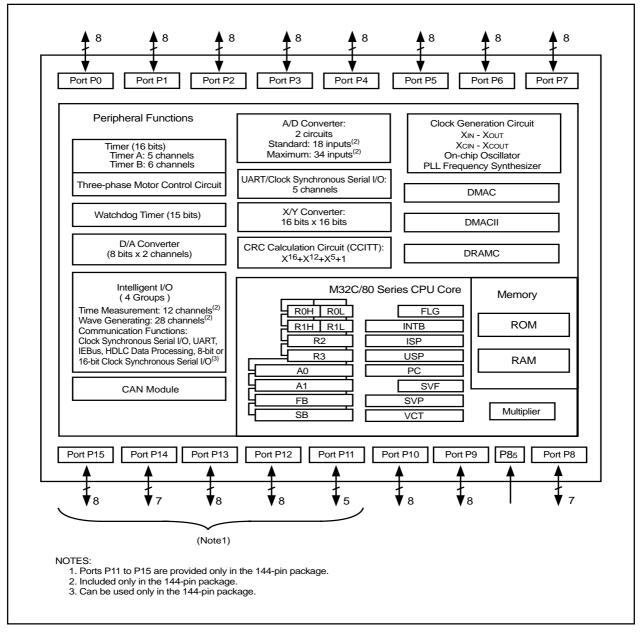


Figure 1.1 M32C/83 Group (M32C/83, M32C/83T) Block Diagram

1.4 Product Information

Table 1.3 lists the product information. Figure 1.2 shows the product numbering system.

Table 1.3 M32C/83 Group (1) (M32C/83)

As of January, 2006

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30835FJGP	PLQP0144KA-A (144P6Q-A)			
M30833FJGP	PLQP0100KB-A (100P6Q-A)	512K	31K	Flash Memory
M30833FJFP	PRQP0100JB-A (100P6S-A)			

Table 1.3 M32C/83 Group (2) (T Version, M32C/83T)

As of January, 2006

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30833FJTGP	PLQP0100KB-A (100P6Q-A)	512K	31K	Flash Memory T Version (High-reliability 85℃ Version)

Please contact our sales office for V version information.

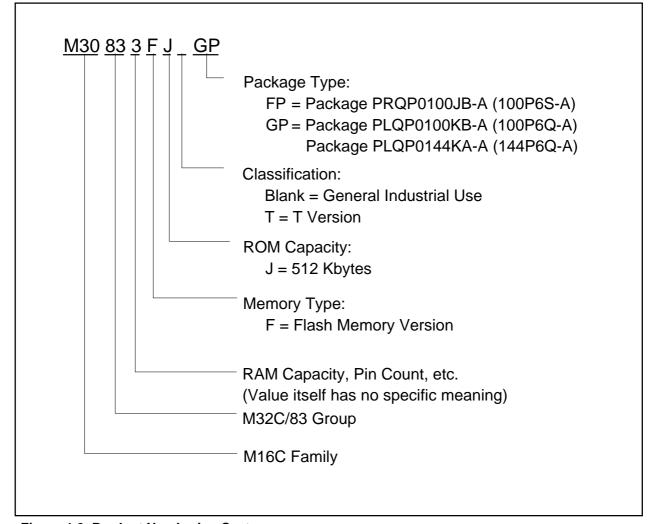


Figure 1.2 Product Numbering System

1.5 Pin Assignment

Figures 1.3 to 1.5 show pin assignments (top view).

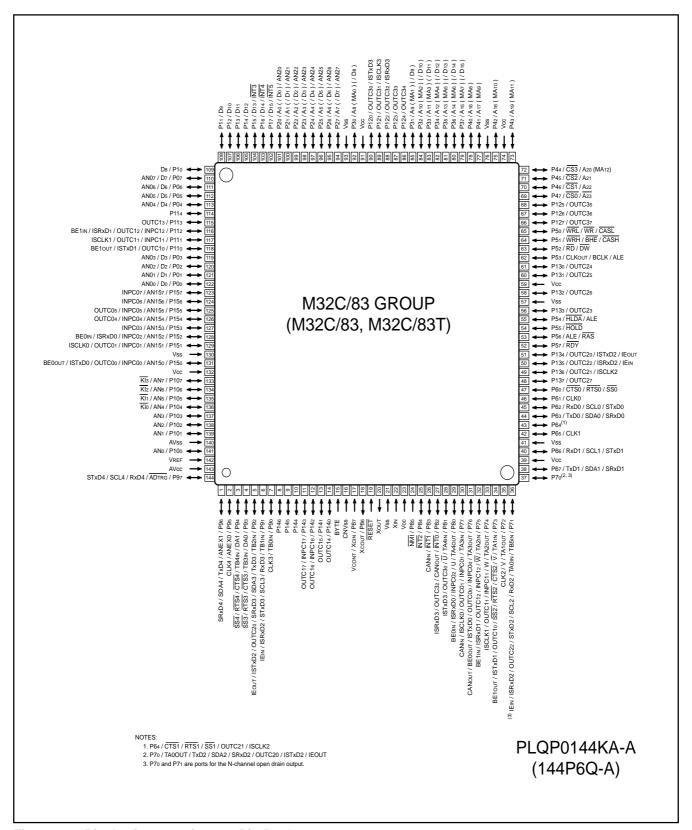


Figure 1.3 Pin Assignment for 144-Pin Package

Table 1.4 Pin Characteristics for 144-Pin Package

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
1		P96			TxD4/SDA4/SRxD4		ANEX1	
2		P95			CLK4		ANEX0	
3		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4		P93		TB3IN	CTS3/RTS3/SS3		DA0	
5		P92		TB2IN	TxD3/SDA3/SRxD3	OUTC20/IEOUT/ISTxD2		
6		P91		TB1IN	RxD3/SCL3/STxD3	IEIN/ISRxD2		
7		P90		TB0in	CLK3			
8		P146						
9		P145						
10		P144						
11		P143				INPC17/OUTC17		
12		P142				INPC16/OUTC16		
13		P141				OUTC15		
14		P140				OUTC14		
15	BYTE							
16	CNVss							
17	Xcin/Vcont	P87						
18	Хсоит	P86						
19	RESET							
20	Хоит							
21	Vss							
22	XIN							
23	Vcc							
24		P85	NMI					
25		P84	ĪNT2					
26		P83	ĪNT1		CANIN			
27		P82	ĪNT0		CANout	OUTC32/ISRxD3		
28		P81		TA4IN/Ū		OUTC30/ISTxD3		
29		P80		TA4out/U		INPC02/ISRxD0/BE0in		
30		P77		TA3in	CANIN	INPC01/OUTC01/ISCLK0		
31		P76		ТАЗоит	САМоит	INPC0o/OUTC0o/ISTxD0/BE0out		
32		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
33		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
34		P73		TA1ın/V	CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1out		
35		P72		TA1out/V	CLK2			
36		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
37		P70		ТА0оит	TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEOUT		
38		P67			TxD1/SDA1/SRxD1			
39	Vcc							
40		P66			RxD1/SCL1/STxD1			
41	Vss							
42		P65			CLK1			
43		P64			CTS1/RTS1/SS1	OUTC21/ISCLK2		
44		P63			TxD0/SDA0/SRxD0			
45		P62			RxD0/SCL0/STxD0			
46		P61			CLK0			
47		P60			CTS0/RTS0/SS0			
48	 ES:	P137				OUTC27		

^{1.} Bus control pins in M32C/83T cannot be used.

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
49		P136				OUTC21/ISCLK2		
50		P135				OUTC22/ISRxD2/IEIN		
51		P134				OUTC20/ISTxD2/IEOUT		
52		P57						RDY
53		P56						ALE/RAS
54		P55						HOLD
55		P54						HLDA/ALE
56		P133				OUTC23		
57	Vss							
58		P132				OUTC26		
59	Vcc							
60		P131				OUTC25		
61		P130				OUTC24		
62		P53						CLKout/BCLK/ALE
63		P52						RD/DW
64		P51						WRH/BHE/CASH
65		P50						WRL/WR/CASL
66		P127				OUTC37		Wite, Wit of the
67		P126				OUTC36		
68		P125				OUTC35		
69		P47				001033		CS0/A23
70		P46						CS1/A22
71		P45						CS2/A21
72		P44						CS3/A21 CS3/A20(MA12)
73		P43						A19(MA11)
74	Vcc	P43						A19(MA11)
	VCC	P42						A (A A A)
75	\/	P42						A18(MA10)
76	Vss	D4						A (844)
77		P41						A17(MA9)
78		P40						A16(MA8)
79		P37						A15(MA7)(/D15)
80		P36						A14(MA6)(/D14)
81		P35						A13(MA5)(/D13)
82		P34						A12(MA4)(/D12)
83		P33						A11(MA3)(/D11)
84		P32						A10(MA2)(/D10)
85		P31						A9(MA1)(/D9)
86		P124				OUTC34		
87		P123				OUTC33		
88		P122				OUTC32/ISRxD3		
89		P121				OUTC31/ISCLK3		
90		P120				OUTC30/ISTxD3		
91	Vcc							
92		P30						A8(MA0)(/D8)
93	Vss							
94		P27					AN27	A7(/D7)
95		P26					AN26	A6(/D6)
96		P25					AN25	A5(/D5)

^{1.} Bus control pins in M32C/83T cannot be used.

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
97		P24					AN24	A4(/D4)
98		P23					AN23	A3(/D3)
99		P22					AN22	A2(/D2)
100		P21					AN21	A1(/D1)
101		P20					AN20	Ao(/Do)
102		P17	INT5					D15
103		P16	INT4					D14
104		P15	INT3					D13
105		P14						D12
106		P13						D11
107		P12						D10
108		P1 ₁						D9
109		P10						D8
110		P07					AN07	D7
111		P06					AN06	D ₆
112		P05					AN05	D5
113		P04					AN04	D4
114		P114						
115		P113				OUTC13		
116		P112				INPC12/OUTC12/ISRxD1/BE1IN		
117		P111				INPC11/OUTC11/ISCLK1		
118		P110				OUTC10/ISTxD1/BE1out		
119		P03					AN03	D3
120		P02					AN02	D ₂
121		P01					AN01	D1
122		P0 ₀					AN0o	D ₀
123		P157				INPC07	AN157	
124		P156				INPC06	AN156	
125		P15 ₅				INPC05/OUTC05	AN155	
126		P154				INPC04/OUTC04	AN154	
127		P153				INPC03	AN153	
128		P152				INPC02/ISRxD0/BE0IN	AN152	
129		P151				INPC01/OUTC01/ISCLK0	AN151	
130	Vss							
131		P150				INPC0o/OUTC0o/ISTxD0/BE0out	AN150	
132	Vcc							
133		P107	Kl ₃				AN ₇	
134		P106	Kl ₂				AN ₆	
135		P105	KI ₁				AN ₅	
136		P104	Klo				AN4	
137		P103					AN ₃	
138		P102					AN ₂	
139		P101					AN ₁	
	AVss	-						
141	-	P10 ₀					AN ₀	
142	VREF							
	AVcc							
		P97			RxD4/SCL4/STxD4	<u> </u>	ADTRG	1

^{1.} Bus control pins in M32C/83T cannot be used.

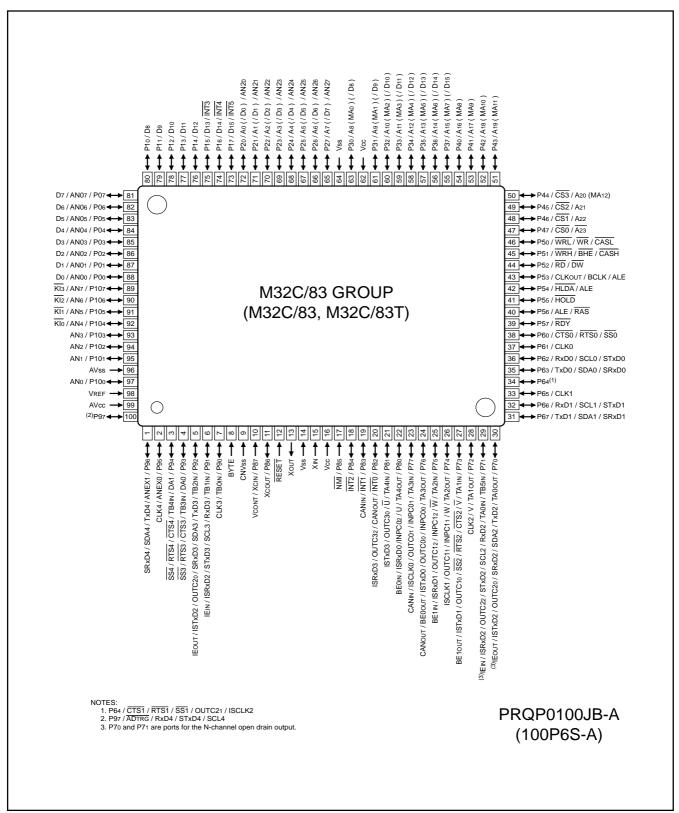


Figure 1.4 Pin Assignment for 100-Pin Package

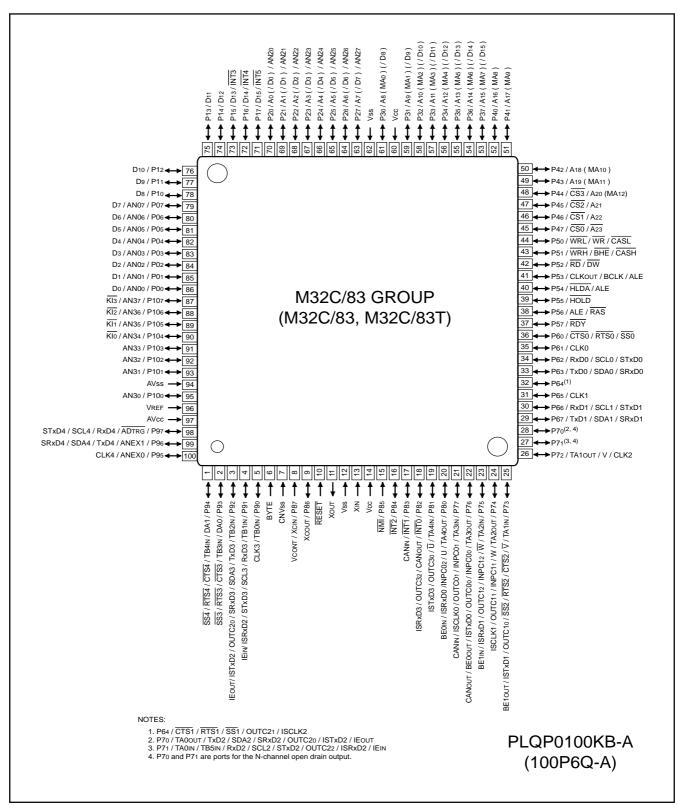


Figure 1.5 Pin Assignment for 100-Pin Package

Table 1.5 Pin Characteristics for 100-Pin Package

							T		I
	kage No GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹
			D 0						
1	99		P96			TxD4/SDA4/SRxD4		ANEX1	
2	100		P95			CLK4		ANEX0	
3	1		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4	2		P93		TB3in	CTS3/RTS3/SS3		DA0	
5	3		P92		TB2IN	TxD3/SDA3/SRxD3	OUTC20/IEOUT/ISTxD2		
6	4		P91		TB1 _{IN}	RxD3/SCL3/STxD3	IEIN/ISRxD2		
7	5		P90		TB0in	CLK3			
8	6	BYTE							
9	7	CNVss							
10	8	Xcin/Vcont	P87						
11	9	Хсоит	P86						
12	10	RESET							
13	11	Хоит							
14	12	Vss							
15	13	XIN							
16	14	Vcc							
17	15		P85	NMI					
18	16		P84	ĪNT2					
19	17		P83	ĪNT1		CANIN			
20	18		P82	ĪNT0		CANout	OUTC32/ISRxD3		
21	19		P81		TA4IN/Ū		OUTC30/ISTxD3		
22	20		P80		TA4out/U		INPC02/ISRxD0/BE0iN		
23	21		P77		TA3IN	CANIN	INPC01/OUTC01/ISCLK0		
24	22		P76		ТАЗоит	CANout	INPC0o/OUTC0o/ISTxD0/BE0out		
25	23		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
26	24		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
27	25		P73		TA1IN/V	CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1out		
28	26		P72		TA1out/V	CLK2	OO TO TO/IO TXD I/DE TOOT		
29	27		P71		TB5in/TA0in	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
30	28		P70		TA0out	TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEOUT		
31	29		P67		140001	TxD1/SDA1/SRxD1	001C20/IS1xD2/IE001		
	30		P66			RxD1/SCL1/STxD1			
32			P65			CLK1			
33	31		P64			CTS1/RTS1/SS1	OLITOR MODILIO		
34	32						OUTC21/ISCLK2		
35	33		P63			TxD0/SDA0/SRxD0			
36	34		P62			RxD0/SCL0/STxD0			
37	35		P61			CLK0			
38	36		P60			CTS0/RTS0/SS0			
39	37		P57						RDY
40	38		P56						ALE/RAS
41	39		P55						HOLD
42	40		P54						HLDA/ALE
43	41		P53						CLKout/BCLK/ALE
44	42		P52						RD/DW
45	43		P51						WRH/BHE/CASH
46	44		P50						WRL/WR/CASL
47	45		P47						CS0/A23
48	46		P46						CS1/A22
49	47		P45						CS2/A21
50	48		P44						CS3/A20(MA12)

^{1.} Bus control pins in M32C/83T cannot be used.

Table 1.5 Pin Characteristics for 100-Pin Package (Continued)

Pack Pin	kage No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
FP	GP								
51	49		P43						A19(MA11)
52	50		P42						A18(MA10)
53	51		P41						A17(MA9)
54	52		P40						A16(MA8)
55	53		P37						A15(MA7)(/D15)
56	54		P36						A14(MA6)(/D14)
57	55		P35						A13(MA5)(/D13)
58	56		P34						A12(MA4)(/D12)
59	57		P33						A11(MA3)(/D11)
60	58		P32						A10(MA2)(/D10)
61	59		P31						A9(MA1)(/D9)
62	60	Vcc							
63	61		P30						A8(MA0)(/D8)
64	62	Vss							
65	63		P27					AN27	A7(/D7)
66	64		P26					AN26	A6(/D6)
67	65		P25					AN25	A5(/D5)
68	66		P24					AN24	A4(/D4)
69	67		P23					AN23	A3(/D3)
70	68		P22					AN22	A2(/D2)
71	69		P21					AN21	A1(/D1)
72	70		P20					AN20	A0(/D0)
73	71		P17	INT5				AINZU	D15
74	72		P16	INT4					D15
	73		P15	INT3					D13
75 76	74		P14	IIVIS					D13
	75		P13						
77	76		P13						D11
78									D10
79	77		P11						D9
80	78		P10					4410	D8
81	79		P07					AN07	D7
82	80		P06					AN06	D ₆
83	81		P05					AN05	D5
84	82		P04					AN04	D4
85	83		P03					AN03	D3
86	84		P02					AN02	D ₂
87	85		P01					AN01	D1
88	86		P0 ₀	l <u></u>				AN00	D ₀
89	87		P107	KI3				AN ₇	
90	88		P106	KI ₂				AN ₆	
91	89		P105	KI ₁				AN ₅	
92	90		P104	KI ₀				AN4	
93	91		P103					ANз	
94	92		P102					AN ₂	
95	93		P101					AN ₁	
96	94	AVss							
97	95		P100					AN ₀	
98	96	VREF							
99	97	AVcc							
100	98		P97			RxD4/SCL4/STxD4		ADTRG	
NOTE								-	

^{1.} Bus control pins in M32C/83T cannot be used.

1.6 Pin Description

Table 1.6 Pin Description (100-Pin and 144-Pin Packages)

Classsfication	Symbol	I/O Type	Function	
Power Supply	Vcc	I	Apply 3.0 to 5.5V to both Vcc pin.	
	Vss		Apply 0V to the Vss pin. (1)	
Analog Power	AVcc	I	Supplies power to the A/D converter. Connect the AVcc pin to Vcc and the	
Supply	AVss		AVss pin to Vss	
Reset Input	RESET	I	The microcomputer is in a reset state when "L" is applied to the RESET pin	
CNVss	CNVss	I	Switches processor mode. Connect the CNVss pin to Vss to start up in single-	
			chip mode or to Vcc to start up in microprocessor mode	
Input to Switch	BYTE	I	Switches data bus width in external memory space 3. The data bus is 16	
External Data Bus			bits wide when the BYTE pin is held "L" and 8 bits wide when it is held "	
Width ⁽²⁾	dth ⁽²⁾ Set to either. Connect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the microconnect the BYTE pin to Vss to use the BYTE pin to Use		Set to either. Connect the BYTE pin to Vss to use the microcomputer in	
			single-chip mode	
Bus Control	Do to D7	I/O	Inputs and outputs data (Do to D7) while accessing an external memory	
Pins ⁽²⁾			space with separate bus	
	D8 to D15	I/O	Inputs and outputs data (D8 to D15) while accessing an external memory	
			space with 16-bit separate bus	
	A0 to A22	0	Outputs address bits A0 to A22	
	A23	0	Outputs inversed address bit A23	
	A ₀ /D ₀ to	I/O	Inputs and outputs data (Do to D7) and outputs 8 low-order address bits (A0	
	A7/D7		to A7) by time-sharing while accessing an external memory space with	
	,		multiplexed bus	
	A8/D8 to	I/O	Inputs and outputs data (D8 to D15) and outputs 8 middle-order address bits	
	A15/D15	., 0	(A8 to A15) by time-sharing while accessing an external memory space with	
	7(10/10/10		16-bit multiplexed bus	
	CS0 to CS3	0	Outputs CS0 to CS3 that are chip-select signals specifying an external space	
	WRL / WR	0	Outputs WRL, WRH, (WR, BHE) and RD signals. WRL and WRH can be	
	WRH / BHE		switched with WR and BHE by program	
	RD		■ WRL, WRH and RD selected:	
	IND		If external data bus is 16 bits wide, data is written to an even address in	
			external memory space when \overline{WRL} is held "L".	
			Data is written to an odd address when WRH is held "L".	
			Data is written to all odd address when with its field $^{\circ}$ L.	
			■ WR, BHE and RD selected:	
			Data is written to external memory space when WR is held "L".	
			Data in an external memory space is read when RD is held "L".	
			An odd address is accessed when BHE is held "L".	
			Select WR, BHE and RD for external 8-bit data bus.	
	ALE	0	ALE is a signal latching the address	
	HOLD	I	The microcomputer is placed in a hold state while the HOLD pin is held "L"	
	HLDA	0	Outputs an "L" signal while the microcomputer is placed in a hold state	
	RDY	I	Bus is placed in a wait state while the RDY pin is held "L"	
DRAM Bus	MA0 to MA12	0	When DRAM area is accessed, outputs column and row addresses by time-sharing.	
Control Pin ⁽²⁾	DW	0	The DW signal becomes "L" when data is written to the DRAM area. CASL and CASH are	
	CASL		signals indicating the timing to latch column addresses. The CASL signal becomes "L" when	
	CASH		an even address is accessed. The $\overline{\text{CASH}}$ signal becomes "L" when an odd address is	
	RAS	i	accessed. RAS is a signal latching row addresses.	

I : Input O : Output I/O : Input and output NOTES:

^{1.} Apply 4.2 to 5.5V to the Vcc pin when using M32C/83T.

^{2.} Bus control pins in M32C/83T cannot be used.

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

Classsfication	Symbol	I/O Type	Function	
Main Clock Input	Main Clock Input XIN I I/O Main Clock Output XOUT O to		I/O pins for the main clock oscillation circuit. Connect a ceramic resonator	
Main Clock Output			or crystal oscillator between Хın and Хо∪т. То apply external clock, appl to Xın and leave Хо∪т open	
Sub Clock Input	XCIN	I	I/O pins for the sub clock oscillation circuit. Connect a crystal oscillator	
Sub Clock Output	XCOUT	0	between XCIN and XCOUT. To apply external clock, apply it to XCIN and leave XCOUT open	
Low-Pass Filter	VCONT		Connects the low-pass filter to the VCONT pin when using the PLL fre-	
·			quency synthesizer. Connect P86 to VSS to stabilize the PLL frequency.	
Pin for PLL				
Frequency				
Synthesizer Pin				
BCLK Output ⁽¹⁾	BCLK	0	Outputs BCLK signal	
Clock Output	CLKout	0	Outputs the clock having the same frequency as fC, f8 or f32	
INT Interrupt Input	INTO to INT5	I	Input pins for the INT interrupt	
NMI Interrupt Input	NMI	I	Input pin for the NMI interrupt	
Key Input Interrupt	Klo to Kl3	I	Input pins for the key input interrupt	
Timer A	TA0out to	I/O	I/O pins for the timer A0 to A4	
	TA4out		(TA0ou⊤ is a pin for the N-channel open drain output.)	
	TA0IN to	I	Input pins for the timer A0 to A4	
Timer B	TB0in to	I	Input pins for the timer B0 to B5	
Tilliel D	TB5IN	Į.	input pins for the timer bo to bo	
Three-phase Motor	\overline{U} , \overline{V} , \overline{V} ,	0	Output pins for the three-phase motor control timer	
Control Timer Output	W, \overline{W}			
Serial I/O	CTS0 to CTS4	I	Input pins for data transmission control	
	RTS0 to RTS4	0	Output pins for data reception control	
	CLK0 to CLK4	I/O	Inputs and outputs the transfer clock	
	RxD0 to RxD4	I	Inputs serial data	
	TxD0 to TxD4	0	Outputs serial data	
			(TxD2 is a pin for the N-channel open drain output.)	
I ² C Mode	SDA0 to	I/O	Inputs and outputs serial data	
	SDA4		(SDA2 is a pin for the N-channel open drain output.)	
	SCL0 to		Inputs and outputs the transfer clock	
	SCL4		(SCL2 is a pin for the N-channel open drain output.)	

I : Input O : Output I/O : Input and output NOTE:

^{1.} Bus control pins in M32C/83T cannot be used.

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

Classsfication	Symbol	I/O Type	Function
Serial I/O	STxD0 to	0	Outputs serial data when slave mode is selected
Special Function	STxD4		
	SRxD0 to	I	Inputs serial data when slave mode is selected
	SRxD4		
	SS0 to SS4	I	Input pins to control serial I/O special function
Reference	VREF	I	Applies reference voltage to the A/D converter and D/A converter
Voltage Input			
A/D Converter	ANo to AN7	I	Analog input pins for the A/D converter
	AN00 to AN07		
	AN20 to AN27		
	AN150 to AN157		
	ADTRG	I	Input pin for an external A/D trigger
	ANEX0	I/O	Extended analog input pin for the A/D converter and output pin in external
			op-amp connection mode
	ANEX1	I	Extended analog input pin for the A/D converter
D/A Converter	DA0, DA1	0	Output pin for the D/A converter
Intelligent I/O	INPC00 to INPC02	ı	Input pins for the time measurement function
	INPC03 to		
	INPC07 ⁽¹⁾		
	INPC11 to INPC12		
	INPC16 to		
	INPC17 ⁽¹⁾		
	OUTC00 to OUTC02	0	Output pins for the waveform generating function
	OUTC04 to		(OUTC20 and OUTC22 assigned to P70 and P71 are pins for the N-channel open drain output.)
	OUTC05 ⁽¹⁾		
	OUTC10 to OUTC12		
	OUTC13 to		
	OUTC17 ⁽¹⁾		
	OUTC20 to OUTC22		
	OUTC23 to		
	OUTC27 ⁽¹⁾		
	OUTC30 to OUTC32		
	OUTC31, OUTC33		
	to OUTC37 ⁽¹⁾		
	ISCLK0 to ISCLK2	I/O	Inputs and outputs the clock for the intelligent I/O communication function
	ISCLK3 ⁽¹⁾		
	ISRXD0 to ISRXD3		Inputs data for the intelligent I/O communication function
	ISTXD0 to ISTXD3		Outputs data for the intelligent I/O communication function
	BE0in, BE1in	I	Inputs data for the intelligent I/O communication function
	BE0out, BE1out	0	Outputs data for the intelligent I/O communication function
	IEIN	I	Inputs data for the intelligent I/O communication function
	IEout	0	Outputs data for the intelligent I/O communication function
CAN	CANIN	I	Input pin for the CAN communication function
	CANout	0	Output pin for the CAN communication function

I : Input O : Output I/O : Input and output

NOTE:

1. Available in the 144-pin package only.

Table 1.6 Pin Description (144-Pin Package only) (Continued)

Classsfication	Symbol	I/O Type	Function
I/O Ports	P00 to P07	I/O	8-bit I/O ports for CMOS. Each port can be programmed for input or output
	P10 to P17		under the control of the direction register. An input port can be set, by
	P20 to P27		program, for a pull-up resistor available or for no pull-up resister available in
	P30 to P37		4-bit units
	P40 to P47		(P70 and P71 are ports for the N-channel open drain output.)
	P50 to P57		
	P60 to P67		
	P70 to P77		
	P90 to P97		
	P100 to P107		
	P110 to P114	I/O	I/O ports having equivalent functions to P0
	P120 to P127		
	P130 to P137		
	P140 to P146		
	P150 to P157		
	(1)		
	P80 to P84	I/O	I/O ports having equivalent functions to P0
	P86, P87		
Input Port	P85	I	Shares a pin with $\overline{\text{NMI}}$. $\overline{\text{NMI}}$ input state can be got by reading P85

I : Input O : Output I/O : Input and output NOTE:

^{1.} Available in the 144-pin package only.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

A register bank comprises 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

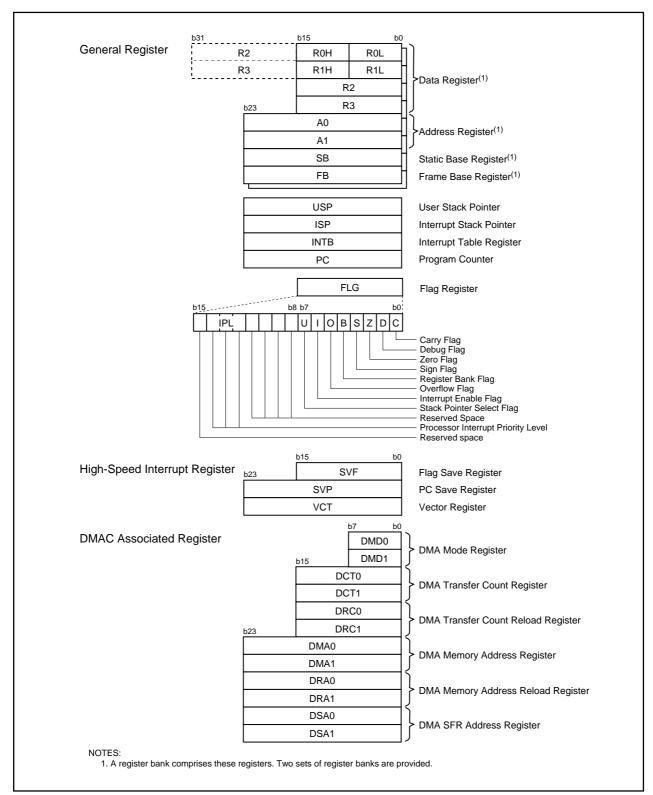


Figure 2.1 CPU Register

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an interrupt vector table.

2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to "2.1.8 Flag Register (FLG)" for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic calculation; otherwise "0".

2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic calculation; otherwise "0".

2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1".

The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When read, its content is indeterminate.

2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows. Refer to **10.4 High-Speed Interrupt** for details.

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows. Refer to 12. DMAC for details.

- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

3. Memory

Figure 3.1 shows a memory map of the M32C/83 group (M32C/83, M32C/83T).

M32C/83 group (M32C/83, M32C/83T) provides 16-Mbyte address space from addresses 00000016 to FFFFFF16.

The internal ROM is allocated lower addresses beginning with address FFFFF16. For example, a 64-Kbyte internal ROM is allocated addresses FF000016 to FFFFF16.

The fixed interrupt vectors are allocated addresses FFFDC16 to FFFFF16. It stores the starting address of each interrupt routine. Refer to **10. Interrupts** for details.

The internal RAM is allocated higher addresses beginning with address 00040016. For example, a 10-Kbyte internal RAM is allocated addresses 00040016 to 002BFF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowledged.

SFR, consisting of control registers for peripheral functions such as I/O port, A/D conversion, serial I/O, and timers, is allocated addresses 00000016 to 0003FF16. All addresses, which have nothing allocated within SFR, are reserved space and cannot be accessed by users.

The special page vectors are allocated addresses FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **Software Manual** for details.

In memory expansion mode and microprocessor mode, some space are reserved and cannot be accessed by users.

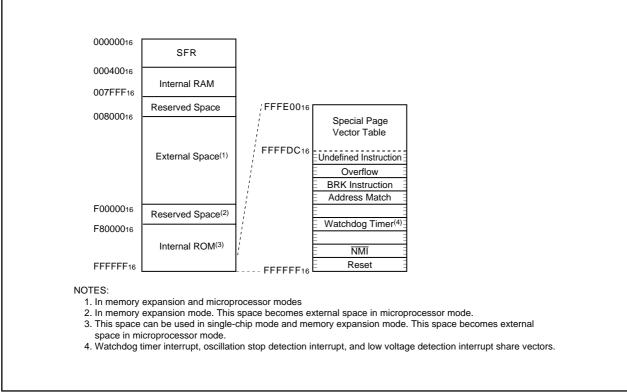


Figure 3.1 Memory Map

4. Special Function Registers (SFR)

Address	Register	Symbol	Value after RESET
000016			
000116			
000216			
000316			
000416	Processor Mode Register 0 ⁽¹⁾	PM0	1000 00002 (CNVss pin ="L") 0000 00112 (CNVss pin ="H")
000516	Processor Mode Register 1	PM1	0X00 00002
000516	System Clock Control Register 0	CMO	0000 X0002
000016	System Clock Control Register 1	CM1	0010 00002
000716	Wait Control Register ⁽²⁾	WCR	1111 11112
000916	Address Match Interrupt Enable Register	AIER	XXXX 00002
000A16	Protect Register	PRCR	XXXX 00002
000B16	External Data Bus Width Control Register ⁽²⁾	DS	XXXX 10002 (BYTE pin ="L") XXXX 00002 (BYTE pin ="H")
000C16	Main Clock Division Register	MCD	XXX0 10002
000D16	Oscillation Stop Detection Register	CM2	0016
000E16	Watchdog Timer Start Register	WDTS	XX16
000F16	Watchdog Timer Control Register	WDC	000X XXXX2
001016			
001116	Address Match Interrupt Register 0	RMAD0	00 00 0016
001216			
001316			
001416			
001516	Address Match Interrupt Register 1	RMAD1	00 00 0016
001616			
001716	VDC Control Register for PLL	PLV	XXXX XX012
001816		. = .	700070012
001916	Address Match Interrupt Register 2	RMAD2	00 00 0016
001A16			
001B16	VDC Control Register 0	VDC0	0016
001C16	VDC CONTON REGISTER O	VB00	0010
001D16	Address Match Interrupt Register 3	RMAD3	00 00 0016
001E16	Address Mater Menapt Register 5	111111111111111111111111111111111111111	00 00 00 10
001E16			
002016			
002016			
002116			
002316			
002416			
002516			
002616			
002716			
002816			
002916			
002A16			
002B16			
002C16			
002D16			
002E16			
002F16			

X: Indeterminate

Blank spaces are reserved. No access is allowed.

- 1. The PM00 and PM01 bits in the PM1 register maintain values set before reset even if software reset or watchdog timer reset is performed.
- 2. These registers in M32C/83T cannot be used.

Address	Register	Symbol	Value after RESET
003016			
003116			
003216			
003316			
003416			
003516			
003616			
003716			
003816			
003916			
003A16			
003B16			
003C16			
003D16			
003E16			
003F16			
004016	DRAM Control Register (1)	DRAMCONT	XX16
004116	DRAM Refresh Interval Set Register (1)	REFCNT	XX16
004216			
004316			
004416			
004516			
004616			
004716			
004816			
004916			
004A16			
004B16			
004C16			
004D16			
004E16			
004F16			
005016			
005116			
005216			
005316			
005416			
005516			
005616			
005716	Flash Memory Control Register 0	FMR0	XX00 00012
005816			
005916			
005A16			
005B16			
005C16			
005D16			
005E16			
005F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. These registers in M32C/83T cannot be used.

Address	Register	Symbol	Value after RESET
006016			
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816	DMA0 Interrupt Control Register	DM0IC	XXXX X0002
006916	Timer B5 Interrupt Control Register	TB5IC	XXXX X0002
006A16	DMA2 Interrupt Control Register	DM2IC	XXXX X0002
006B16	UART2 Receive /ACK Interrupt Control Register	S2RIC	XXXX X0002
006C16	Timer A0 Interrupt Control Register	TAOIC	XXXX X0002
006D16	UART3 Receive /ACK Interrupt Control Register	S3RIC	XXXX X0002
006E16	Timer A2 Interrupt Control Register	TA2IC	XXXX X0002
006F16	UART4 Receive /ACK Interrupt Control Register	S4RIC	XXXX X0002
007016	Timer A4 Interrupt Control Register	TA4IC	XXXX X0002
007116	UART0/UART3 Bus Conflict Detect Interrupt Control Register	BCN0IC/BCN3IC	XXXX X0002
007216	UARTO Receive/ACK Interrupt Control Register	SORIC	XXXX X0002
007316	A/D0 Conversion Interrupt Control Register	ADOIC	XXXX X0002
007416	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X0002
007516	Intelligent I/O Interrupt Control Register 0	IIO0IC	XXXX X0002
007616	Timer B1 Interrupt Control Register	TB1IC	XXXX X0002
007716	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X0002
007816	Timer B3 Interrupt Control Register	TB3IC	XXXX X0002
007916	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X0002
007A16	INT5 Interrupt Control Register	INT5IC	XX00 X0002
007R16	Intelligent I/O Interrupt Control Register 6	IIO6IC	XXXX X0002
007C16	INT3 Interrupt Control Register	INT3IC	XX00 X0002
007 D16	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X0002
007E16	INT1 Interrupt Control Register	INT1IC	XXXX X0002 XX00 X0002
007 L 16	Intelligent I/O Interrupt Control Register 10/	IIO10IC	XX00 X0002
007F16	CAN Interrupt 1 Control Register	CAN1IC	XXXX X0002
000048	CAN Interrupt 1 Control Register	CANTIC	
008016	Intelligent I/O Interrupt Control Register 11/	IIO11IC	
008116	, ,		XXXX X0002
0000	CAN Interrupt 2 Control Register	CAN2IC	
008216			
008316			
008416			
008516			
008616	A/D1 Conversion Interrupt Control Register	AD1IC	XXXX X0002
008716			
008816	DMA1 Interrupt Control Register	DM1IC	XXXX X0002
008916	UART2 Transmit /NACK Interrupt Control Register	S2TIC	XXXX X0002
008A16	DMA3 Interrupt Control Register	DM3IC	XXXX X0002
008B16	UART3 Transmit /NACK Interrupt Control Register	S3TIC	XXXX X0002
008C16	Timer A1 Interrupt Control Register	TA1IC	XXXX X0002
008D16	UART4 Transmit /NACK Interrupt Control Register	S4TIC	XXXX X0002
008E16	Timer A3 Interrupt Control Register	TA3IC	XXXX X0002
008F16	UART2 Bus Conflict Detect Interrupt Control Register	BCN2IC	XXXX X0002

Address	Register	Symbol	Value after RESET
009016	UART0 Transmit /NACK Interrupt Control Register	SOTIC	XXXX X0002
009116	UART1/UART4 Bus Conflict Detect Interrupt Control Register	BCN1IC/BCN4IC	XXXX X0002
009216	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X0002
009316	Key Input Interrupt Control Register	KUPIC	XXXX X0002
009416	Timer B0 Interrupt Control Register	TB0IC	XXXX X0002
009516	Intelligent I/O Interrupt Control Register 1	IIO1IC	XXXX X0002
009616	Timer B2 Interrupt Control Register	TB2IC	XXXX X0002
009716	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X0002
009816	Timer B4 Interrupt Control Register	TB4IC	XXXX X0002
009916	Intelligent I/O Interrupt Control Register 5	IIO5IC	XXXX X0002
009A16	INT4 Interrupt Control Register	INT4IC	XX00 X0002
009B16	Intelligent I/O Interrupt Control Register 7	IIO7IC	XXXX X0002
009C16	INT2 Interrupt Control Register	INT2IC	XX00 X0002
0000	Intelligent I/O Interrupt Control Register 9/	IIO9IC)//////////
009D16	CAN Interrupt 0 Control Register	CAN0IC	XXXX X0002
009E16	INT0 Interrupt Control Register	INT0IC	XX00 X0002
009F16	Exit Priority Control Register	RLVL	XXXX 00002
00A016	Interrupt Request Register 0	IIO0IR	0000 000X2
00A116	Interrupt Request Register 1	IIO1IR	0000 000X2
00A216	Interrupt Request Register 2	IIO2IR	0000 000X2
00A316	Interrupt Request Register 3	IIO3IR	0000 000X2
00A416	Interrupt Request Register 4	IIO4IR	0000 000X2
00A516	Interrupt Request Register 5	IIO5IR	0000 000X2
00A616	Interrupt Request Register 6	IIO6IR	0000 000X2
00A716	Interrupt Request Register 7	IIO7IR	0000 000X2
00A816	Interrupt Request Register 8	IIO8IR	0000 000X2
00A916	Interrupt Request Register 9	IIO9IR	0000 000X2
00AA16	Interrupt Request Register 10	IIO10IR	0000 000X2
00AB16	Interrupt Request Register 11	IIO11IR	0000 000X2
00AC16			
00AD16			
00AE16			
00AF16			
00B016	Interrupt Enable Register 0	IIO0IE	0016
00B116	Interrupt Enable Register 1	IIO1IE	0016
00B216	Interrupt Enable Register 2	IIO2IE	0016
00B316	Interrupt Enable Register 3	IIO3IE	0016
00B416	Interrupt Enable Register 4	IIO4IE	0016
00B516	Interrupt Enable Register 5	IIO5IE	0016
00B616	Interrupt Enable Register 6	IIO6IE	0016
00B716	Interrupt Enable Register 7	IIO7IE	0016
00B816	Interrupt Enable Register 8	IIO8IE	0016
00B916	Interrupt Enable Register 9	IIO9IE	0016
00BA16	Interrupt Enable Register 10	IIO10IE	0016
00BB16	Interrupt Enable Register 11	IIO11IE	0016
00BC16			
00BD16			
00BE16			
00BF16			

Register	Symbol	Value after RESET
Craws O Time Management (Mayorform Conserting Desigtor O	COTMO/CODO	XX16
Group of time Measurement/Waveform Generating Register of	GUTMU/GUPOU	XX16
One of Time Management (Management One of the Davids of A	007144/00704	XX16
Group of time Measurement/Waveform Generating Register 1	G01M1/G0PO1	XX16
Once O Time Management (AManagement Occasion)	007140/00700	XX16
Group 0 Time Measurement/Waveform Generating Register 2	G01M2/G0PO2	XX16
	0.7140/0.000	XX16
Group 0 Time Measurement/Waveform Generating Register 3	G01M3/G0PO3	XX16
0 0T M	007144/00004	XX16
Group 0 Time Measurement/Waveform Generating Register 4	G01M4/G0PO4	XX16
	0.71.17/0.70.7	XX16
Group 0 Time Measurement/Waveform Generating Register 5	G0TM5/G0PO5	XX16
		XX16
Group 0 Time Measurement/Waveform Generating Register 6	G0TM6/G0PO6	XX16
		XX16
Group 0 Time Measurement/Waveform Generating Register 7	G0TM7/G0PO7	XX16
Group 0 Waveform Generating Control Register 0	G0POCR0	0X00 X0002
	G0POCR1	0X00 X0002
	G0POCR2	0X00 X0002
	G0POCR3	0X00 X0002
	G0POCR4	0X00 X0002
<u> </u>	G0POCR5	0X00 X0002
<u> </u>		0X00 X0002
<u> </u>		0X00 X0002
<u> </u>		0016
		0016
		0016
		0016
		0016
		0016
		0016
		0016
		XX16
Group 0 Base Timer Register	G0BT	XX16
Group 0 Base Timer Control Register 0	G0BCR0	0016
		0016
		0016
		0016
		0016
<u> </u>		0016
		XXXX XXXX2
Group 0 SI/O Receive Buffer Register	G0RB	XX00 XXXX2
Group 0 Transmit Buffer/Receive Data Register	G0TB/G0DR	XX16
Croap & Transmit Bullet/Nobolife Bata Neglotel	001D/00DIX	7000
Group O Receive Input Register	GORI	XX16
		0016
·	GOTO	XX16
Group 0 Transmit Output Register	1 (=()1()	I X X 16
	Group 0 Time Measurement/Waveform Generating Register 0 Group 0 Time Measurement/Waveform Generating Register 1 Group 0 Time Measurement/Waveform Generating Register 2 Group 0 Time Measurement/Waveform Generating Register 3 Group 0 Time Measurement/Waveform Generating Register 4 Group 0 Time Measurement/Waveform Generating Register 5 Group 0 Time Measurement/Waveform Generating Register 5 Group 0 Time Measurement/Waveform Generating Register 6 Group 0 Time Measurement/Waveform Generating Register 7 Group 0 Waveform Generating Control Register 0 Group 0 Waveform Generating Control Register 1 Group 0 Waveform Generating Control Register 2 Group 0 Waveform Generating Control Register 3 Group 0 Waveform Generating Control Register 4 Group 0 Waveform Generating Control Register 5 Group 0 Waveform Generating Control Register 6 Group 0 Waveform Generating Control Register 7 Group 0 Time Measurement Control Register 1 Group 0 Time Measurement Control Register 1 Group 0 Time Measurement Control Register 2 Group 0 Time Measurement Control Register 3 Group 0 Time Measurement Control Register 3 Group 0 Time Measurement Control Register 5 Group 0 Time Measurement Control Register 6 Group 0 Time Measurement Control Register 6 Group 0 Time Measurement Control Register 6 Group 0 Time Measurement Control Register 7 Group 0 Base Timer Register Group 0 Time Measurement Control Register 7 Group 0 Base Timer Control Register 1 Group 0 Time Measurement Control Register 7 Group 0 Time Measurement Prescaler Register 6 Group 0 Time Measurement Prescaler Register 7 Group 0 Function Enable Register	Group 0 Time Measurement/Waveform Generating Register 1 G0TM1/G0PO1 Group 0 Time Measurement/Waveform Generating Register 2 G0TM2/G0PO2 Group 0 Time Measurement/Waveform Generating Register 2 G0TM3/G0PO3 Group 0 Time Measurement/Waveform Generating Register 3 G0TM3/G0PO3 Group 0 Time Measurement/Waveform Generating Register 4 G0TM4/G0PO4 Group 0 Time Measurement/Waveform Generating Register 5 G0TM5/G0PO5 Group 0 Time Measurement/Waveform Generating Register 6 G0TM6/G0PO6 Group 0 Time Measurement/Waveform Generating Register 7 G0TM7/G0PO7 Group 0 Waveform Generating Control Register 0 G0POCR0 Group 0 Waveform Generating Control Register 1 G0POCR1 Group 0 Waveform Generating Control Register 2 G0POCR2 Group 0 Waveform Generating Control Register 3 G0POCR3 Group 0 Waveform Generating Control Register 3 G0POCR4 Group 0 Waveform Generating Control Register 3 G0POCR5 Group 0 Waveform Generating Control Register 5 G0POCR6 Group 0 Waveform Generating Control Register 7 G0POCR6 Group 0 Waveform Generating Control Register 7 G0POCR6 Group 0 Waveform Generating Control Register 6 G0POCR6 Group 0 Waveform Generating Control Register 7 G0POCR6 Group 0 Time Measurement Control Register 7 G0POCR7 Group 0 Time Measurement Control Register 1 G0TMCR0 Group 0 Time Measurement Control Register 1 G0TMCR1 Group 0 Time Measurement Control Register 3 G0TMCR2 Group 0 Time Measurement Control Register 3 G0TMCR3 Group 0 Time Measurement Control Register 3 G0TMCR4 Group 0 Time Measurement Control Register 6 G0TMCR6 Group 0 Time Measurement Control Register 7 G0TMCR6 Group 0 Time Measurement Control Register 6 G0TMCR6 Group 0 Time Measurement Control Register 7 G0TMCR6 Group 0 Base Timer Control Register 1 G0BCR0 G0BCR0 Group 0 Base Timer Control Register 7 G0TPR7 Group 0 Function Enable Register G0FE Group 0 Time Measurement Prescaler

Address	Register	Symbol	Value after RESET
00F016	Group 0 Data Compare Register 0	G0CMP0	XX16
00F116	Group 0 Data Compare Register 1	G0CMP1	XX16
00F216	Group 0 Data Compare Register 2	G0CMP2	XX16
00F316	Group 0 Data Compare Register 3	G0CMP3	XX16
00F416	Group 0 Data Mask Register 0	G0MSK0	XX16
00F516	Group 0 Data Mask Register 1	G0MSK1	XX16
00F616	<u> </u>		
00F716			
00F816			XX16
00F916	Group 0 Receive CRC Code Register	G0RCRC	XX16
00FA16			0016
00FB16	Group 0 Transmit CRC Code Register	G0TCRC	0016
00FC16	Group 0 SI/O Extended Mode Register	G0EMR	0016
00FD16	Group 0 SI/O Extended Receive Control Register	G0ERC	0016
00FE16	Group 0 SI/O Special Communication Interrupt Detect Register	G0IRF	0000 00XX2
00FF16	Group 0 SI/O Extended Transmit Control Register	G0ETC	0000 0XXX2
010016			XX16
010116	Group 1 Time Measurement/Waveform Generating Register 0	G1TM0/G1PO0	XX16
010216			XX16
010316	Group 1 Time Measurement/Waveform Generating Register 1	G1TM1/G1PO1	XX16
010416			XX16
010516	Group 1 Time Measurement/Waveform Generating Register 2	G1TM2/G1PO2	XX16
010616			XX16
010716	Group 1 Time Measurement/Waveform Generating Register 3	G1TM3/G1PO3	XX16
010816			XX16
010916	Group 1 Time Measurement/Waveform Generating Register 4	G1TM4/G1PO4	XX16
010A16			XX16
010B ₁₆	Group 1 Time Measurement/Waveform Generating Register 5	G1TM5/G1PO5	XX16
010C16			XX16
010D16	Group 1 Time Measurement/Waveform Generating Register 6	G1TM6/G1PO6	XX16
010E16			XX16
010F16	Group 1 Time Measurement/Waveform Generating Register 7	G1TM7/G1PO7	XX16
011016	Group 1 Waveform Generating Control Register 0	G1POCR0	0X00 X0002
011116	Group 1 Waveform Generating Control Register 1	G1POCR1	0X00 X0002
011216	Group 1 Waveform Generating Control Register 2	G1POCR2	0X00 X0002
011316	Group 1 Waveform Generating Control Register 3	G1POCR3	0X00 X0002
011416	Group 1 Waveform Generating Control Register 4	G1POCR4	0X00 X0002 0X00 X0002
011516	Group 1 Waveform Generating Control Register 5	G1POCR5	0X00 X0002 0X00 X0002
011616	Group 1 Waveform Generating Control Register 6	G1POCR6	0X00 X0002 0X00 X0002
011716	Group 1 Waveform Generating Control Register 7	G1POCR7	0X00 X0002 0X00 X0002
011816	Group 1 Time Measurement Control Register 0	G1TMCR0	0016
011916	Group 1 Time Measurement Control Register 1	G1TMCR1	0016
011A16	Group 1 Time Measurement Control Register 2	G1TMCR2	0016
011B16	Group 1 Time Measurement Control Register 2	G1TMCR2	0016
011C16	Group 1 Time Measurement Control Register 4	G1TMCR4	0016
011D16	Group 1 Time Measurement Control Register 5	G1TMCR5	0016
011E16	Group 1 Time Measurement Control Register 6	G1TMCR6	0016
011F ₁₆	Group 1 Time Measurement Control Register 7	G1TMCR7	0016

Address	Register	Symbol	Value after RESET
012016	0 45 7 5 1	0.457	XX16
012116	Group 1 Base Timer Register	G1BT	XX16
012216	Group 1 Base Timer Control Register 0	G1BCR0	0016
012316	Group 1 Base Timer Control Register 1	G1BCR1	0016
012416	Group 1 Time Measurement Prescaler Register 6	G1TPR6	0016
012516	Group 1 Time Measurement Prescaler Register 7	G1TPR7	0016
012616	Group 1 Function Enable Register	G1FE	0016
012716	Group 1 Function Select Register	G1FS	0016
012816			XXXX XXXX2
012916	Group 1 SI/O Receive Buffer Register	G1RB	XX00 XXXX2
012A16	Group 1 Transmit Buffer/Receive Data Register	G1TB/G1DR	XX16
012B ₁₆	· · ·		
012C16	Group 1 Receive Input Register	G1RI	XX16
012D16	Group 1 SI/O Communication Mode Register	G1MR	0016
012E ₁₆	Group 1 Transmit Output Register	G1TO	XX16
012F16	Group 1 SI/O Communication Control Register	G1CR	0000 X0002
013016	Group 1 Data Compare Register 0	G1CMP0	XX16
013116	Group 1 Data Compare Register 1	G1CMP1	XX16
013216	Group 1 Data Compare Register 2	G1CMP2	XX16
013316	Group 1 Data Compare Register 3	G1CMP3	XX16
013416	Group 1 Data Mask Register 0	G1MSK0	XX16
013516	Group 1 Data Mask Register 1	G1MSK1	XX16
013616	Group i Bata Wask Register i	OTWORT	7/7/10
013716			
013716			XX16
013016	Group 1 Receive CRC Code Register	G1RCRC	XX16
013916 013A16			0016
013B16	Group 1 Transmit CRC Code Register	G1TCRC	0016
013C16	Group 1 SI/O Extended Mode Register	G1EMR	0016
013D16	Group 1 SI/O Extended Mode Register Group 1 SI/O Extended Receive Control Register	G1ERC	0016
013E16	Group 1 SI/O Special Communication Interrupt Detect Register	G1IRF	0000 00XX2
013E16	Group 1 SI/O Extended Transmit Control Register	G1ETC	0000 00XX2
013616	Group 1 Si/O Exterided Transmit Control Register	GIEIC	XX16
014016	Group 2 Waveform Generating Register 0	G2PO0	XX16
014116			XX16
014216	Group 2 Waveform Generating Register 1	G2PO1	
			XX16
014416	Group 2 Waveform Generating Register 2	G2PO2	XX16
014516 014616			XX16 XX16
014616	Group 2 Waveform Generating Register 3	G2PO3	
	- 		XX16 XX16
014816	Group 2 Waveform Generating Register 4	G2PO4	
014916			XX16
014A16	Group 2 Waveform Generating Register 5	G2PO5	XX16
014B16		-	XX16
014C16	Group 2 Waveform Generating Register 6	G2PO6	XX16
014D16	. 3 3 4 4	-	XX16
014E16	Group 2 Waveform Generating Register 7	G2PO7	XX16
014F ₁₆	, 3 3		XX16

Address	Register	Symbol	Value after RESET
015016	Group 2 Waveform Generating Control Register 0	G2POCR0	0016
015116	Group 2 Waveform Generating Control Register 1	G2POCR1	0016
015216	Group 2 Waveform Generating Control Register 2	G2POCR2	0016
015316	Group 2 Waveform Generating Control Register 3	G2POCR3	0016
015416	Group 2 Waveform Generating Control Register 4	G2POCR4	0016
015516	Group 2 Waveform Generating Control Register 5	G2POCR5	0016
015616	Group 2 Waveform Generating Control Register 6	G2POCR6	0016
015716	Group 2 Waveform Generating Control Register 7	G2POCR7	0016
015816			
015916			
015A16			
015B ₁₆			
015C16			
015D16			
015E16			
015F16			
016016			XX16
016116	Group 2 Base Timer Register	G2BT	XX16
016216	Group 2 Base Timer Control Register 0	G2BCR0	0016
016316	Group 2 Base Timer Control Register 1	G2BCR1	0016
016416	Base Timer Start Register	BTSR	XXXX 00002
016516	Ü		
016616	Group 2 Function Enable Register	G2FE	0016
016716	Group 2 RTP Output Buffer Register	G2RTP	0016
016816	1 0		
016916			
016A16	Group 2 SI/O Communication Mode Register	G2MR	00XX X0002
016B16	Group 2 SI/O Communication Control Register	G2CR	0000 X0002
016C16			XX16
016D16	Group 2 SI/O Transmit Buffer Register	G2TB	XX16
016E16			XX16
016F16	Group 2 SI/O Receive Buffer Register	G2RB	XX16
017016			XX16
017116	Group 2 IEBus Address Register	IEAR	XX16
017216	Group 2 IEBus Control Register	IECR	00XX X0002
017316	Group 2 IEBus Transmit Interrupt Cause Detect Register	IETIF	XXX0 00002
017416	Group 2 IEBus Receive Interrupt Cause Detect Register	IERIF	XXX0 00002
017516	,		
017616			
017716			
017816	Input Function Select Register	IPS	0016
017916	,	-	
017A16	Group 3 SI/O Communication Mode Register	G3MR	00XX 00002
017B16	Group 3 SI/O Communication Control Register	G3CR	0000 X0002
017C16			XX16
017D16	Group 3 SI/O Transmit Buffer Register	G3TB	XX16
017E16			XX16
017F16	Group 3 SI/O Receive Buffer Register	G3RB	XX16
L			1

Address	Register	Symbol	Value after RESET
018016	Oncor O.W. and Company Company to an Province O	00000	XX16
018116	Group 3 Waveform Generating Register 0	G3PO0	XX16
018216	Oncor O.W. and Company Company to an Province A	00004	XX16
018316	Group 3 Waveform Generating Register 1	G3PO1	XX16
018416	Oncor O.W. and Company Company to an Province O.	00000	XX16
018516	Group 3 Waveform Generating Register 2	G3PO2	XX16
018616	0 0 0 0 0 0	00000	XX16
018716	Group 3 Waveform Generating Register 3	G3PO3	XX16
018816	Oncor O.W. and Company Company to a Resistant	00004	XX16
018916	Group 3 Waveform Generating Register 4	G3PO4	XX16
018A16	Oncor O.W. of the Oceanities Bestiden 5	00005	XX16
018B16	Group 3 Waveform Generating Register 5	G3PO5	XX16
018C16	0 0 0 0 0 0 0	00000	XX16
018D16	Group 3 Waveform Generating Register 6	G3PO6	XX16
018E16	Oncor O.W. and Comparison Provides 7	00007	XX16
018F16	Group 3 Waveform Generating Register 7	G3PO7	XX16
019016	Group 3 Waveform Generating Control Register 0	G3POCR0	0016
019116	Group 3 Waveform Generating Control Register 1	G3POCR1	0016
019216	Group 3 Waveform Generating Control Register 2	G3POCR2	0016
019316	Group 3 Waveform Generating Control Register 3	G3POCR3	0016
019416	Group 3 Waveform Generating Control Register 4	G3POCR4	0016
019516	Group 3 Waveform Generating Control Register 5	G3POCR5	0016
019616	Group 3 Waveform Generating Control Register 6	G3POCR6	0016
019716	Group 3 Waveform Generating Control Register 7	G3POCR7	0016
019816	Crown 2 Mayoform Congrating Mock Posister 4	COMICA	XX16
019916	Group 3 Waveform Generating Mask Register 4	G3MK4	XX16
019A ₁₆	Crown 2 Mayoform Congrating Mock Posister 5	COMME	XX16
019B ₁₆	Group 3 Waveform Generating Mask Register 5	G3MK5	XX16
019C16	Crown 2 Mayoform Congrating Mock Posister 6	COMICE	XX16
019D16	Group 3 Waveform Generating Mask Register 6	G3MK6	XX16
019E ₁₆	Group 3 Waveform Generating Mask Register 7	G3MK7	XX16
019F16	Group 3 Waverorm Generaling Mask Register 7	GSWK7	XX16
01A016	Group 3 Base Timer Register	G3BT	XX16
01A116	Group 3 base Timer Register	GSBT	XX16
01A216	Group 3 Base Timer Control Register 0	G3BCR0	0016
01A316	Group 3 Base Timer Control Register 1	G3BCR1	0016
01A416			
01A516			
01A616	Group 3 Function Enable Register	G3FE	0016
01A716	Group 3 RTP Output Buffer Register	G3RTP	0016
01A816			
01A916			
01AA16			
01AB16			
01AC16			
01AD16	Group 3 SI/O Communication Flag Register	G3FLG	XXXX XXX02
01AE16			
01AF16			

Address	Register	Symbol	Value after RESET
01B016		·	
01B116			
01B216			
01B316			
01B416			
01B516			
01B616			
01B716			
01B816			
01B916			
01BA ₁₆			
01BB16			
01BC16			
01BD16			
01BE16			
01BF16			
01C016			XX16
01C116	A/D1 Register 0	AD10	XX16
01C216			XX16
01C316	1 A /D4 D = =: = t = = 4	AD11	XX16
01C416			XX16
01C516	A/D1 Register 2	AD12	XX16
01C616			XX16
01C716	A/D1 Register 3	AD13	XX16
01C816			XX16
01C916	A/D1 Register 4	AD14	XX16
01CA ₁₆			XX16
01CB ₁₆	A/D1 Register 5	AD15	XX16
01CC16			XX16
01CD16	A/D1 Register 6	AD16	XX16
01CE16			XX16
01CF16	A/D1 Register 7	AD17	XX16
01D016			
01D116			
01D216			
01D316			
01D416	A/D1 Control Register 2	AD1CON2	X00X X0002
01D516			
01D616	A/D1 Control Register 0	AD1CON0	0016
01D716	A/D1 Control Register 1	AD1CON1	XX00 00002
01D816			
01D916			
01DA16			
01DB16			
01DC16			
01DD16			
01DE16			
01DF16			

Address	Register	Symbol	Value after RESET
01E016	CAN0 Message Slot Buffer 0 Standard ID0	C0SLOT0_0	XX16
01E116	CAN0 Message Slot Buffer 0 Standard ID1	C0SLOT0 1	XX16
01E216	CAN0 Message Slot Buffer 0 Extended ID0	C0SLOT0_2	XX16
01E316	CAN0 Message Slot Buffer 0 Extended ID1	C0SLOT0_3	XX16
01E416	CAN0 Message Slot Buffer 0 Extended ID2	C0SLOT0_4	XX16
01E516	CAN0 Message Slot Buffer 0 Data Length Code	C0SLOT0_5	XX16
01E616	CANO Message Slot Buffer 0 Data 0	C0SLOT0_6	XX16
01E716	CAN0 Message Slot Buffer 0 Data 1	C0SLOT0_7	XX16
01E816	CAN0 Message Slot Buffer 0 Data 2	C0SLOT0_8	XX16
01E916	CANO Message Slot Buffer 0 Data 3	COSLOTO 9	XX16
01EA ₁₆	CANO Message Slot Buffer 0 Data 4	C0SLOT0_10	XX16
01EB ₁₆	CANO Message Slot Buffer 0 Data 5	C0SLOT0_11	XX16
01EC16	CANO Message Slot Buffer 0 Data 6	C0SLOT0_12	XX16
01ED16	CANO Message Slot Buffer 0 Data 7	C0SLOT0_13	XX16
01EE16	CANO Message Slot Buffer 0 Time Stamp High-Order	C0SLOT0_13	XX16
01EF16	CANO Message Slot Buffer 0 Time Stamp Low-Order	C0SLOT0_14	XX16
01F016	CANO Message Slot Buffer 1 Standard ID0	C0SLOT1_0	XX16
01F016	-	C0SLOT1_0	XX16
01F116	CANO Message Slot Buffer 1 Standard ID1	C0SLOT1_1	XX16
	CANO Message Slot Buffer 1 Extended ID0	COSLOT1_2	XX16
01F316	CANO Message Slot Buffer 1 Extended ID1		XX16 XX16
01F416	CANO Message Slot Buffer 1 Extended ID2	COSLOT1_4	XX16 XX16
01F516	CANO Message Slot Buffer 1 Data Length Code	COSLOT1_5	
01F616	CANO Message Slot Buffer 1 Data 0	COSLOT1_6	XX16
01F716	CANO Message Slot Buffer 1 Data 1	C0SLOT1_7	XX16
01F816	CANO Message Slot Buffer 1 Data 2	C0SLOT1_8	XX16
01F916	CANO Message Slot Buffer 1 Data 3	C0SLOT1_9	XX16
01FA16	CANO Message Slot Buffer 1 Data 4	C0SLOT1_10	XX16
01FB ₁₆	CANO Message Slot Buffer 1 Data 5	C0SLOT1_11	XX16
01FC16	CANO Message Slot Buffer 1 Data 6	C0SLOT1_12	XX16
01FD16	CANO Message Slot Buffer 1 Data 7	C0SLOT1_13	XX16
01FE16	CANO Message Slot Buffer 1 Time Stamp High-Order	C0SLOT1_14	XX16
01FF16	CAN0 Message Slot Buffer 1 Time Stamp Low-Order	C0SLOT1_15	XX16
020016	CAN0 Control Register 0	C0CTLR0	XX01 0X012 ⁽¹⁾
020116			XXXX 00002 ⁽¹⁾
020216	CAN0 Status Register	COSTR	0000 00002 ⁽¹⁾
020316			X000 0X012 ⁽¹⁾
020416	CAN0 Extended ID Register	COIDR	0016 ⁽¹⁾
020516			0016 ⁽¹⁾
020616	CAN0 Configuration Register	COCONR	0000 XXXX2 ⁽¹⁾
020716		33301111	0000 00002 ⁽¹⁾
020816	CAN0 Time Stamp Register	COTSR	0016 ¹⁾
020916	1 0		0016 ⁽¹⁾
020A16	CAN0 Transmit Error Count Register	C0TEC	0016 ⁽¹⁾
020B16	CAN0 Receive Error Count Register	C0REC	0016 ⁽¹⁾
020C16	CAN0 Slot Interrupt Status Register	COSISTR	0016 ⁽¹⁾
020D16	OANO GIOL IIILEITUPL GLALUS INEGISLEI	COOLOTA	0016 ⁽¹⁾
020E16			
020F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

Address	Register	Symbol	Value after RESET	
021016	CANO Clat Interment Month Deviator	COCIMICD	0016 ⁽²⁾	
021116	CAN0 Slot Interrupt Mask Register	COSIMKR	0016 ⁽²⁾	
021216				
021316				
021416	CAN0 Error Interrupt Mask Register	C0EIMKR	XXXX X0002 ⁽²⁾	
021516	CAN0 Error Interrupt Status Register	C0EISTR	XXXX X0002 ⁽²⁾	
021616				
021716	CAN0 Baud Rate Prescaler	C0BRP	0000 00012(2)	
021816				
021916				1
021A ₁₆				1
021B ₁₆				
021C ₁₆				
021D ₁₆				
021E ₁₆				
021F ₁₆				
022016				1
022116				⊣
022216				-
022316				\dashv
022416				-
022516				-
022616				-
022716				-
022816	CAN0 Global Mask Register Standard ID0	COGMRO	XXX0 00002 ⁽²⁾	
022916	CANO Global Mask Register Standard ID1	C0GMR1	XX00 00002 ⁽²⁾	-
022A16	CANO Global Mask Register Extended ID0	C0GMR2	XXXX 00002 ⁽²⁾	-
022B16	CANO Global Mask Register Extended ID1	C0GMR3	0016 ⁽²⁾	-
022C16	CANO Global Mask Register Extended ID2	C0GMR4	XX00 00002 ⁽²⁾	-
022D16	OANO Global Mask Register Extended 152	OOSWI1C4	7//00/00002	-
022E16				-
022F16				(Note 1
022116	CAN0 Message Slot 0 Control Register /	C0MCTL0/	0000 00002 ⁽²⁾	┨` ╷ ゚
023016	CANO Message Slot o Control Register / CANO Local Mask Register A Standard ID0	COLMARO	XXX0 00002 ⁽²⁾	
	CANO Local Mask Register A Standard 100 CANO Message Slot 1 Control Register /	COMCTL1/	0000 00002(7)	
023116		C0LMAR1	XX00 00002 ⁽²⁾	
	CANO Local Mask Register A Standard ID1		0000 00002(2)	
023216	CANO Legal Mark Register A Extended IDO	COMCTL2/	XXXX 00002 ⁽²⁾	
	CANO Local Mask Register A Extended ID0	COLMAR2		_
023316	CANO Legal Made Basistas A Francisco De Cano Legal Made Basistas A Francisco De Cano	COMCTL3/	0016 ⁽²⁾	
	CANO Local Mask Register A Extended ID1	COLMAR3	0016 ⁽²⁾	-
023416	CANO Message Slot 4 Control Register /	COMCTL4/	0000 00002 ⁽²⁾	
	CANO Local Mask Register A Extended ID2	C0LMAR4	XX00 00002 ⁽²⁾	_
023516	CANO Message Slot 5 Control Register	C0MCTL5	0016 ⁽²⁾	_
023616	CAN0 Message Slot 6 Control Register	C0MCTL6	0016 ⁽²⁾	_
023716	CANO Message Slot 7 Control Register	C0MCTL7	0016 ⁽²⁾	_
023816	CAN0 Message Slot 8 Control Register /	C0MCTL8/	0000 00002 ⁽²⁾	₩
320010	CAN0 Local Mask Register B Standard ID0	C0LMBR0	XXX0 00002 ⁽²⁾	

Blank spaces are reserved. No access is allowed.

- 1. The BANKSEL bit in the C0CTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

Address	Register	Symbol	Value after RESET	
0000	CAN0 Message Slot 9 Control Register /	C0MCTL9/	0000 00002(2)	1
023916	CAN0 Local Mask Register B Standard ID1	C0LMBR1	XX00 00002 ⁽²⁾	l T
	CAN0 Message Slot 10 Control Register /	C0MCTL10/	0000 00002(2)	7
023A16	CAN0 Local Mask Register B Extended ID0	C0LMBR2	XXXX 00002 ⁽²⁾	
	CAN0 Message Slot 11 Control Register /	C0MCTL11/	0016 ⁽²⁾	
023B16	CAN0 Local Mask Register B Extended ID1	C0LMBR3	0016 ⁽²⁾	(Note 1)
_	CAN0 Message Slot 12 Control Register /	C0MCTL12/	0000 00002(2)	
023C16	CAN0 Local Mask Register B Extended ID2	C0LMBR4	XX00 00002 ⁽²⁾	
023D16	CAN0 Message Slot 13 Control Register	C0MCTL13	0016 ⁽²⁾	
023E16	CAN0 Message Slot 14 Control Register	C0MCTL14	0016 ⁽²⁾	
023F16	CAN0 Message Slot 15 Control Register	C0MCTL15	0016 ⁽²⁾	⊣ ₹
024016	CAN0 Slot Buffer Select Register	COSBS	0016 ⁽²⁾	<u>'</u>
024116	CAN0 Control Register 1	C0CTLR1	XX00 00XX2 ⁽²⁾	
024216	CAN0 Sleep Control Register	COSLPR	XXXX XXX02	
024316	, ,			
024416			0016 ⁽²⁾	
024516	CAN0 Acceptance Filter Support Register	C0AFS	0116 ⁽²⁾	
024616				
024716				
024816				
024916				
024A16				
024B ₁₆				
024C ₁₆				
024D16				
024E ₁₆				
024F16				
025016				
025116				
025216				
025316				
025416				
025516				
025616				
025716				
025816				
025916				
025A16				-
025B16				
025C16				\dashv
025D16				-
025E16				-
025F16				
026016				-
026116				-
to				
02BF16				
02DI 10			L	

Blank spaces are reserved. No access is allowed.

- 1. The BANKSEL bit in the C0CTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

Address	Register	Symbol	Value after RESET
02C016	VO Danistan VO Danistan	VAD VAD	XX16
02C116	X0 Register Y0 Register	X0R,Y0R	XX16
02C216	VA Davistas VA Davistas	VAR VAR	XX16
02C316	X1 Register Y1 Register	X1R,Y1R	XX16
02C416	No Politic No Politic	V0D V0D	XX16
02C516	X2 Register Y2 Register	X2R,Y2R	XX16
02C616	No. D. J	V05 V05	XX16
02C716	X3 Register Y3 Register	X3R,Y3R	XX16
02C816			XX16
02C916	X4 Register Y4 Register	X4R,Y4R	XX16
02CA16			XX16
02CB16	X5 Register Y5 Register	X5R,Y5R	XX16
02CC16			XX16
02CD16	X6 Register Y6 Register	X6R,Y6R	XX16
02CE16			XX16
02CF16	X7 Register Y7 Register	X7R,Y7R	XX16
02D016			XX16
02D116	X8 Register Y8 Register	X8R,Y8R	XX16
02D216			XX16
02D316	X9 Register Y9 Register	X9R,Y9R	XX16
02D416			XX16
02D516	X10 Register Y10 Register	X10R,Y10R	XX16
02D616			XX16
02D716	X11 Register Y11 Register	X11R,Y11R	XX16
02D716			XX16
02D916	X12 Register Y12 Register	X12R,Y12R	XX16
02DA16			XX16
02DB16	X13 Register Y13 Register	X13R,Y13R	XX16
02DC16			XX16
02DD16	X14 Register Y14 Register	X14R,Y14R	XX16
02DE16			XX16
02DE16	X15 Register Y15 Register	X15R,Y15R	XX16
02E016	XY Control Register	XYC	XXXX XX002
02E016	X1 Control (vegiste)	ATC .	///// ///UZ
02E116			
02E216			
02E316 02E416	UART1 Special Mode Register 4	U1SMR4	0016
02E416 02E516	UART1 Special Mode Register 3	U1SMR3	0016
02E516 02E616	UART1 Special Mode Register 2	U1SMR2	0016
02E016	UART1 Special Mode Register	U1SMR	0016
02E716 02E816	UART1 Transmit/Receive Mode Register	U1MR	0016
02E016	-	U1BRG	XX16
	UART1 Baud Rate Register	UIDKG	
02EA16	UART1 Transmit Buffer Register	U1TB	XX16
02EB16	<u> </u>		XX16
02EC16	UART1 Transmit/Receive Control Register 0	U1C0	0000 10002
02ED16	UART1 Transmit/Receive Control Register 1	U1C1	0000 00102
02EE16	UART1 Receive Buffer Register	U1RB	XX16
02EF16			XX16

Address	Register	Symbol	Value after RESET
02F016			
02F116			
02F216			
02F316			
02F416	UART4 Special Mode Register 4	U4SMR4	0016
02F516	UART4 Special Mode Register 3	U4SMR3	0016
02F616	UART4 Special Mode Register 2	U4SMR2	0016
02F716	UART4 Special Mode Register	U4SMR	0016
02F816	UART4 Transmit/Receive Mode Register	U4MR	0016
02F916	UART4 Baud Rate Register	U4BRG	XX16
02FA16			XX16
02FB ₁₆	UART4 Transmit Buffer Register	U4TB	XX16
02FC16	UART4 Transmit/Receive Control Register 0	U4C0	0000 10002
02FD16	UART4 Transmit/Receive Control Register 1	U4C1	0000 00102
02FE16			XX16
02FF16	UART4 Receive Buffer Register	U4RB	XX16
030016	Timer B3, B4, B5 Count Start Flag	TBSR	000X XXXX2
030116			
030216			XX16
030316	Timer A1-1 Register	TA11	XX16
030416			XX16
030516	Timer A2-1 Register	TA21	XX16
030616		TA41	XX16
030716	Timer A4-1 Register		XX16
030816	Three-Phase PWM Control Register 0	INVC0	0016
030916	Three-Phase PWM Control Register 1	INVC1	0016
030A16	Three-Phase output Buffer Register 0	IDB0	XX11 11112
030B16	Three-Phase output Buffer Register 1	IDB1	XX11 11112
030C16	Dead Time Timer	DTT	XX16
030D16	Timer B2 Interrupt Generating Frequency Set Counter	ICTB2	XX16
030E16	3 1411 141		
030F16			
031016			XX16
031116	Timer B3 Register	TB3	XX16
031216			XX16
031316	Timer B4 Register	TB4	XX16
031416			XX16
031516	Timer B5 Register	TB5	XX16
031616			-
031716			
031816			
031916			
031A16			
031B ₁₆	Timer B3 Mode Register	TB3MR	00XX 00002
031C ₁₆	Timer B4 Mode Register	TB4MR	00XX 00002
031D16	Timer B5 Mode Register	TB5MR	00XX 00002
031E16	25 Mode Register	1 DOWN	007.77.00002
	1	1	1

Address	Register	Symbol	Value after RESET
032016			
032116			
032216			
032316			
032416	UART3 Special Mode Register 4	U3SMR4	0016
032516	UART3 Special Mode Register 3	U3SMR3	0016
032616	UART3 Special Mode Register 2	U3SMR2	0016
032716	UART3 Special Mode Register	U3SMR	0016
032816	UART3 Transmit/Receive Mode Register	U3MR	0016
032916	UART3 Baud Rate Register	U3BRG	XX16
032A16			XX16
032B16	UART3 Transmit Buffer Register	U3TB	XX16
032C16	UART3 Transmit/Receive Control Register 0	U3C0	0000 10002
032D16	UART3 Transmit/Receive Control Register 1	U3C1	0000 00102
032E16			XX16
032F16	UART3 Receive Buffer Register	U3RB	XX16
033016			
033116			
033216			
033316			
033416	UART2 Special Mode Register 4	U2SMR4	0016
033516	UART2 Special Mode Register 3	U2SMR3	0016
033616	UART2 Special Mode Register 2	U2SMR2	0016
033716	UART2 Special Mode Register	U2SMR	0016
033816	UART2 Transmit/Receive Mode Register	U2MR	0016
033916	UART2 Baud Rate Register	U2BRG	XX16
033A16			XX16
033B16	UART2 Transmit Buffer Register	U2TB	XX16
033C16	UART2 Transmit/Receive Control Register 0	U2C0	0000 10002
033D16	UART2 Transmit/Receive Control Register 1	U2C1	0000 00102
033E16			XX16
033F16	UART2 Receive Buffer Register	U2RB	XX16
034016	Count Start Flag	TABSR	0016
034116	Clock Prescaler Reset Flag	CPSRF	0XXX XXXX2
034216	One-Shot Start Flag	ONSF	0016
034316	Trigger Select Register	TRGSR	0016
034416	Up-Down Flag	UDF	0016
034516			
034616			XX16
034716	Timer A0 Register	TA0	XX16
034816		_	XX16
034916	Timer A1 Register	TA1	XX16
034A16			XX16
034B16	Timer A2 Register	TA2	XX16
034C16			XX16
034D16	Timer A3 Register	TA3	XX16
			I
034E16	Timer A4 Register		XX16

Address	Register	Symbol	Value after RESET
035016	-	-	XX16
035116	Timer B0 Register	TB0	XX16
035216			XX16
035316	Timer B1 Register	TB1	XX16
035416			XX16
035516	Timer B2 Register	TB2	XX16
035616	Timer A0 Mode Register	TAOMR	0000 0X002
035716	Timer A1 Mode Register	TA1MR	0000 0X002
035816	Timer A2 Mode Register	TA2MR	0000 0X002
035916	Timer A3 Mode Register	TA3MR	0000 0X002
035A16	Timer A4 Mode Register	TA4MR	0000 0X002
035B16	Timer B0 Mode Register	TB0MR	00XX 00002
035C16	Timer B1 Mode register	TB1MR	00XX 00002
035D16	Timer B2 Mode Register	TB2MR	00XX 00002
035E16	Timer B2 Special Mode Register	TB2SC	XXXX XXX02
035F16	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 00002
036016			
036116			
036216			
036316			
036416	UART0 Special Mode Register 4	U0SMR4	0016
036516	UARTO Special Mode Register 3	U0SMR3	0016
036616	UARTO Special Mode Register 2	U0SMR2	0016
036716	UARTO Special Mode Register	U0SMR	0016
036816	UART0 Transmit/Receive Mode Register	U0MR	0016
036916	UARTO Baud Rate Register	U0BRG	XX16
036A16	-		XX16
036B16	UART0 Transmit Buffer Register	U0TB	XX16
036C16	UART0 Transmit/Receive Control Register 0	U0C0	0000 10002
036D16	UART0 Transmit/Receive Control Register 1	U0C1	0000 00102
036E16			XX16
036F16	UART0 Receive Buffer Register	U0RB	XX16
037016			
037116			
037216			
037316			
037416			
037516			
037616	PLL Control Register 0	PLC0	0011 X1002
037716	PLL Control Register 1	PLC1	XXXX 00002
037816	DMA0 Cause Select Register	DM0SL	0X00 00002
037916	DMA1 Cause Select Register	DM1SL	0X00 00002
037A16	DMA2 Cause Select Register	DM2SL	0X00 00002
037B16	DMA3 Cause Select Register	DM3SL	0X00 00002
037C16			XX16
037D16	CRC Data Register	CRCD	XX16
037E16	CRC Input Register	CRCIN	XX16
037F16	. •		
		l	

Blank spaces are reserved. No access is allowed.

NOTES:

1. The TCSPR register maintains the values set before reset even if software reset or watchdog timer reset is performed.

Address	Register	Symbol	Value after RESET
038016			XX16
038116	A/D0 Register 0	AD00	XX16
038216	A/DO Demister 4	A D04	XX16
038316	A/D0 Register 1	AD01	XX16
038416	A/D0 Register 2	AD02	XX16
038516	A/D0 (Negister 2	ADUZ	XX16
038616	A/D0 Register 3	AD03	XX16
038716	7 V Do Trogistor o	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XX16
038816	A/D0 Register 4	AD04	XX16
038916			XX16 XX16
038A16 038B16	A/D0 Register 5	AD05	XX16 XX16
038C16			XX16 XX16
038D16	A/D0 Register 6	AD06	XX16 XX16
038E16			XX16
038F16	A/D0 Register 7	AD07	XX16
039016			
039116			
039216			
039316			
039416	A/D0 Control Register 2	AD0CON2	X000 00002
039516			
039616	A/D0 Control Register 0	AD0CON0	0016
039716	A/D0 Control Register 1	AD0CON1	0016
039816	D/A Register 0	DA0	XX16
039916			
039A16	D/A Register 1	DA1	XX16
039B16	D/A Control Docietor	DACON	VVVV VV000
039C ₁₆	D/A Control Register	DACON	XXXX XX002
039D16 039E16			
039E16			

<144-pin package>

Address	Register	Symbol	Value after RESET
03A016	Function Select Register A8	PS8	X000 00002
03A116	Function Select Register A9	PS9	0016
03A216			
03A316			
03A416			
03A516			
03A616			
03A716			
03A816			
03A916			
03AA16			
03AB16			
03AC16			
03AD16			
03AE16			
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816			
03B916	Function Select Register A5	PS5	XXX0 00002
03BA16			
03BB16			
03BC16	Function Select Register A6	PS6	0016
03BD16	Function Select Register A7	PS7	0016
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916	Port P11 Register	P11	XX16
03CA16	Port P10 Direction Register	PD10	0016
03CB16	Port P11 Direction Register	PD11	XXX0 00002
03CC16	Port P12 Register	P12	XX16
03CD16	Port P13 Register	P13	XX16
03CE16	Port P12 Direction Register	PD12	0016
03CF16	Port P13 Direction Register	PD13	0016

X: Indeterminate

<144-pin package>

Address	Register	Symbol	Value after RESET		
03D016	Port P14 Register	P14	XX16		
03D116	Port P15 Register	P15	XX16		
03D216	Port P14 Direction Register	PD14	X000 00002		
03D316	Port P15 Direction Register	PD15	0016		
03D416					
03D516					
03D616					
03D716					
03D816					
03D916					
03DA16	Pull-Up Control Register 2	PUR2	0016		
03DB16	Pull-Up Control Register 3	PUR3	0016		
03DC16	Pull-Up Control Register 4	PUR4	XXXX 00002		
03DD16					
03DE16					
03DF16					
03E016	Port P0 Register	P0	XX16		
03E116	Port P1 Register	P1	XX16		
03E216	Port P0 Direction Register	PD0	0016		
03E316	Port P1 Direction Register	PD1	0016		
03E416	Port P2 Register	P2	XX16		
03E516	Port P3 Register	P3	XX16		
03E616	Port P2 Direction Register	PD2	0016		
03E716	Port P3 Direction Register	PD3	0016		
03E816	Port P4 Register	P4	XX16		
03E916	Port P5 Register	P5	XX16		
03EA16	Port P4 Direction Register	PD4	0016		
03EB16	Port P5 Direction Register	PD5	0016		
03EC16					
03ED16					
03EE16					
03EF16					
03F016	Pull-Up Control Register 0	PUR0	0016		
03F116	Pull-Up Control Register 1	PUR1	XXXX 00002		
03F216					
03F316					
03F416					
03F516					
03F616					
03F716					
03F816					
03F916					
03FA16					
03FB16					
03FC16					
03FD16					
03FE16		205	2000/2007		
03FF16	Port Control Register	PCR	XXXX XXX02		

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET	
03A016				(A) ((() ()
03A116				(Note 2)
03A216				
03A316				
03A416				
03A516				
03A616				
03A716				
03A816				
03A916				
03AA16				
03AB16				
03AC16				
03AD16				
03AE16				
03AF16	Function Select Register C	PSC	0X00 00002	
03B016	Function Select Register A0	PS0	0016	
03B116	Function Select Register A1	PS1	0016	
03B216	Function Select Register B0	PSL0	0016	
03B316	Function Select Register B1	PSL1	0016	
03B416	Function Select Register A2	PS2	00X0 00002	
03B516	Function Select Register A3	PS3	0016	
03B616	Function Select Register B2	PSL2	00X0 00002	
03B716	Function Select Register B3	PSL3	0016	
03B816	-			
03B916				(Note 2)
03BA16				1
03BB16				
03BC16				(NI=4= 0)
03BD16				(Note 2)
03BE16				1
03BF16				
03C016	Port P6 Register	P6	XX16	1
03C116	Port P7 Register	P7	XX16	1
03C216	Port P6 Direction Register	PD6	0016	1
03C316	Port P7 Direction Register	PD7	0016	1
03C416	Port P8 Register	P8	XX16	1
03C516	Port P9 Register	P9	XX16	1
03C616	Port P8 Direction Register	PD8	00X0 00002	1
03C716	Port P9 Direction Register	PD9	0016	1
03C816	Port P10 Register	P10	XX16	†
03C916				(Note 2)
03CA16	Port P10 Direction Register	PD10	0016	1
03CB16				(Note 1)
03CC16				1
03CD16				(Note 2)
03CE16				1
03CF16				(Note 1)
		(//////////////////////////////////////	(//////////////////////////////////////	4

X: Indeterminate

Blank spaces are reserved. No access is allowed.

- 1. Set address spaces 03CB16, 03CE16 and 03CF16 to "FF16" in the 100-pin package.
- 2. Address spaces 03A016, 03A116, 03B916, 03BC16, 03BD16, 03C916, 03CC16 and 03CD16 are not provided in the 100-pin package.

<100-pin package>

Address			Reg	ister						Symbol			Value after RESET]	
03D016																	(Note 3)
03D116																	(Note 3)
03D216																	(Note 1)
03D316																	(Note 1)
03D416																	1
03D516																	1
03D616																	1
03D716																	1
03D816																	1
03D916																	1
03DA16	Pull-up Control	Register	2							PU	R2		0016				1
03DB16	Pull-up Control	Register	3							PU	R3		0016				1
03DC16			////			////		////	////					////			(Note 2)
03DD16																	1
03DE16																	1
03DF16																	1
03E016	Port P0 Registe	r								P0			XX16	i			1
03E116	Port P1 Registe	r								P1			XX16	i			1
03E216	Port P0 Direction	n Regist	er							PD	0		0016				1
03E316	Port P1 Direction	n Regist	er							PD	1		0016			1	
03E416	Port P2 Registe	r								P2			XX16			1	
03E516	Port P3 Registe	r								P3			XX16			1	
03E616	Port P2 Direction	n Regist	er							PD2			0016			1	
03E716	Port P3 Direction	n Regist	er							PD3			0016			1	
03E816	Port P4 Registe	r								P4			XX16			1	
03E916	Port P5 Registe	r								P5			XX16	i			1
03EA16	Port P4 Direction	n Regist	er							PD4			0016			1	
03EB16	Port P5 Direction	n Regist	er							PD	5		0016				1
03EC16																	1
03ED16																	1
03EE16																	1
03EF16																	1
03F016	Pull-Up Control	Register	0							PU	R0		0016				1
03F116	Pull-Up Control	Register	1							PU	R1		XXX	X 000	02		1
03F216																	1
03F316																	
03F416																	_
03F516																	_
03F616															_		
03F716																	_
03F816															_		
03F916																	_
03FA16																	_
03FB16]
03FC16]
03FD16]
03FE16]
03FF16	Port Control Re	gister								PC	R		XXX	X XXX	(02]

X: Indeterminate

Blank spaces are reserved. No access is allowed.

- 1. Set address spaces 03D216 and 03D316 to "FF16" in the 100-pin package.
- 2. Set address spaces 03DC16 to "0016" in the 100-pin package.
- 3. Address spaces 03D016 and 03D116 are not provided in the 100-pin package.

5. Reset

Hardware reset, software reset, and watchdog timer reset are available to reset the microcomputer.

5.1 Hardware Reset

5.1.1 Reset on a Stable Supply Voltage

The microcomputer resets pins, the CPU and SFR when the supply voltage meets the recommended performance conditions while an "L" signal is applied to the RESET pin (see **Table 5.1**). Apply an "H" signal to the RESET pin again after 20 or more clock cycles are input to the XIN pin while applying an "L" to the RESET pin. The CPU and SFR are reset and programs run from the address indicated by the reset vector.

The internal RAM is not reset. When the RESET pin becomes "L" while writing data to the internal RAM, the internal RAM is in an indeterminate state.

5.1.2 Power-on Reset

The microcomputer resets pins, the CPU and SFR when the supply voltage applied to the Vcc pin meets the recommended performance conditions while an "L" signal is applied to the RESET pin. (See **Table 5.1**.)

The CPU and SFR are reset when the signal applied to the RESET pin changes low ("L") to high ("H") after the main clock oscillation stabilizes and 20 or more clock cycles are applied to the XIN pin. Programs run from the address indicated by the reset vector. The internal RAM is in a indeterminate state

Figure 5.1 shows a reset circuit. Figure 5.2 shows a reset sequence. Figure 5.3 shows CPU register conditions after reset. Table 5.1 lists pin states while the RESET pin is held "L". Refer to **4. SFR** for SFR states after reset.

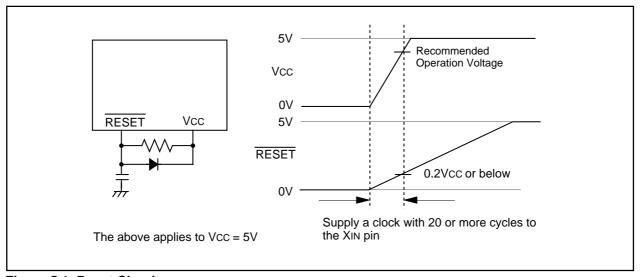


Figure 5.1 Reset Circuit

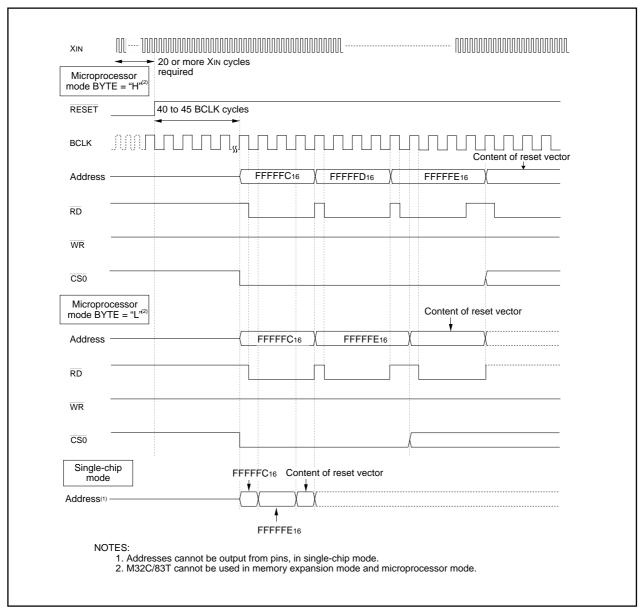


Figure 5.2 Reset Sequence

Table 5.1 Pin States while RESET Pin is Held "L"

	Pin States							
Pin Name	CNIV(co.)/co	CNVss = Vcc						
	CNVss = Vss	BYTE = Vss	BYTE = Vcc					
P0	Input port (high-impedance)	Data input (high-impedance)						
P1	Input port (high-impedance)	Data input (high-impedance) Input port (high-impedance)						
P2, P3, P4	Input port (high-impedance)	Address output (indeterminate)						
P50	Input port (high-impedance)	WR output (output "H")						
P51	Input port (high-impedance)	BHE output (indeterminate)						
P52	Input port (high-impedance)	RD output (output "H")						
P53	Input port (high-impedance)	BCLK output						
P54	Input port (high-impedance)	HLDA output (output value depends on an input to HOLD pin)						
P55	Input port (high-impedance)	HOLD input (high-impedance)						
P56	Input port (high-impedance)	RAS output						
P57	Input port (high-impedance)	RDY input (high-impedance)						
P6 to P15 ⁽¹⁾	Input port (high-impedance)	Input port (high-impedance)						

NOTES:

5.2 Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), pins, the CPU and SFR are reset. Then the microcomputer executes the program from an address determined by the reset vector. When software reset is performed, some registers in the SFR are not reset. Refer to **4. SFR** for details. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

5.3 Watchdog Timer Reset

The microcomputer resets pins, the CPU and the SFR when the watchdog timer underflows while the CM06 bit in the CM0 register is set to "1" (reset). Then the microcomputer executes the program from an address indicated by the reset vector.

When watchdog timer reset is performed, some registers in the SFR are not reset. Refer to **4. SFR** for details. Because the PM01 to PM00 bits in the PM0 register are not reset, the processor mode remains unchanged.

^{1.} Ports P11 to P15 are provided in the 144-pin package.

5.4 Internal Space

Figure 5.3 shows CPU register states after reset. Refer to 4. SFR for SFR states after reset.

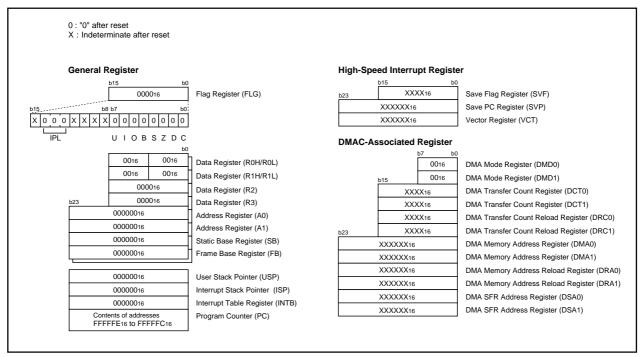


Figure 5.3 CPU Register after Reset

6. Processor Mode

NOTE

M32C/83T can be used in single-chip mode.

M32C/83T cannot be used in memory expansion mode and microprocessor mode.

6.1 Types of Processor Mode

Single-chip mode, memory expansion mode, or microprocessor mode can be selected as processor mode. Pin functions, memory map and accessible space vary depending on the selected processor mode.

6.1.1 Single-chip Mode

In single-chip mode, internal memory space (the SFR, internal RAM and internal ROM) can be accessed. All I/O ports can be used.

6.1.2 Memory Expansion Mode

In memory expansion mode, both external memory space and internal memory space can be accessed. Some pins function as pins for bus control signals. The BYTE pin and register settings determine how many pins are assigned for these pin functions. Refer to **7. Bus** for details.

6.1.3 Microprocessor Mode

In microprocessor mode, SFR, internal RAM and external memory space can be accessed. Internal ROM cannot be accessed.

Some pins function as pins for bus control signals. The BYTE pin and register settings determine how many pins are assigned for these pin functions. (Refer to **7. Bus** for details.)

6.2 Setting Processor Mode

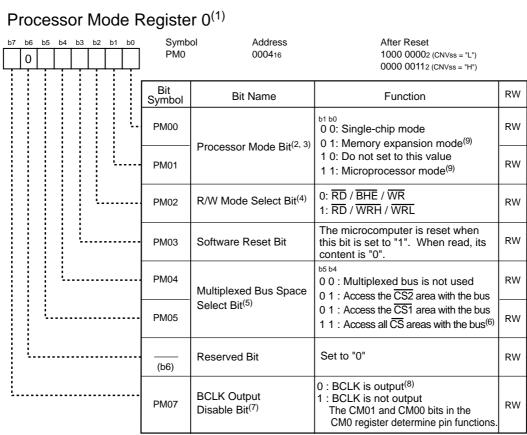
The processor mode is set by the combination of CNVss pin and the PM01 to PM00 bit settings in the PM0 register. Do not set the PM01 to PM00 bits to "102".

If the PM01 to PM00 bits are rewritten, the mode corresponding to the PM01 to PM00 bits is selected regardless of CNVss pin level.

Do not change the PM01 to PM00 bits when the PM02 to PM07 bits in the PM0 register are being rewritten. Do not enter microprocessor mode while the CPU is executing a program in the internal ROM. Do not enter single-chip mode while the CPU is executing a program in an external memory space.

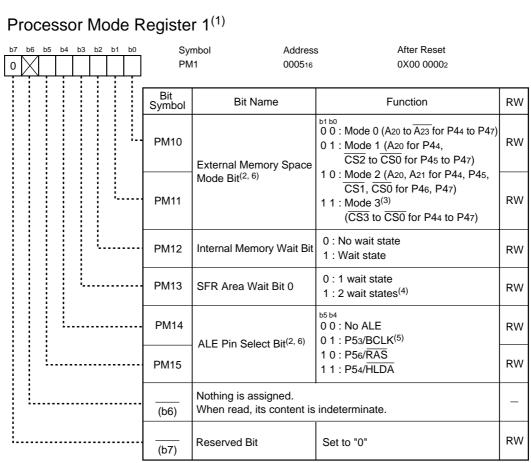
Figures 6.1 and 6.2 show the PM0 register and PM1 register. Figure 6.3 shows a memory map in each processor mode.

6.2.1 Applying Vss to CNVss Pin


The microcomputer enters single-chip mode after reset. Set the PM01 to PM00 bits to "012" (memory expansion mode) to switch to memory expansion mode after the microcomputer starts operating.

6.2.2 Applying Vcc to CNVss Pin

The microcomputer enters microprocessor mode after reset.


When using the flash memory version, apply Vcc to P55 (HOLD) as well as to the CNVss.

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. Processor mode is not changed even if the PM03 bit is set to "1" (software reset).
- 3. Set the PM01 to PM00 bits to "012" or "112" separately. Rewrite other bits before rewriting the PM01 to PM00 bits
- 4. When using the 16-bit data bus in the DRAMC, set the PM02 bit to "1".
- 5. The PM05 to PM04 bits are available in memory expansion mode or microprocessor mode.
 - Set the PM05 to PM04 bits to "002" in mode 0.
 - Do not set the PM05 to PM04 bits to "012" in mode 2.
- 6. The PM05 to PM04 bits cannot be set to "112" in microprocessor mode because the microcomputer starts operation using the separate bus after reset.
 - When the PM05 to PM04 bits are set to "112" in memory expansion mode, the microcomputer can access each 64-Kbyte chip-select-assigned address space. The multiplexed bus is not available in mode 0. The microcomputer accesses $\overline{\text{CS0}}$ to $\overline{\text{CS2}}$ in mode 1, $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ in mode 2 and $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ in mode 3.
- 7. No BCLK is output in single-chip mode even if the PM07 bit is set to "0". When a clock output is terminated in microprocessor mode or memory expansion mode, set the PM07 bit to "1" and the CM01 to CM00 bits in the CM0 register to "002" (I/O port P53). P53 outputs "L" .
- 8. When the PM07 bit is set to "0" (BCLK output), set the CM01 and CM00 bits to "002".
- 9. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

Figure 6.1 PM0 Register

- 1. Rewrite the PM1 register after the PRC1 bit in the PRCR register is set to "1" (write enable).
- 2. The PM10 and PM11 bits are available in memory expansion mode or microprocessor mode.
- 3. The DRAMC is not available when the PM11 and PM10 bits are set to "112" (mode 3).
- 4. Set the PM13 bit to "1" (2 wait states) to access CAN-associated registers (addresses 01E016 to 024516).
- 5. Set the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53) when the PM15 and PM14 bits are set to "012" (P53/BCLK select).
- 6. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

Figure 6.2 PM1 Register

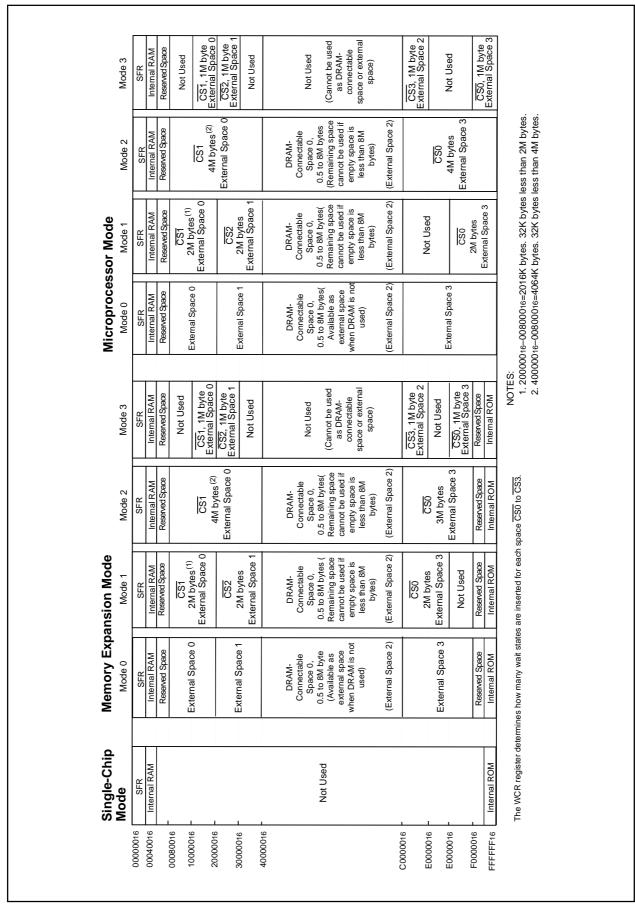


Figure 6.3 Memory Map in Each Processor Mode

7. Bus

In memory expansion mode or microprocessor mode, some pins function as bus control pins to input and output data from external devices. At to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE, HLDA/ALE, HOLD, ALE/RAS, and RDY are used as bus control pins.

NOTE

Bus control pins in M32C/83T cannot be used.

7.1 Bus Settings

The BYTE pin, the DS register, the PM05 to PM04 bits in the PM0 register and the PM11 to PM10 bits in the PM1 register determine bus settings.

Table 7.1 lists how to change a bus setting. Figure 7.1 shows the DS register.

Table 7.1 Bus Settings

Bus Setting	Changed By	
Selecting external address bus width	DS register	
Setting bus width after reset	BYTE pin (external space 3 only)	
Switching between separate bus or multiplexed bus	PM05 to PM04 bits in PM0 register	
Number of chip-select	PM11 to PM10 bits in PM1 register	

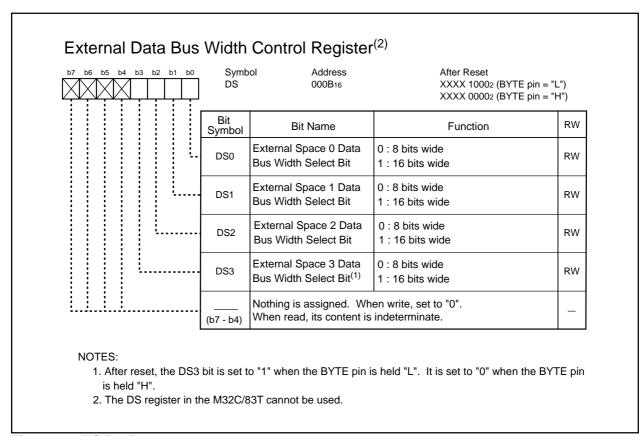


Figure 7.1 DS Register

7.1.1 Selecting External Address Bus

The number of externally-output address bus, chip-select signals and chip-select-assigned address space ($\overline{\text{CS}}$ area) varies depending on each external space mode. The PM11 to PM10 bits in the PM1 register determine the external space mode.

When using the DRAMC, row addresses and column addresses are multiplexed to output in the DRAM area.

7.1.2 Selecting External Data Bus

The DS register selects either external 8-bit or 16-bit data bus per external space. The data bus in the external space 3, after reset, becomes 16 bits wide when an "L" signal is applied to the BYTE pin and 8 bits wide when an "H" signal is applied. Do not change the BYTE pin level while the microcomputer is operating. The internal bus is always 16 bits wide.

7.1.3 Selecting Separate/Multiplexed Bus

The PM05 to PM04 bits in the PM0 register determine either a separate or multiplexed bus as bus format .

7.1.3.1 Separate Bus

The separate bus is a bus format which allows the microcomputer to input and output data and address using separate buses. The DS register selects 8-bit or 16-bit data bus as the external data bus per external space. If all DSi bits in the DS register (i=0 to 3) are set to "0" (8-bit data bus), port P0 becomes the data bus and port P1 becomes the programmable I/O port. If one of the DSi bits is set to "1" (16-bit data bus), ports P0 and P1 become the data bus. When the microcomputer accesses a space while the DSi bit set to "0", port P1 is indeterminate.

If the microcomputer accesses a space with the separate bus, the WCR register determines the number of software wait states inserted.

7.1.3.2 Multiplexed Bus

The multiplexed bus is a bus format which allows the microcomputer to input and output data and address via bus by timesharing. Do to D7 are multiplexed with A0 to A7 in space accessed by the 8-bit data bus. Do to D15 are multiplexed with A0 to A15 in space accessed by the 16-bit data bus. If the microcomputer accesses a space with the multiplexed bus, the WCR register can be set to either two wait states or three wait states. Two-wait-state access is automatically selected if the WCR register is set to no wait state or one wait state. Refer to **7.2.4 Bus Timing** for details.

The microcomputer starts operation using the separate bus after reset. Therefore, the multiplexed bus can be assigned to access the $\overline{CS1}$ area, the $\overline{CS2}$ area, or all \overline{CS} areas. However, the multiplexed bus cannot be assigned to access all \overline{CS} areas in microprocessor mode. When the PM05 and PM04 bits in the PM0 register are set to "112" (access all \overline{CS} areas with the bus), only 16 low-order bits, from A0 to A15, of an address are output. See Table 7.2 for details.

Table 7.2 Processor Mode and Port Function

Processor Mode	Single- Chip Mode	Memory Expansion Mode/ Microprocessor Mode				Memory Exp	ansion Mode
PM05 to PM04 Bits in PM0 Register		the Multip Access All Other	"102" or CS2 using lexed Bus CS Areas using arate Bus	"002" (Access all CS Areas using the Separate Bus		"112" ⁽¹⁾ (Access all CS Areas using the Multiplexed Bus	
Data Bus Width		Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus
P00 to P07	I/O port	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	Data bus Do to D7	I/O port	I/O port
P10 to P17	I/O port	I/O port	Data bus D8 to D15	I/O port	Data bus D8 to D15	I/O port	I/O port
P20 to P27	I/O port	Address bus/ Data bus(2) A0/D0 to A7/D7	Address bus/ Data bus ⁽²⁾ Ao/Do to A7/D7	Address bus Ao to A7	Address bus Ao to A7	Address bus/ Data bus Ao/Do to A7/D7	Address bus/ Data bus Ao/Do to A7/D7
P30 to P37	I/O port	Address bus A8 to A15	Address bus/ Data bus ⁽²⁾ A8/D8 to A15/D15	Address bus A8 to A15	Address bus A8 to A15	Address bus A8 to A15	Address bus/ Data bus A8/D8 to A15/D15
P40 to P43	I/O port	Address bus A16 to A19				I/O port	I/O port
P44 to P46	I/O port	CS (Chip-seled	ct signal) or Addr (Refer	ess bus (A20 to 7 to 7.2 Bus Contr			
P47	I/O port	CS (Chip-seled	et signal) or Addr (Refer to 7.2 B	ess bus ($\overline{A23}$) us Control for de	tails) ⁽⁴⁾		
P50 to P53	I/O port		VRL, WRH and B to 7.2 Bus Contro		RD, BHE, WR and	BCLK	
P54	I/O port	HLDA (3)	HLDA (3)	HLDA (3)	HLDA (3)		
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	RAS (3)	RAS (3)	RAS (3)	RAS (3)	RAS (3)	RAS (3)
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY

- 1. The PM05 to PM04 bits cannot be set to "112" (access all CS areas using multiplexed bus) in microprocessor mode because the microcomputer starts operation using the separate bus after reset. When the PM05 to PM04 bits are set to "112" in memory expansion mode, the microcomputer accesses 64K-byte memory space per chip select using the address bus.
- These ports become address buses when accessing space using the separate bus.
 The PM15 to PM14 bits in the PM1 register determine which pin outputs the ALE signal. The PM02 bit in the PM0 register selects either "WRL,WRH" or "BHE,WR" combination. P56 provides an indeterminate output when the PM15 and PM14 bits to "002" (no ALE). It cannot be used as an I/O port.
 When DRAMC is selected to access DRAM area, CASL, CASH, DW, BCLK become output pins.
- 5. The PM11 to PM10 bits in the PM1 register determine the $\overline{\text{CS}}$ signal and address bus.

7.2 Bus Control

Signals required to access external devices are provided and software wait states are inserted as follows. The signals are available in memory expansion mode and microprocessor mode only.

7.2.1 Address Bus and Data Bus

The address bus is a signal accessing 16M-byte space and uses 24 control pins; A0 to A22 and $\overline{\text{A23}}$ is the inversed output signal of the highest-order address bit.

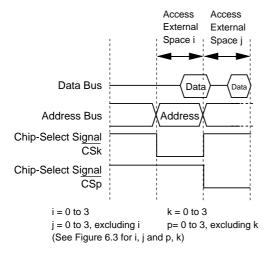
The data bus is a signal which inputs and outputs data. The DS register selects the 8-bit data bus from Do to D7 or the 16-bit data bus from D0 to D15 for each external space. When applying an "H" signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the 8-bit data bus after reset. When applying an "L" signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the 16-bit data bus.

When changing single-chip mode to memory expansion mode, the address bus is in an indeterminate state until the microcomputer accesses an external memory space.

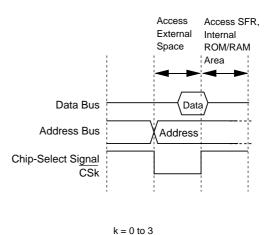
When using the DRAMC to access DRAM area, row addresses and column addresses are multiplexed and output via A8 to A20.

7.2.2 Chip-Select Signal

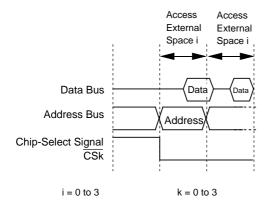
The chip-select signal shares ports with A₀ to A₂₂ and $\overline{\text{A}_{23}}$. The PM11 to PM10 bits in the PM1 register determine which $\overline{\text{CS}}$ area is accessed and how many chip-select signals are output. A maximum of four chip-select signals can be output.


In microprocessor mode, the chip-select signal is not output after reset. A23, however, can perform as the chip-signal signal.

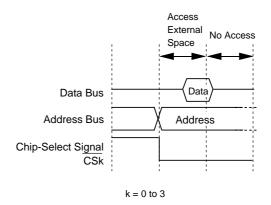
The chip-select signal becomes "L" while the microcomputer accesses the external \overline{CSi} area (i=0 to 3). It becomes high ("H") when the microcomputer accesses another external memory space or an internal memory space. Figure 7.2 shows an example of the address bus and chip-select signal output.


Example 1:

When the microcomputer accesses the external space j specified by another chip-select signal in the next cycle after having accessed the external space i, both address bus and chip-select signal change.


Example 2:

When the microcomputer accesses the SFR or the internal ROM/RAM area in the next cycle after having accessed an external space, the chip-select signal changes but the address bus does not.


Example 3:

When the microcomputer accesses the space i specified by the same chip-select signal in the next cycle after having accessed the external space i, the address bus changes but the chip-select signal does not.

Example 4:

When the microcomputer does not access any space in the next cycle after having accessed an external space (no pre-fetch of an instruction is generated), neither address bus nor chip-select signal changes.

(See Figure 6.3 for i and k)

NOTES:

The above applies to the address bus and chip-select signal in two consecutive cycles.
 By combining these examples, a chip-select signal extended by two or more cycles may be output.

Figure 7.2 Address Bus and Chip-Select Signal Outputs (Separate bus)

7.2.3 Read and Write Signals

When set to the 16-bit data bus, the PM02 bit in the PM0 register selects a combination of the \overline{RD} , \overline{WR} and \overline{BHE} signals or the \overline{RD} , \overline{WRL} and \overline{WRH} signals to determine the read or write signal. When the DS3 to DS0 bits in the DS register are set to "0" (8-bit data bus), set the PM02 bit to "0" ($\overline{RD}/\overline{WR}/\overline{BHE}$). If any of the DS3 to DS0 bits are set to "1" (16-bit data bus) when accessing an 8-bit space, the combination of \overline{RD} , \overline{WR} and \overline{BHE} is automatically selected regardless of the PM02 bit setting. Tables 7.3 and 7.4 list each signal operations.

The RD, WR and BHE signals are combined for the read or write signal after reset.

When changing the combination to \overline{RD} , \overline{WRL} and \overline{WRH} , set the PM02 bit before writing data to an external memory.

When using the DRAMC to access the DRAM with the 16-bit bus, set the PM02 bit to "1" ($\overline{RD}/\overline{WRL}/\overline{WRH}$).

Table 7.3 RD, WRL and WRH Signals

144010 110 112, 111					
Data Bus	RD	WRL	WRH	Status of External Data Bus	
	L	Н	Н	Read data	
16 Bits	Н	L	H Write 1-byte data to even address		
	Н	Н	L	Write 1-byte data to odd address	
	Н	L	L	Write data to both even and odd addresses	
0 Dito	Н	L(1)	L ⁽¹⁾ Not used Write 1-byte data		
8 Bits L H ⁽¹⁾		H ⁽¹⁾	Not used	Read 1-byte data	

Table 7.4 RD, WR and BHE Signals

Data Bus	RD	WR	BHE	Ao	Status of External Data Bus
	H L L H		Write 1-byte data to odd address		
	L	Н	L	Н	Read 1-byte data from odd address
16 Bits	Н	L	Н	L	Write 1-byte data to even address
10 0113	L	Н	H H L F		Read 1-byte data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L Read data from both even and odd addre	
0 Dito	Н	L	Not used	H/L	Write 1-byte data
8 Bits	L	Н	Not used	H/L	Read 1-byte data

^{1.} The \overline{WR} signal is used instead of the \overline{WRL} signal.

7.2.4 Bus Timing

Bus cycle for the internal ROM and internal RAM are basically one BCLK cycle. When the PM12 bit in the PM1 register is set to "1" (wait state), the bus cycles are two BCLK cycles.

Bus cycles for the SFR are basically two BCLK cycles. When the PM13 bit in the PM1 register is set to "1" (2 wait states), the bus cycles are three BCLK cycles. To access CAN-associated registers (addresses 01E016 to 024516), set the PM13 bit to "1".

Bus cycle for an external space is basically one BCLK cycle for a read operation and two BCLK cycles for a write operation. The WCR register inserts wait states equivalent to one to three BCLK cycles into an external space. Bus cycles are two BCLK cycles if selecting one wait state. Bus cycles are four BCLK cycles if selecting three wait states.

If applicable to the followings, bus cycles vary from those selected by the WCR register. Figure 7.5 shows each bit status and bus cycle.

- Write cycle with the separate bus and no wait state
- Read cycle and write cycle with the multiplexed bus and no wait state.
- Read cycle and write cycle with the multiplexed bus and one wait state.

Figure 7.3 shows the WCR register. Figures 7.4 and 7.5 show bus timing in an external space.

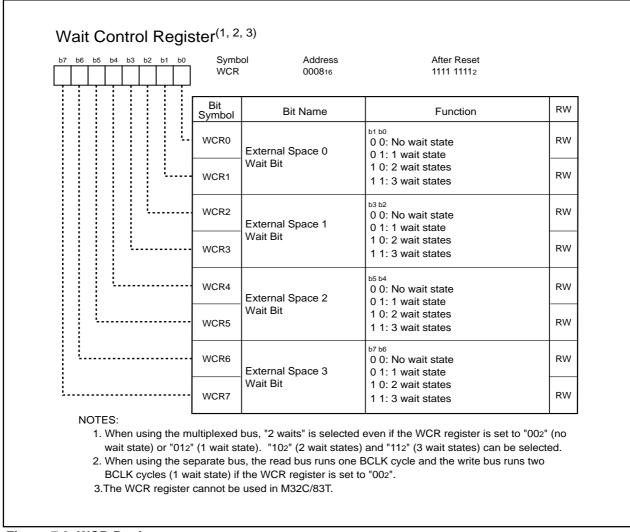


Figure 7.3 WCR Register

Table 7.5 Software Wait State and Bus Cycle

0	External	External PM1 Re		WCR Register	Dua Cuala
Space	Space Bus Status		PM13 Bit PM12 Bit		Bus Cycle
SFR		0			2 BCLK cycles
SFK		1			3 BCLK cycles
Internal			0		1 BCLK cycle
ROM/RAM			1		2 BCLK cycles
				002	Read :1 BCLK cycle
	Separate Bus			002	Write: 2 BCLK cycles
				012	2 BCLK cycles
				102	3 BCLK cycles
External				112	4 BCLK cycles
Memory				002	3 BCLK cycle
				012	3 BCLK cycles
	Multiplexed Bus			102	3 BCLK cycles
				112	4 BCLK cycles

i = 0, 2, 4, 6 j = i + 1

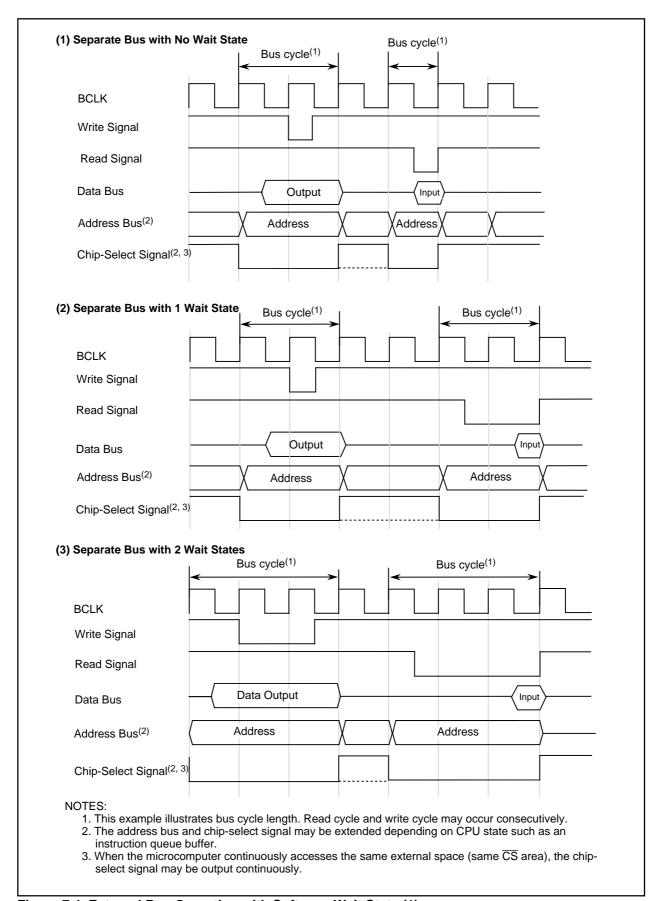


Figure 7.4 External Bus Operation with Software Wait State (1)

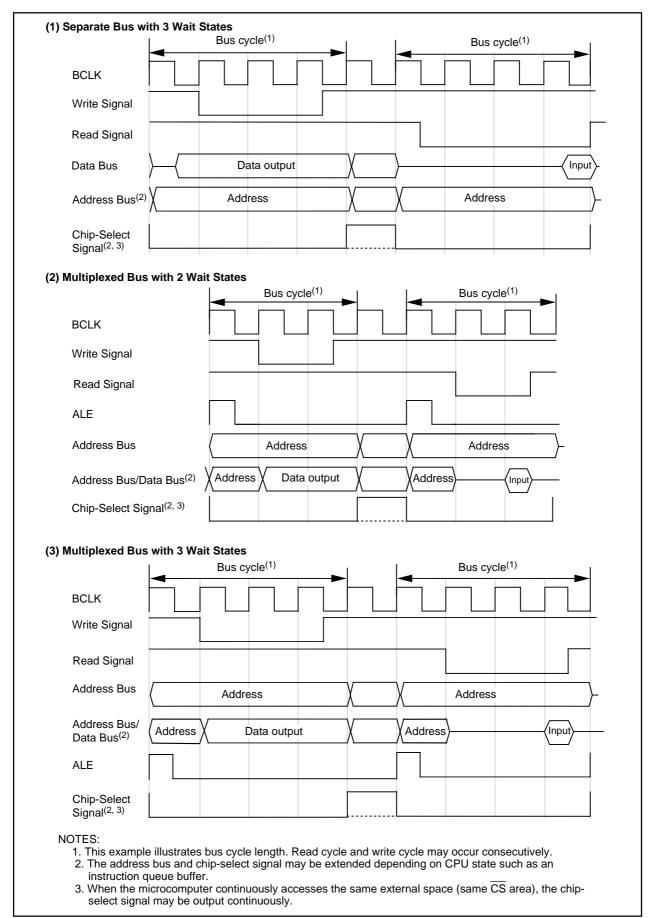


Figure 7.5 External Bus Operation with Software Wait State (2)

7.2.5 ALE Signal

The ALE signal latches an address of the multiplexed bus. Latch an address on the falling edge of the ALE signal. The PM15 to PM14 bits in the PM1 register determine the output pin for the ALE signal. The ALE signal is output to an internal space and external space.

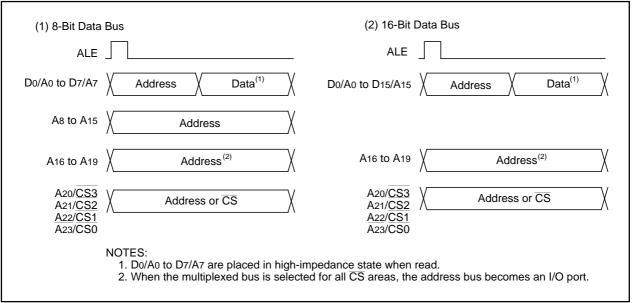


Figure 7.6 ALE Signal and Address/Data Bus

7.2.6 RDY Signal

The \overline{RDY} signal facilitates access to external devices which need longer access time. When an "L" signal is applied to the \overline{RDY} pin on the falling edge of last BCLK of the bus cycle, wait states are inserted into the bus cycle. When an "H" signal is applied to the \overline{RDY} pin on the falling edge of the BCLK, the bus cycle starts running again.

Table 7.6 lists microcomputer states when the \overline{RDY} signal inserts wait states into the bus cycle. Figure 7.7 shows an example of the \overline{RD} signal extended by the \overline{RDY} signal.

Table 7.6 Microcomputer States in a Wait State(1)

Item	State		
Oscillation	On		
RD Signal, WR Signal, Address Bus, CSi (i=0 to 3),	Maintains the same state as when RDY signal		
Data Bus, ALE Signal, HLDA, Programmable I/O Ports	was received		
Internal Peripheral Circuits	On		

NOTES:

1. The RDY signal cannot be accepted immediately before software wait states are inserted.

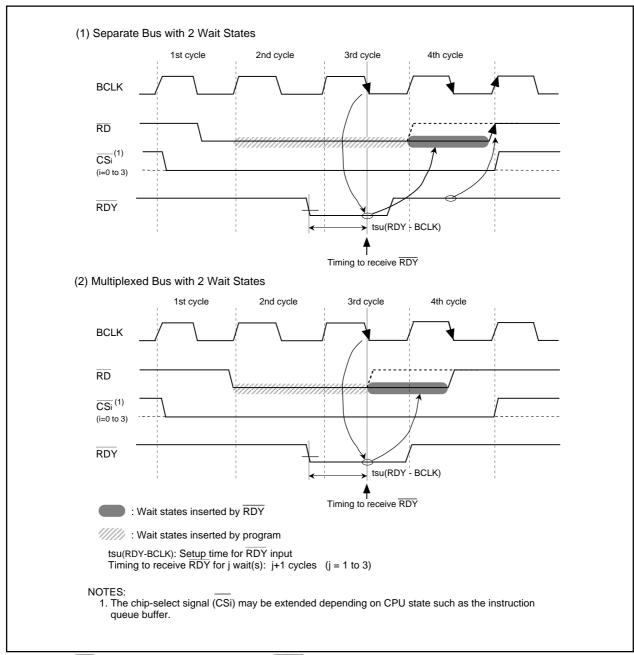


Figure 7.7 RD Signal Output Extended by RDY Signal

7.2.7 HOLD Signal

The $\overline{\text{HOLD}}$ signal transfers bus privileges from the CPU to external circuits. When an "L" signal is applied to the $\overline{\text{HOLD}}$ pin , the microcomputer enters a hold state after bus access is completed. While the $\overline{\text{HOLD}}$ pin is held "L", the microcomputer is in a hold state and the $\overline{\text{HLDA}}$ pin outputs an "L" signal. Table 7.7 shows the microcomputer status in a hold state.

Bus is used in the following order of priority: HOLD, DMAC, CPU.

Figure 7.8 Order of Bus Priority

Table 7.7 Microcomputer Status in a Hold State

Item	Status
Oscillation	On
RD Signal, WR Signal, Address Bus, Data Bus, BHE,	High-impedance
CS0 to CS3	
Programmable I/O Ports: P0 to P15	Maintains the same state as when HOLD signal
	is received
HLDA	Output "L"
Internal Peripheral Circuits	On (excluding the watchdog timer)
ALE Signal	Output "L"

7.2.8 External Bus State when Accessing Internal Space

Table 7.8 shows external bus states when an internal space is accessed.

Table 7.8 External Bus State when Accessing Internal Space

It	Item State when accessing SFR, internal ROM and internal RAM				
Address bus	Address bus Holds an address of an external space accessed just before				
Data Bus	When Read	High-impedance			
	When Write	ligh-impedance			
RD, WR, WF	RL, WRH	Output "H"			
BHE		Holds state of external space last accessed			
CS0 to CS3		Output "H"			
ALE		Output ALE			

7.2.9 BCLK Output

The CPU clock operates the CPU. When combining the PM07 bit in the PM0 register set to "0" (BCLK output) and the CM01 to CM00 bits in the CM0 register set to "002", the CPU clock signal is output from P53 as BCLK.

No BCLK is output in single-chip mode. Refer to 8. Clock Generating Circuit for details.

7.2.10 DRAM Control Signals (RAS, CASL, CASH and DW)

The DRAM control signals control the DRAM. The DRAM control signals are output when the DRAM area, determined by the AR0 to AR2 bits in the DRAMCONT register, is output. Table 7.9 lists each signal operation.

Table 7.9 RAS, CASL, CASH and DW Signals

Data Bus Width	RAS	CASL	CASH	DW	Data Bus State	
	L	L	L	Н	Read data from both even and odd addresses	
	L	L	Н	Н	Read 1-byte data from even address	
16 bits	L	Н	L	Н	Read 1-byte data from odd address	
10 0115	L L	L	L	L	Write data to both even and odd addresses	
	L	L	Н	L	Write 1-byte data to even address	
	L	Н	L	L	Write 1-byte data to odd address	
0 1:4-	L	L	Not used	Н	Read 1-byte data	
8 bits	L	L	Not used	L	Write 1-byte data	

8. Clock Generation Circuit

8.1 Types of Clock Generation Circuits

Four circuits are incorporated to generate the system clock signal:

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists specifications of the clock generation circuit. Figure 8.1 shows a block diagram of the clock generation circuit. Figures 8.2 to 8.8 show registers controlling the clock.

Table 8.1 Clock Generation Circuit Specifications

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use	CPU clock source Peripheral function clock source	CPU clock source Timer A and B clock source	CPU clock source Peripheral function clock source	CPU clock source Peripheral function clock source
Clock Frequency	Up to 32 MHz	32.768 kHz	Approximatly 1 MHz	20 MHz to 32 MHz (See Table 8.2)
Connectable Oscillator or Additional Circuit	Ceramic resonator Crystal oscillator	Crystal oscillator		Low pass filter
Pins for Oscillator or for Additional Circuit	XIN, XOUT	XCIN, XCOUT		VCOUT (connect to low pass filter) P86 (connect to Vss)
Oscillation Stop/ Restart Function	Available	Available	Available	Available
Oscillator State After Reset	Oscillating	Stopped	Stopped	Stopped
Other	External clock can be input	External clock can be input. The PLL frequency synthesizer cannot be used when using the sub clock oscillation circuit.	When the main clock stops oscillating, the on-chip oscillator starts oscillating automatically and becomes the clock source for the CPU and peripheral functions	The sub clock cannot be used when using the PLL frequency synthesizer

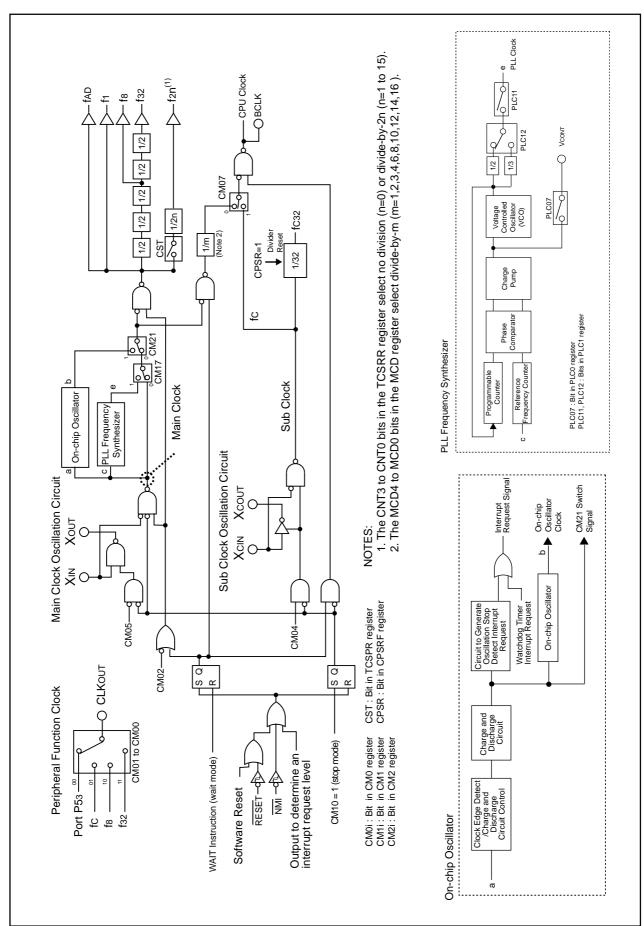
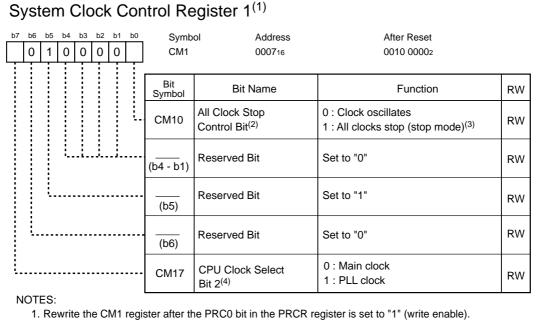



Figure 8.1 Clock Generation Circuit

System Clock Control Register 0⁽¹⁾ b3 Symbol Address After Reset 1 CM₀ 000616 0000 X0002 Bit RW Bit Name **Function** Symbol RW CM00 0 0 : I/O port P53 Clock Output Function 01: Outputs fc Select Bit(2) 10: Outputs f8 RW CM01 1 1 : Outputs f32 0: Peripheral clock does not stop in In Wait Mode. wait mode Peripheral RW CM02 1 : Peripheral clock stops in wait Function Clock Stop Bit mode(3) Reserved Bit Set to "1" RW (b3)0: I/O port function CM04 Port Xc Switch Bit RW 1: XCIN-XCOUT oscillation function(4) Main Clock (XIN-XOUT) 0 : Main clock oscillates RW CM05 1: Main clock stops(6) Stop Bit⁽⁵⁾ Watchdog Timer 0: Watchdog timer interrupt RW **CM06 Function Select Bit** 1 : Reset⁽⁷⁾ 0: Clock selected by the CM21 bit RW System Clock Select Bit(8) CM07 divided by MCD register setting 1: Sub clock

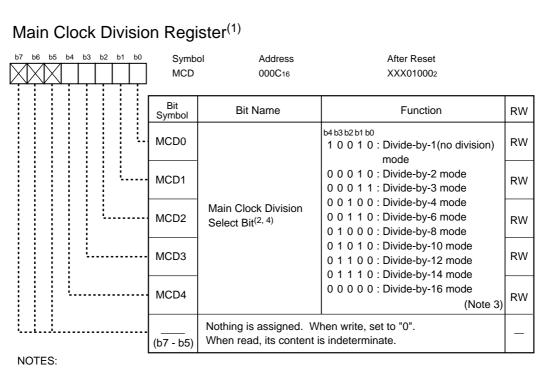

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 to CM00 bits to "002". When the PM15 to PM14 bits in the PM1 register is set to "012" (ALE output to P53), set the CM01 to CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 to CM00 bits) in microprocessor or memory expansion mode, and the CM01 to CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit to "1" (XCIN-XCOUT oscillation), set the PD8_7 to PD8_6 bits to "002" (with port P87 and P86 input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering the low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", XOUT becomes "H". The built-in feedback resistor remains on. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD register is set to "0816" (divide-by-8 mode). In on-chip oscillation mode, the MCD register is not divided by eight even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bits simultaneously.

Figure 8.2 CM0 Register

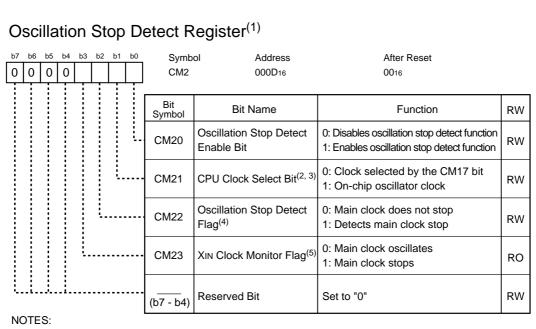

- 2. When the CM10 bit is set to "1", Xout becomes "H" and the internal feedback resistance is disabled. XIN, XCIN and XCOUt are placed in high-impedance states.
- 3. When the CM10 bit is set to "1", the MCD register is set to "0816" (divide-by-8 mode). When the CM20 bit is set to "1" (oscillation stop detect function enabled) or the CM21 bit to "1" (on-chip oscillator selected), do not set the CM10 bit to "1".
- 4. CM17 bit is enabled only when the CM21 bit in the CM2 register is set to "0". Use the procedure shown in Figure 8.13 to set the CM17 bit to "1".

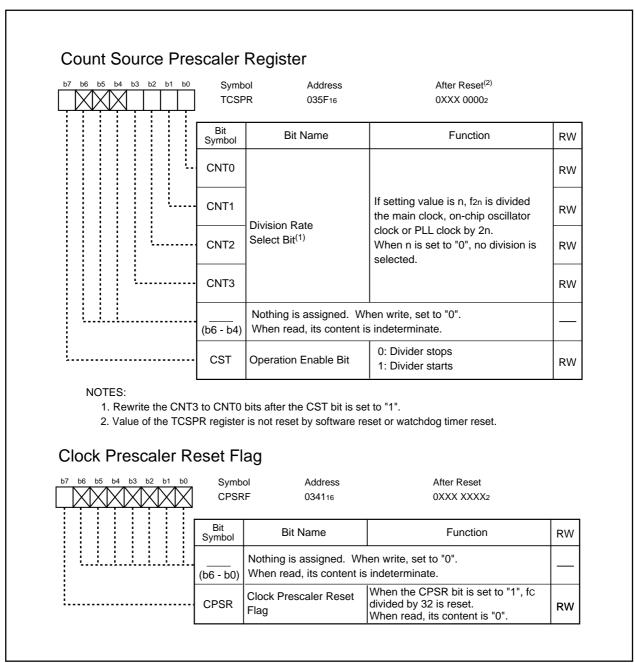
Figure 8.3 CM1 Register

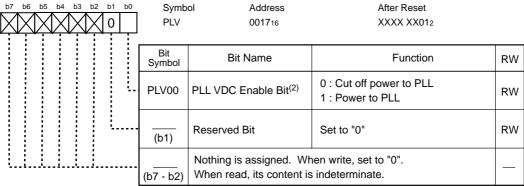
- 1. Rewrite the MCD register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. While the microcomputer is in stop mode or low-power consumption mode, the MCD register is set to "0816" (divide-by-8 mode).
 - In on-chip oscillator mode, divide-by-8 mode cannot be entered even if the CM05 bit in the CM0 register is set to "1" (XIN-XOUT stopped).
- 3. Do not set to bit combinations not listed above.
- Access CAN-associated register addresses (addresses 01E016 to 024516) after setting the MCD register to "1216" (no division mode).

Figure 8.4 MCD Register

- 1. Rewrite the CM2 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the main clock oscillation stop is detected while the CM20 bit is set to "1" (oscillation stop detect function enabled), the CM21 bit is set to "1". Although the main clock starts oscillating, the CM21 bit is not set to "0". When the main clock is used as a CPU clock source after the main clock resumes oscillation, set the CM21 bit to "0" by program.
- 3. When the CM20 bit is set to "1" (oscillation stop detect function enabled) and the CM22 bit is set to "1", do not set the CM21 bit to "0".
- 4. When a main clock stop is detected, the CM22 bit is set to "1". The CM22 bit can only be set to "0", not "1", by program.
 - If the CM22 bit is set to "0" by program while the main clock is stopped, the CM22 bit cannot be set to "1" until the next main clock stop is detected.
- Determine the main clock state by reading the CM23 bit several times after the oscillation stop interrupt is generated.

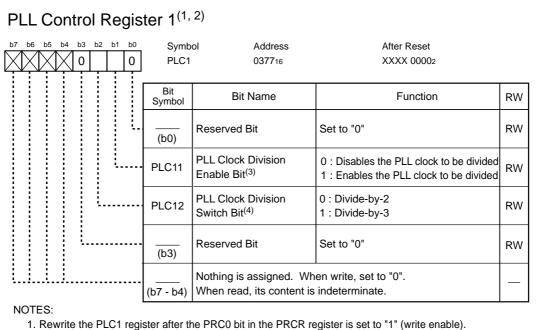
Figure 8.5 CM2 Register




Figure 8.6 TCSPR and CPSRF Registers

PLL Control Register 0⁽¹⁾ Symbol Address After Reset 0 0 PLC0 037616 0011 X1002 Bit Symbol Bit Name **Function** RW RW PLC00 Programmable Counter PLC01 See Table 8.2 RW Select Bit(2) PLC02 RW Nothing is assigned. When write, set to "0". (b3) When read, its content is indeterminate. Reserved Bit⁽²⁾ Set to "1" RW(b4) Reserved Bit(2) Set to "0" RW (b5) Reserved Bit Set to "0" RW (b6) 0: PLL is Off Operation Enable Bit(3, 4) PLC07 RW 1: PLL is On

NOTES:


- 1. Rewrite the PLC0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. Set these bits when the PLC07 bit is set to "0". Once these bits are set, they cannot be changed.
- 3. To use the PLL function, the PD8_7 bit in the PD8 register is set to "0" (input) and the CM04 bit in the CM0 register is set to "0" (I/O port). Set the PD8_6 bit in the PD8 register to "0" (input) before connecting P86 to Vss.
- 4. Before the microcomputer enters wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), the PLC07 bit to "0" and PLV00 bit to "0" (cut off power to PLL) in this order.

VDC Control Register for PLL⁽¹⁾

- 1. Rewrite the PLV register after the PRC3 bit in the PRCR register is set to "1" (write enable).
- 2. Before the microcomputer enters wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), the PLC07 bit to "0" (PLL off) and PLV00 bit to "0" (cut off power to PLL) in this order.

Figure 8.7 PLC0 and PLV Registers

- 2. Rewrite the PLC1 register after the CM17 bit in the CM1 register is set to "0" (main clock) .
- 3. When the CM21 bit in the CM2 register is set to "0" (clock selected by the CM17 bit), if the PLC11 bit is set to "1" before the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock dividedby-2 or divided-by-3 becomes the clock source of the CPU clock and peripheral function clock.
- 4. Do not rewrite the PLC12 bit if the PLL clock is the CPU clock source.

Figure 8.8 PLC1 Register

8.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes a clock source for the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. The externally generated clock can be input to the XIN pin in the main clock oscillation circuit. Figure 8.9 shows an example of a main clock circuit connection. Circuit constants vary with each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes the CPU clock after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, Xout becomes "H". Xin is pulled up by Xout via the feedback resistor which remains on. When an externally generated clock is input to the Xin pin, the main clock does not stop even if the CM05 bit is set to "1". Terminate main clock operation externally if necessary.

All clocks, including the main clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

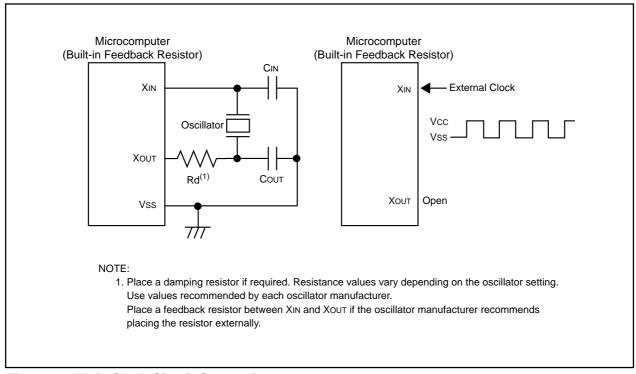


Figure 8.9 Main Clock Circuit Connection

8.1.2 Sub Clock

Sub clock oscillation circuit generates the sub clock. The sub clock becomes a clock source for the CPU clock and a count source for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKout pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. The externally generated clock can be applied to the XCIN pin. Figure 8.10 shows an example of a sub clock circuit connection. Circuit constants vary with each oscillator. Use the circuit constant recommended by each oscillation manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8_6 and PD8_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply the external clock to the XCIN pin, set the CM04 bit to "1" when the PD8_6 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes the clock source for the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes the CPU clock.

All clocks, including the sub clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

XCIN shares pins with VCONT and XCOUT shares pins with P86. The sub clock and PLL frequency synthesizer cannot be used simultaneously.

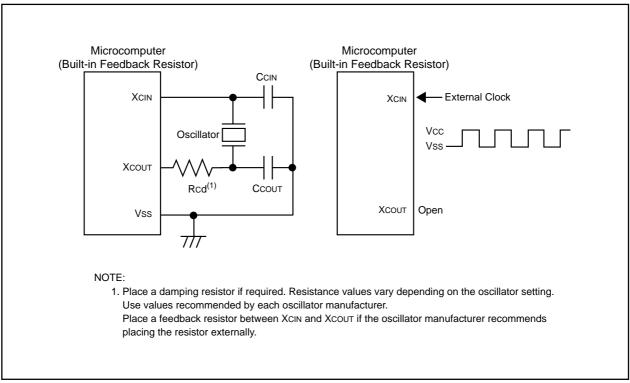


Figure 8.10 Sub Clock Connection Circuit

8.1.3 On-chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1MHz on-chip oscillator clock becomes a clock source for the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes the clock source for the CPU clock and peripheral function clock.

8.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external factors, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit is set to "1" (oscillation stop detect function enabled), the oscillation stop detect interrupt request is generated as soon as the main clock stops. Simultaneously, the on-chip oscillator starts oscillating. The on-chip oscillator clock takes place of the main clock as the clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- CM21 bit = 1 (on-chip oscillator clock becomes the clock source of the CPU clock.)
- CM22 bit = 1 (main clock stop is detected.)
- CM23 bit = 1 (main clock stops) (See **Figure 8.15**)

8.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detect interrupt shares vectors with the watchdog timer interrupt. When both oscillation stop detect interrupt and watchdog timer interrupt are used, read the CM22 bit with an interrupt service routine to determine which interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as the clock source for the CPU clock and peripheral function clock. Figure 8.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detect interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock. The on-chip oscillator clock becomes the clock source for the peripheral function clock.
- To enter wait mode while the oscillation stop detect interrupt function is in use, set the CM02 bit to "0" (peripheral function clock does not stop in wait mode).
- When the oscillation stop detect interrupt request is generated in wait mode, wait mode cannot be exited by the oscillation stop detect interrupt. After the microcomputer exits wait mode, the oscillation stop detect interrupt is acknowledged first, followed by the interrupt used to exit wait mode.
- The oscillation stop detect function is provided to handle main clock stop caused by external factors. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit is set to "1" (main clock oscillation stop).
- When the main clock frequency is 2MHz or less, the oscillation stop detect function is not available. Set the CM20 bit to "0".

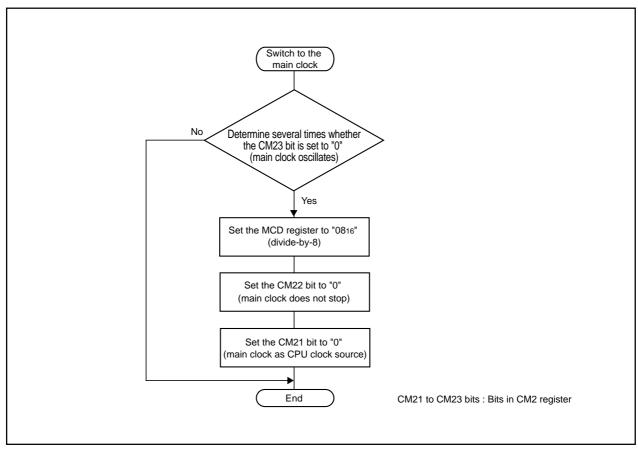


Figure 8.11 Switching Procedure from On-chip Oscillator Clock to Main Clock

8.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as a clock source for the CPU clock or peripheral function clock.

Connect a resistor and capacitor to the VCONT pin when using the PLL frequency synthesizer.

Set the PD8_6 and PD8_7 bits in the PD8 register to "0" (input mode) and the CM04 bit to "0" (the XCIN and XCOUT pins as ports). After that, connect the VCONT pin, the P86 pin, and the VSS pin to the circuit as is shown in Figure 8.12. Set the PLV00 bit in the PLV register to "1" (power to PLL).

The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait 20 ms (5 V operation) to 50 ms (3.3 V operation) for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3.

When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 8.2. Figure 8.13 shows the procedure for using the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source). Set the PLC07 bit in the PLC0 register to "0" (PLL off) and the PLV00 bit to "0" (no power to PLL) before the microcomputer enters wait or stop mode.

The VCONT and P86 pins share pins with XCIN and XCOUT pins. When the PLL frequency synthesizer is being used, the sub clock cannot be used.

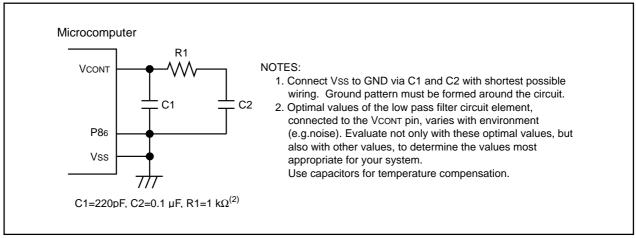


Figure 8.12 External Circuit with PLL Frequency Synthesizer

Table 8.2 Bit Settings to Use PLL Clock as CPU Clock Source

f(XIN)	PLC0 Register			PLC1 Register	PLL Clock
. (,,,	PLC02	PLC01	PLC00	PLC12	
10MHz	0	1	1	0	30 MHz
		·		1	20 MHz
8MHz	1	0	0	0	32MHz
J		Ŭ		1	21.3MHz

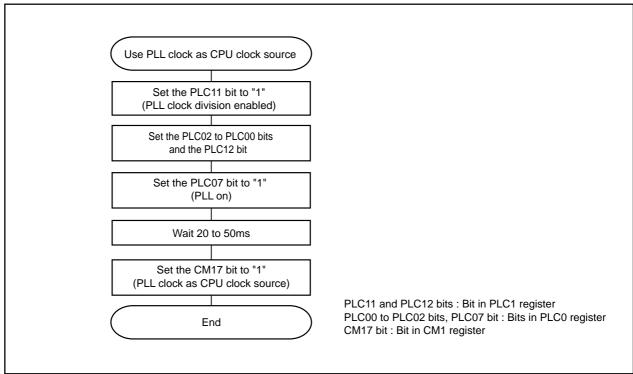


Figure 8.13 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and BCLK

The CPU operation clock is referred to as the CPU clock. The CPU clock is also the count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **8.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 8.3 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD register selects the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD register is set to "0816" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters middle-speed mode (divide-by-8).

Table 8.3 CPU Clock Source and Bit Settings

CPU Clock Source	CM0 Register	CM2 Register	CM1 Register
CF O Clock Source	CM07	CM21	CM17
Main Clock	0	0	0
Sub Clock	1	0	0
On-chip Oscillator Clock	0	1	0
PLL Clock	0	0	1

8.3 Peripheral Function Clock

The peripheral function clock becomes the operation clock or count source for peripheral functions excluding the watchdog timer.

8.3.1 f1, f8, f32 and f2n

 f_{1} , f_{8} , f_{32} and f_{2n} are the main clock⁽¹⁾ or on-chip oscillator clock divided-by-1, -8, -32 ,or -2n (n=1 to 15. No division when n=0). The CM21 bit determines which clock is selected.

When the CM02 bit is set to "1" (peripheral function stops in wait mode) when entering wait mode, f1, f8, f32 and f2n stop running. These clocks also stop in low-power consumption mode.

f1, f8 and f2n are used as the operation clock for the serial I/O and the count source for timers A and B. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. f1 is also used as the operation clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32. Refer to 8.4 Clock Output Function for details.

8.3.2 fAD

fAD is the operation clock for the A/D convertor and has the same frequency as the main clock⁽¹⁾ and onchip oscillator clock. The CM21 bit determines which clock is selected.

When the CM02 bit is set to "1" (peripheral function stop in wait mode) when entering wait mode, fAD stops. fAD also stops in low-power consumption mode.

NOTES:

1. When the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock is the main clock.

8.3.3 fc32

fC32 is the sub clock divided by 32. fC32 is used for as a count source for the timers A and B. fC32 is available when the sub clock is running.

8.4 Clock Output Function

The CLKOUT pin outputs fC, f8 or f32.

In memory expansion and microprocessor modes, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 8.4 lists CLKout pin function in single-chip mode. Table 8.5 lists CLKout pin functions in memory expansion and microprocessor modes.

Table 8.4 CLKout Pin in Single-Chip Mode

PM0 Register (1)	CM0 Re	egister (2)	OLKOVE Die Eresties	
PM07	CM01	CM00	CLKOUT Pin Function	
	0	0	P53 I/O port	
1	0	1	Outputs fc	
1	1	0	Outputs f8	
1	1	1	Outputs f32	

^{-:} Can be set to either "0" or "1"

NOTES:

- 1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable)
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable)

Table 8.5 BLCK/CLKout Pin in Memory Expansion Mode and Microprocessor Mode⁽⁴⁾

PM1 Register ⁽¹⁾		PM0 Register ⁽¹⁾	CM0 Register ⁽²⁾		CLKout Pin Function
PM15	PM14	PM07	CM01	CM00	OLICOTT IIIT directori
002, 102, 112,		0	0 (3)	0 (3)	Outputs BCLK
		1	0	0	Outputs "L" (not P53)
		1	0	1	Outputs fc
	1	1	0	Outputs f8	
		1	1	1	Outputs f32
0	1		0 (3)	0 (3)	Outputs ALE

^{-:} Can be set to either "0" or "1"

NOTES:

- 1. Rewrite the PM0 and PM1 register after the PRC1 bit in the PRCR register is set to "1" (write enable)
- 2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable)
- 3. When the PM07 bit is set to "0" (selected in the CM01 to CM00 bits) or the PM15 to PM14 bits are set to "012" (P53/BCLK), set the CM01 to CM00 bits to "002" (I/O port P53)
- 4. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

8.5 Power Consumption Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document. Figure 8.14 shows a block diagram of status transition in wait mode and stop mode. Figure 8.15 shows a block diagram of status transition in all modes.

8.5.1 Normal Operation Mode

The normal operation mode is further separated into six modes.

In normal operation mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillation circuits stop, power consumption is further reduced.

8.5.1.1 High-Speed Mode

The main clock⁽¹⁾ becomes the CPU clock and the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.2 Medium-Speed Mode

The main clock divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main clock is the clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as the count source for the timers A and B.

8.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock. The main clock is the count source for the peripheral function clock. fc32 can be used as the count source for the timers A and B.

8.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. fc32 can be used as the count source for timers A and B. Only fc32 can be used as the peripheral function clock. In low-power consumption mode, the MCD register is set to "0816" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in middle-speed mode (divide-by-8 mode).

8.5.1.5 On-chip Oscillator Mode

The on-chip oscillator clock divided-by-1(no division), -2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is the clock source for the peripheral function clock. When the sub clock runs, fc32 can be used as the count source for the timers A and B.

8.5.1.6 On-chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode. The on-chip oscillator clock divided-by-1(no division), -2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as the count source for the timers A and B.

Switch the CPU clock after the clock to be switched to stabilizes. Sub clock oscillation will take longer⁽²⁾ to stabilize. Wait, by program, until the clock stabilizes directly after running the microcomputer on or exiting stop mode.

To switch the on-chip oscillator to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (MCD register=0816).

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from low-speed mode or low-power consumption mode and vice versa.

- 1. When the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock is the main clock .
- 2. Contact your oscillator manufacturer for oscillation stabilization time.

8.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

8.5.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n and fAD stop in wait mode. Power consumption can be reduced because the peripheral function that has f1, f8, f32, f2n, or fAD as a count source stops. fC32 does not stop running.

8.5.2.2 Entering Wait Mode

Follow the procedure below to enter wait mode.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Wait Mode
- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit wait mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
- (4) Set the IPL in the FLG register. Then set the exit priority level to the same level as IPL (Interrupt priority level of the interrupt used to exit wait mode > exit priority level ≥ interrupt priority level of the interrupts not used to exit wait mode)
- (5) Set the PRC0 bit in the PRCR register to "1" (write enable)
- (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock), the PLC07 bit in the PLC0 register to "0" (PLL off), and the PLV00 bit in the PLV register to "0"(cut off power to PLL)
- (7) Set the I flag to "1"
- (8) Execute the WAIT instruction
- After Exiting Wait Mode

Set the interrupt priority level required to exit wait mode to "7" immediately after exiting wait mode.

8.5.2.3 Pin Status in Wait Mode

Table 8.6 lists pin states in wait mode.

Table 8.6 Pin Status in Wait Mode

Pin		Memory Expansion Mode	Single-Chip Mode		
		Microprocessor Mode			
Address Bus, Data Bus, CS0 to CS3,		Maintains state immediately			
вне		before entering wait mode			
RD, WR, WRL, WRH, DW, CASL, CASH		"H" ⁽¹⁾			
RAS		"H" ⁽¹⁾			
HLDA, BCLK		"H"			
ALE		"L"			
Port		Maintains state immediately before entering wait mode			
CLKout	When fc is selected	Outputs clock			
	When f8, f32 are selected	The clock is output when the CM02 bit in the CM0 register is set to "0" (peripheral function clock not stop in wait mode). Maintains state immediately before entering wait mode when the CM02 bit is set to "1" (peripheral function clock stopped in wait mode).			

NOTES:

- 1. When performing a self-refresh operation using the DRAMC, CAS and RAS become low ("L").
- 2. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

8.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, NMI interrupt or peripheral function interrupts.

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

The CM02 bit affects the peripheral function interrupts. When the CM02 bit is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts cannot be used to exit wait mode. However, peripheral function interrupts caused by an external signal can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or $\overline{\text{NMI}}$ interrupt is the same CPU clock used when WAIT instructions are executed.

Table 8.7 shows interrupts to be used to exit wait mode and usage conditions.

Table 8.7 Interrupts to Exit Wait Mode

Interrupt	When CM02=0	When CM02=1
NMI Interrupt	Available	Available
Serial I/O Interrupt	Available when the internal and external clocks are used	Available only when the external clock is used
Key Input Interrupt	Available	Available
A/D Conversion Interrupt	Available in single or single-sweep mode	Do not use
Timer A Interrupt	Available in all modes	Available in event counter mode or when
Timer B Interrupt		the count source is fC32
INT Interrupt	Available	Available
CAN Interrupt	Available	Do not use
Intelligent I/O Interrupt	Available	Do not use

8.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data if the voltage applied to the Vcc pin is 2.5V or more.

Interrupts used to exit stop mode are NMI interrupt, key input interrupt, and INT interrupt.

8.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM1 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode). Enter stop mode after setting the followings.

- Initial Setting
 - Set each interrupt priority level after setting the minimum interrupt priority level required to exit stop or wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".
- Before Entering Stop Mode
 - (1) Set the I flag to "0"
 - (2) Set the interrupt priority level of the interrupt being used to exit stop mode
 - (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
 - (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL (Interrupt priority level of the interrupt used to exit stop mode > interrupt priority level to exit stop mode ≥ interrupt priority level of the interrupts not used to exit stop mode)
 - (5) Set the PRC0 bit in the PRCR register to "1" (write enabled)
 - (6) Select the main clock as the CPU clock
 - When the CPU clock source is the sub clock,
 Set the CM05 bit in the CM0 register to "0" (main clock oscillates) and CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
 - When the CPU clock source is the PLL clock,
 Set the CM17 bit in the CM1 register to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off)
 - When the CPU clock source is the on-chip oscillator clock,
 Set the MCD4 to MCD0 bits to "010002" (divide-by-8 mode), the CM05 bit to "0" (main clock oscillates), and the CM21 it in the CM2 register to "0" (clock selected by the CM17 bit)

- (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscilla tion stop detect function disabled)
- (8) Set the I flag to "1"
- (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode
 Set the interrupt priority level required to exit stop mode to "7" immediately after exiting stop mode.

8.5.3.2 Exiting Stop Mode

Stop mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt, or peripheral function interrupts (key input interrupt and $\overline{\text{INT}}$ interrupt).

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

8.5.3.3 Pin Status in Stop Mode

Table 8.8 lists pin status in stop mode.

Table 8.8 Pin Status in Stop Mode

	Pin	Memory Expansion Mode Microprocessor Mode ⁽²⁾	Single-Chip Mode
Address Bus	s, Data Bus, CS0 to CS3, BHE	Maintains state immediately before	
		entering stop mode	
RD, WR, WI	RL, WRH, DW, CASL, CASH	"H" ⁽¹⁾	
RAS		"H" ⁽¹⁾	
HLDA, BCL	<	"H"	
ALE		"H"	
Port		Maintains state immediately before	entering stop mode
CLKout	When fc selected	"H"	
	When f8, f32 selected	Maintains state immediately before	entering stop mode
XIN		High-impedance	
Xout		"H"	
Xcin, Xcout	-	High-impedance	

NOTES:

- 1. When performing a self-refresh operation using DRAMC, \overline{CAS} and \overline{RAS} become low ("L").
- 2. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

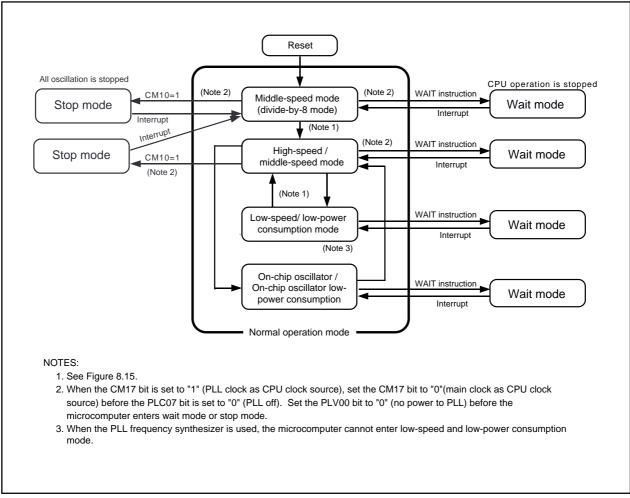


Figure 8.14 Status Transition in Wait Mode and Stop Mode

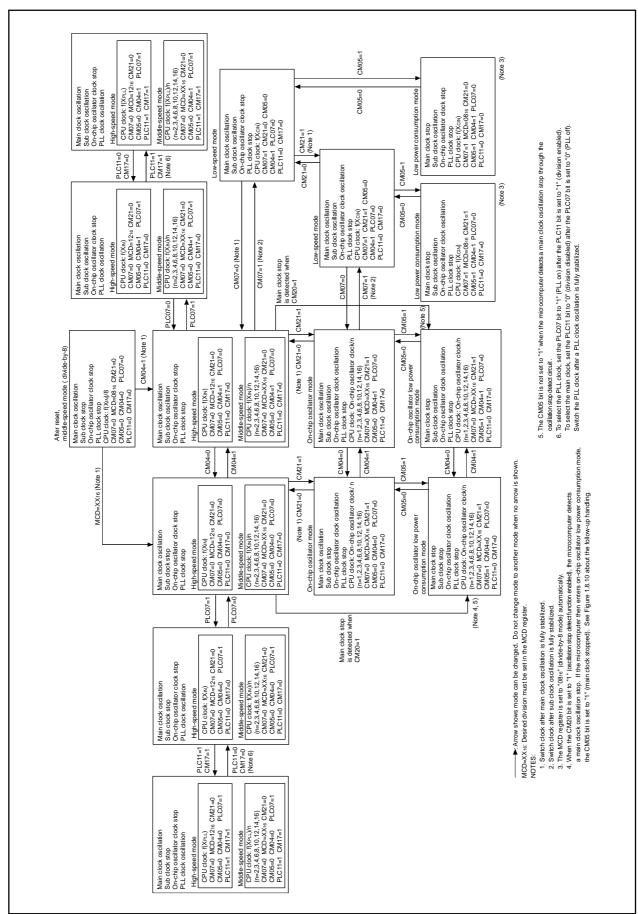


Figure 8.15 Status Transition

9. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 9.1 shows the PRCR register. Each bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0 and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers;
- The PRC3 bit protects the PLV and VDC0 registers.

The PRC2 bit is set to "0" (write disable) when data is written to a desired address after setting the PRC2 bit to "1" (write enable). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC0, PRC1 and PRC3 bits are not set to "0" even if data is written to desired addresses. Set the PRC0, PRC1 and PRC3 bits to "0" by program.

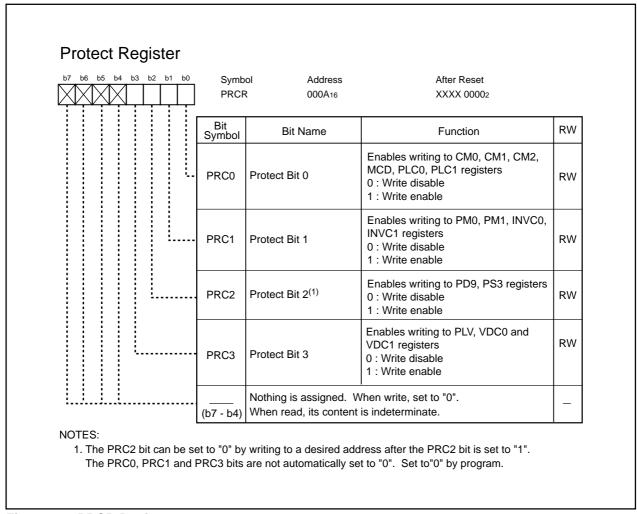


Figure 9.1 PRCR Register

10. Interrupts

10.1 Types of Interrupts

Figure 10.1 shows types of interrupts.

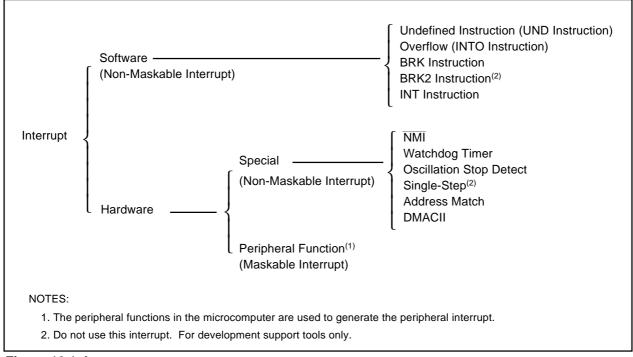


Figure 10.1 Interrupts

Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

Non-maskable Interrupt

The I flag does not enable nor disable an interrupt.

The interrupt priority order based on interrupt priority level cannot be changed.

10.2 Software Interrupts

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt occurs when the UND instruction is executed.

10.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

10.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

10.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed.

Do not use this interrupt. For development support tools only.

10.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 7 to 54, and 57 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same service routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of the specified software interrupt number. Where the stack is saved varies, depending on the software interrupt number. ISP is selected as the stack for the software interrupt numbers 0 to 31 (the U flag is set to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for the software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 54 and 57, the SP to be used varies, depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.

10.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from an "H" signal to an "L" signal. Refer to 10.8 NMI Interrupt for details.

10.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when the count source of the watchdog timer underflows. Refer to **11. Watchdog Timer** for details.

10.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **8. Clock Generating Circuit** for details.

10.3.1.4 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

10.3.1.5 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 3) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to **10.10 Address Match Interrupt** for details.

10.3.2 Peripheral Function Interrupt

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 7 to 54 and 57 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 10.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 High-Speed Interrupt

The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in 3 cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt service routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved to the SVF register and PC is saved to the SVP registers. The program is executed from an address indicated by the VCT register.

Execute the FREIT instruction to return from the high-speed interrupt service routine.

The values saved to the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

10.5 Interrupts and Interrupt Vectors

There are four bytes in one vector. Set the starting address of interrupt service routine in each vector table. When an interrupt request is acknowledged, the interrupt service routine is executed from the address set in the interrupt vectors. Figure 10.2 shows the interrupt vector.

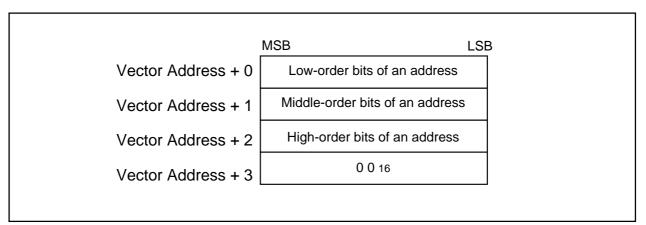


Figure 10.2 Interrupt Vector

10.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFDC16 to FFFFF16. Table 10.1 lists the fixed vector tables. Refer to **25.2 Functions to Prevent Flash Memory from Rewriting** for fixed vectors of the flash memory.

Table 10.1 Fixed Vector Table

Interrupt Generated by	Vector Addresses Address (L) to Address (H)	Remarks	Reference
Undefined Instruction	FFFFDC16 to FFFFDF16		M32C/80 series software manual
Overflow	FFFFE016 to FFFFE316		
BRK Instruction	FFFFE416 to FFFFE716	If the content of address FFFFE716 is FF16, the program is executed from the address stored into software interrupt number 0 in the relocatable vector table	
Address Match	FFFFE816 to FFFFEB16		
-	FFFFEC16 to FFFFEF16	Reserved space	
Watchdog Timer	FFFFF016 to FFFFF316	These addresses are used for the watchdog timer interrupt and the oscillation stop detect interrupt	Clock oscillation circuit, Watchdog timer
-	FFFFF416 to FFFFF716	Reserved space	
NMI	FFFFF816 to FFFFFB16		
Reset	FFFFC16 to FFFFF16		Reset

10.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 10.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.

Table 10.2 Relocatable Vector Tables

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3 (000016 to 000316)	0	M32C/80 Series
Reserved Space	+4 to +27 (000416 to 001B16)	1 to 6	Software Manual
A/D1	+28 to +31 (001C16 to 001F16)	7	A/D Converter
DMA0	+32 to +35 (002016 to 002316)	8	DMAC
DMA1	+36 to +39 (002416 to 002716)	9	
DMA2	+40 to +43 (002816 to 002B16)	10	
DMA3	+44 to +47 (002C16 to 002F16)	11	
Timer A0	+48 to +51 (003016 to 003316)	12	Timer A
Timer A1	+52 to +55 (003416 to 003716)	13	1111017
Timer A2	+56 to +59 (003816 to 003B16)	14	
Timer A3	+60 to +63 (003C16 to 003F16)	15	
Timer A4	+64 to +67 (004016 to 004316)	16	
UART0 Transmission, NACK ⁽³⁾	+68 to +71 (004416 to 004716)	17	Serial I/O
UARTO Reception, ACK ⁽³⁾	+72 to +75 (004816 to 004B16)	18	0011411110
UART1 Transmission, NACK ⁽³⁾	+76 to +79 (004C16 to 004F16)	19	
UART1 Reception, ACK ⁽³⁾	+80 to +83 (005016 to 005316)	20	
Timer B0	+84 to +87 (005416 to 005716)	21	Timer B
Timer B1	+88 to +91 (005816 to 005B16)	22	
Timer B2	+92 to +95 (005C16 to 005F16)	23	
Timer B3	+96 to +99 (006016 to 006316)	24	
Timer B4	+100 to +103 (006416 to 006716)	25	
INT5	+104 to +107 (006816 to 006B16)	26	Interrupt
ĪNT4	+108 to +111 (006C16 to 006F16)	27	'
ĪNT3	+112 to +115 (007016 to 007316)	28	
ĪNT2	+116 to +119 (007416 to 007716)	29	
ĪNT1	+120 to +123 (007816 to 007B16)	30	
ĪNT0	+124 to +127 (007C16 to 007F16)	31	
Timer B5	+128 to +131 (008016 to 008316)	32	Timer B
UART2 Transmission, NACK ⁽³⁾	+132 to +135 (008416 to 008716)	33	Serial I/O
UART2 Reception, ACK ⁽³⁾	+136 to +139 (008816 to 008B16)	34	
UART3 Transmission, NACK ⁽³⁾	+140 to +143 (008C16 to 008F16)	35	
UART3 Reception, ACK ⁽³⁾	+144 to +147 (009016 to 009316)	36	
UART4 Transmission, NACK ⁽³⁾	+148 to +151 (009416 to 009716)	37	
UART4 Reception, ACK ⁽³⁾	+152 to +155 (009816 to 009B16)	38	

Table 10.2 Relocatable Vector Tables (Continued)

Interrupt Generated by	Vector Table Address	Software	Reference
	Address(L)to Address(H) ⁽¹⁾	Interrupt Number	0 : 11/0
Bus Conflict Detect, Start Condition Detect,	+156 to +159 (009C16 to 009F16)	39	Serial I/O
Stop Condition Detect, (UART2) ⁽³⁾ ,			
Fault Error ⁽⁴⁾			
Bus Conflict Detect, Start Condition Detect,	+160 to +163 (00A016 to 00A316)	40	
Stop Condition Detect,			
(UART3/UART0) ⁽⁵⁾ , Fault Error ⁽⁴⁾			
Bus Conflict Detect, Start Condition Select,	+164 to +167 (00A416 to 00A716)	41	
Stop Condition Detect,			
(UART4/UART1) ⁽⁵⁾ , Fault Error ⁽⁴⁾			
A/D0	+168 to +171 (00A816 to 00AB16)	42	A/D Converter
Key Input	+172 to +175 (00AC16 to 00AF16)	43	Interrupts
Intelligent I/O Interrupt 0	+176 to +179 (00B016 to 00B316)	44	Intelligent I/O
Intelligent I/O Interrupt 1	+180 to +183 (00B416 to 00B716)	45	CAN
Intelligent I/O Interrupt 2	+184 to +187 (00B816 to 00BB16)	46	
Intelligent I/O Interrupt 3	+188 to +191 (00BC16 to 00BF16)	47	
Intelligent I/O Interrupt 4	+192 to +195 (00C016 to 00C316)	48	
Intelligent I/O Interrupt 5	+196 to +199 (00C416 to 00C716)	49	
Intelligent I/O Interrupt 6	+200 to +203(00C816 to 00CB16)	50	
Intelligent I/O Interrupt 7	+204 to +207(00CC16 to 00CF16)	51	
Intelligent I/O Interrupt 8	+208 to +211(00D016 to 00D316)	52	
Intelligent I/O Interrupt 9, CAN 0	+212 to +215 (00D416 to 00D716)	53	
Intelligent I/O Interrupt 10, CAN 1	+216 to +219 (00D816 to 00DB16)	54	
Reserved Space	+220 to +227 (00DC16 to 00E316)	55 to 56	
Intelligent I/O Interrupt 11, CAN 2	+228 to +231 (00E416 to 00E716)	57	Intelligent I/O
			CAN
Reserved Space	+232 to +255 (00E816 to 00FF16)	58 to 62	
INT Instruction ⁽²⁾	+0 to +3 (000016 to 000316) to	0 to 63	Interrupts
	+252 to +255 (00FC16 to 00FF16)		

NOTES:

- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable interrupts.
- 3. In I²C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. When the $\overline{\text{SS}}$ pin is selected, fault error causes an interrupt to be generated.
- 5. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.

10.6 Interrupt Request Reception

Software interrupts and special interrupts occur when conditions to generate an interrupt are met.

The peripheral function interrupts are acknowledged when all conditions below are met.

I flag = "1"
 IR bit = "1"
 ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

10.6.1 I Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority than that indicated by IPL, the interrupt is acknowledged. Table 10.3 lists interrupt priority levels associated with IPL.

Table 10.3 Interrupt Priority Levels

IPL2	IPL1	IPL0	Interrupt Priority Levels
0	0	0	Level 1 and above
0	0	1	Level 2 and above
0	1	0	Level 3 and above
0	1	1	Level 4 and above
1	0	0	Level 5 and above
1	0	1	Level 6 and above
1	1	0	Level 7 and above
1	1	1	All maskable interrupts are disabled

10.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 10.3 and 10.4 show the interrupt control register. Figure 10.5 shows the RLVL register.

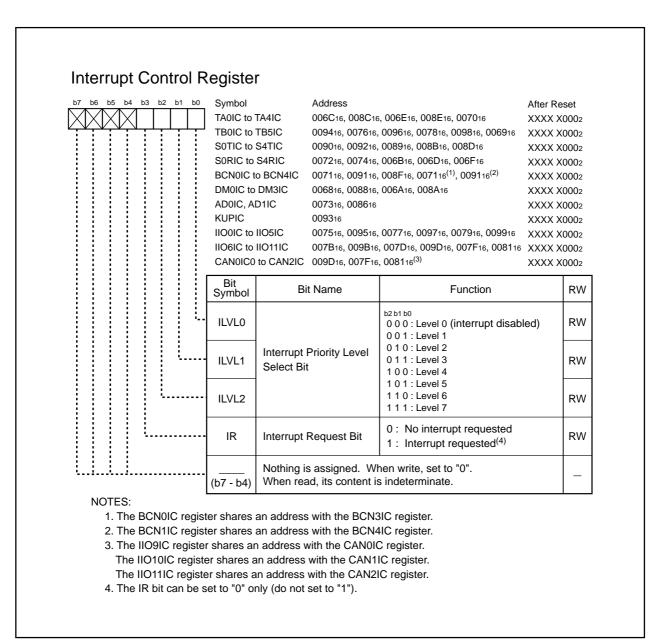


Figure 10.3 Interrupt Control Register (1)

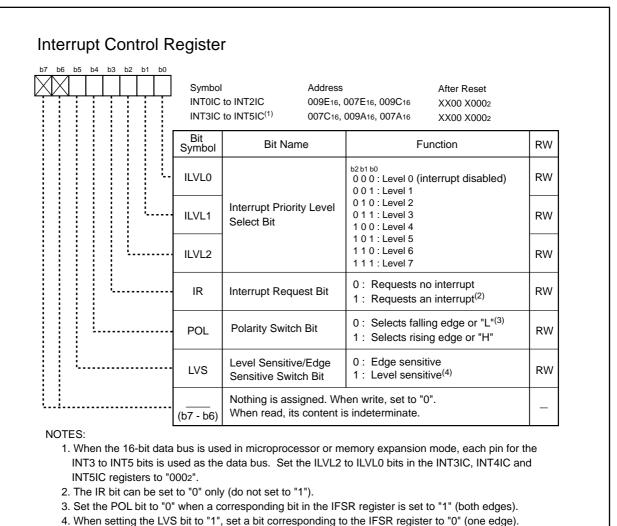


Figure 10.4 Interrupt Control Register (2)

10.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines the interrupt priority level. The higher the interrupt priority level, the higher interrupt priority is.

When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), this interrupt is ignored.

10.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and the program in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

- The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than
 the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in
 the FLG register.
- 2. When the FSIT bit is set to "1", interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to interrupt priority level 7 and the DMA II bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. After reset, the DMA II bit is indeterminate. When using an interrupt, set the interrupt control register after setting the DMA II bit to "0".

Figure 10.5 RLVL Register

10.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to **8.5.2 Wait Mode** and **8.5.3 Stop Mode** for details.

10.6.3 Interrupt Sequence

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register⁽¹⁾ within the CPU.
- (3) Each bit in the FLG register is set as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step disabled)
 - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL.
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt service routine.

NOTES:

1. Temporary register cannot be modified by users.

10.6.4 Interrupt Response Time

Figure 10.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt service routine. An interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) in Figure 10.6) and the period required to perform an interrupt sequence ((b) in Figure 10.6).

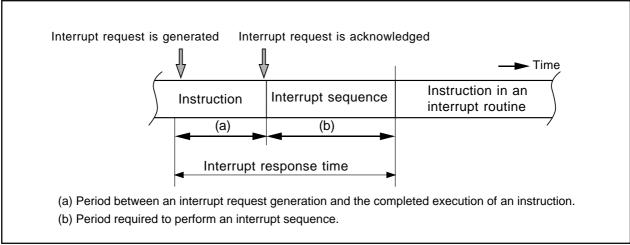


Figure 10.6 Interrupt Response Time

Time (a) varies depending on the instruction being executed. The DIV instruction requires the longest time (a); 40 cycles when an immediate value or register is set as the divisor.

When the divisor is a value in the memory, the following value is added.

Normal addressing : 2 + X
 Index addressing : 3 + X
 Indirect addressing : 5 + X + 2Y
 Indirect index addressing : 6 + X + 2Y

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 10.4 lists time (b).

Table 10.4 Interrupt Sequence Execution Time

Interrupt	Interrupt Vector Address	16-Bit Bus	8-Bit Bus
Peripheral Function	Even address	14 cycles	16 cycles
	Odd address ⁽¹⁾	16 cycles	16 cycles
INT Instruction	Even address	12 cycles	14 cycles
	Odd address ⁽¹⁾	14 cycles	14 cycles
NMI	Even address ⁽²⁾	13 cycles	15 cycles
Watchdog Timer			
Undefined Instruction			
Address Match			
Overflow	Even address ⁽²⁾	14 cycles	16 cycles
BRK Instruction (relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address ⁽¹⁾	19 cycles	19 cycles
BRK Instruction (fixed vector table)	Even address ⁽²⁾	19 cycles	21 cycles
High-Speed Interrupt	Vector table is internal register	5 cycles	

NOTES:

- 1. Allocate interrupt vectors to even addresses.
- 2. Vectors are fixed to even addresses.

10.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 10.5 is set in IPL as the interrupt priority level.

Table 10.5 Interrupts without Interrupt Priority Levels and IPL

Interrupt Sources	Level that is Set to IPL
Watchdog Timer, NMI, Oscillation Stop Detect	7
Reset	0
Software, Address Match	Not changed

10.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 10.7 shows the stack state before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt service routine. The PUSHM instruction can save all registers except SP.

Refer to 10.4 High-Speed Interrupt for the high-speed interrupt.

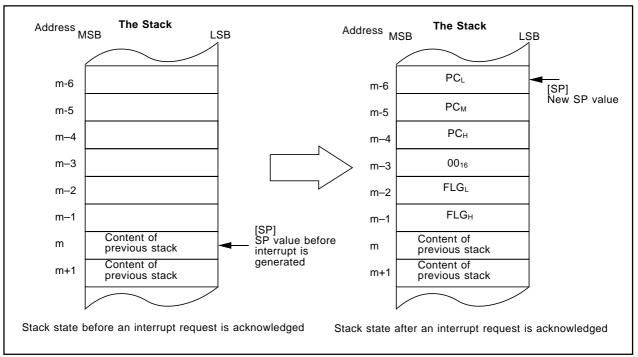


Figure 10.7 Stack States

10.6.7 Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt service routine, the FLG register and PC, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request has been acknowledged, starts running again. Refer to **10.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt service routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.

10.6.8 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 10.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. The microcomputer jumps to the interrupt routine when the instruction is executed.

Reset > NMI > Watchdog > Peripheral Function > Address Match

Figure 10.8 Interrupt Priority

10.6.9 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.9 shows the interrupt priority level select circuit.

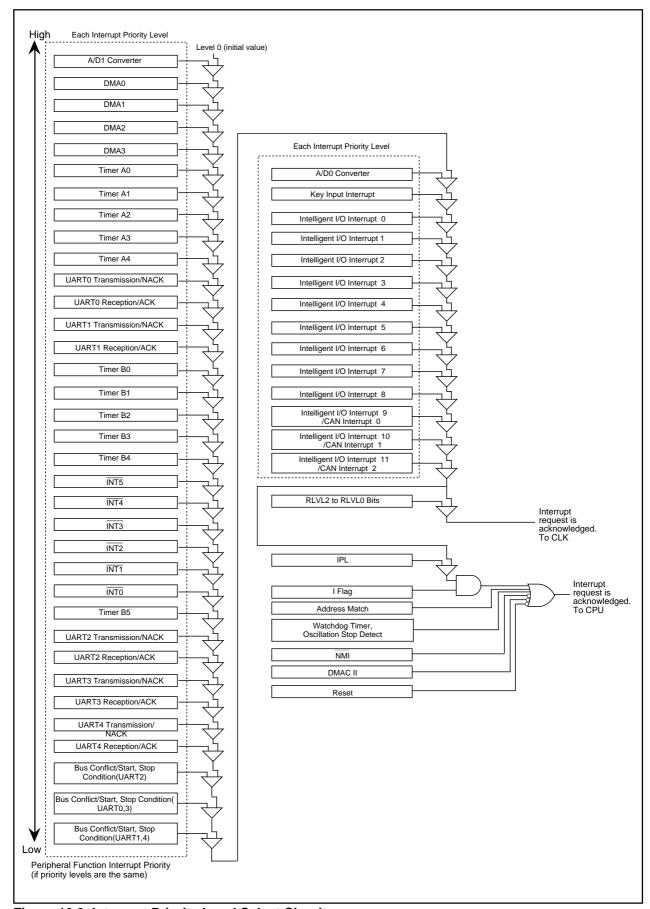


Figure 10.9 Interrupt Priority Level Select Circuit

10.7 INT Interrupt

External input generates the INTi interrupt (i = 0 to 5). The LVS bit in the INTilC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTilC register determines the polarity.

With an edge sensitive triggering, when the IFSRi bit in the IFSR register is set to "1" (both edges), an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

With a level sensitive triggering, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTilC register is set to "1". The IR bit remains set to "1" even if the INTi pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when "0" is written by program.

Figure 10.10 shows the IFSR register.

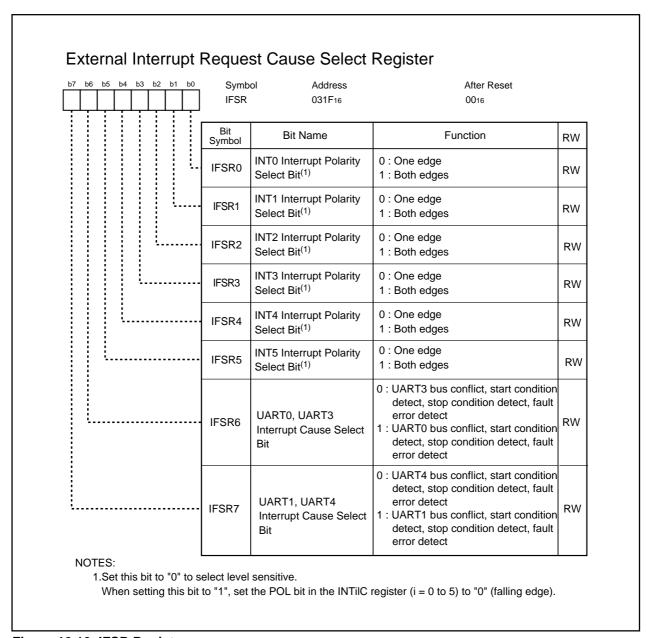


Figure 10.10 IFSR Register

10.8 NMI Interrupt

The NMI interrupt occurs when the signal applied to the P85/NMI pin changes from an "H" signal to an "L" signal. The NMI interrupt is a non-maskable interrupt. Although the P85/NMI pin is used as the NMI interrupt input pin, the P8_5 bit in the P85 register indicates input level for this pin.

NOTES:

When the $\overline{\text{NMI}}$ interrupt is not used, connect (pull-up) the $\overline{\text{NMI}}$ pin to Vcc via a resistor. Because the $\overline{\text{NMI}}$ interrupt cannot be ignored, the pin must be connected.

10.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 10.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as a request signal for an interrupt.

When the PSC_7 bit in the PSC register⁽¹⁾ is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC_7 bit is set to "1", no input from a port pin is available even when in input mode.

NOTES:

1. Refer to 24. Programmable I/O Ports for details on the PSC register.

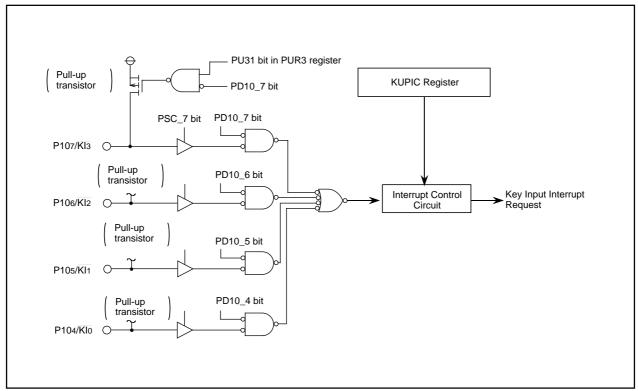


Figure 10.11 Key Input Interrupt

10.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 3). The address match interrupt can be set in four addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 10.12 shows registers associated with the address match interrupt.

Set the starting address of an instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

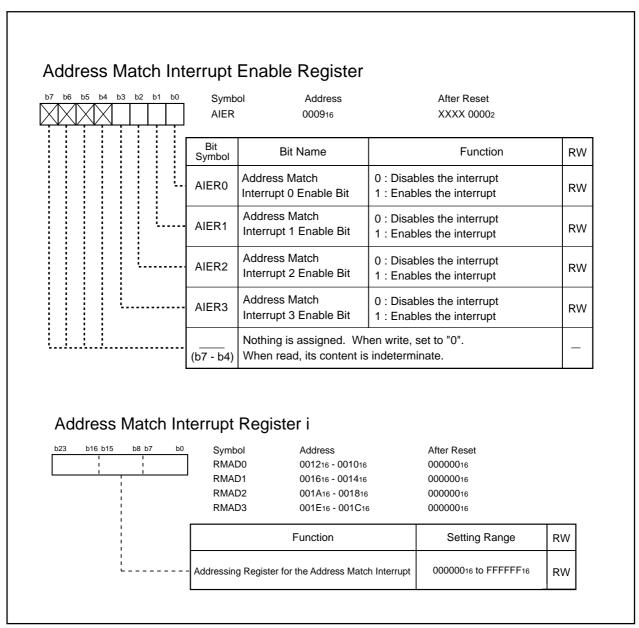


Figure 10.12 AIER Register and RMAD0 to RMAD3 Registers

10.11 Intelligent I/O Interrupt and CAN Interrupt

The intelligent I/O interrupt and CAN interrupt are assigned to software interrupt numbers 44 to 54, and 57. Figure 10.13 shows a block diagram of the intelligent I/O interrupt and CAN interrupt. Figure 10.14 shows the IIOiIR register (i = 0 to 11). Figure 10.15 shows the IIOiIE register.

When using the intelligent I/O interrupt or CAN interrupt, set the IRLT bit in the IIOiIE register to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOilC register is set to "1" (interrupt requested).

After the IR bit setting changes from "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1".

Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bits remain set to "1", all generated interrupt requests are ignored.

CAN interrupt uses bit 7 in the IIO9IR to IIO11IR registers and bit 7 in the IIO9IE to IIO11IE registers. IIO9IR to IIO11IR registers share addresses with the CAN0IC to CAN2IC registers. Refer to 22.3 CAN Interrupt for details.

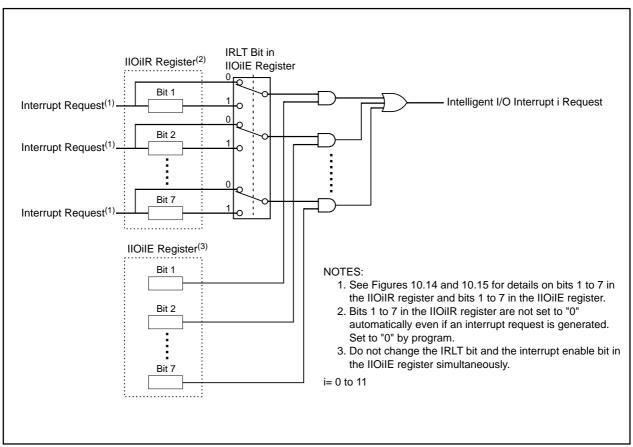
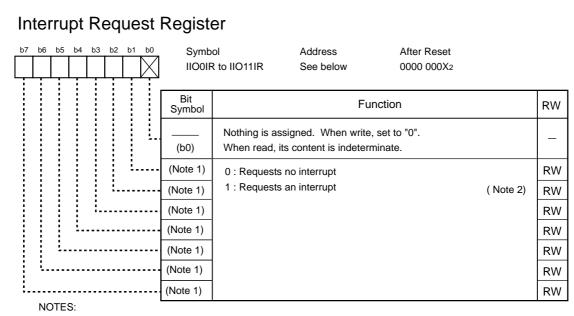



Figure 10.13 Intelligent I/O Interrupt and CAN Interrupt

When using the intelligent I/O interrupt or CAN interrupt to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (an interrupt used for DMAC, DMAC II) to enable the interrupt request that the IIOiIE register requires.

- 1. See table below for bit symbols.
- 2. Only "0" can be set (nothing is changed even if "1" is set).

Bit Symbols for the Interrupt Request Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IR	00A016	-	-	SIO0RR	G0RIR	-	PO13R	TM02R	-
IIO1IR	00A116	-	-	SIO0TR	G0TOR	-	PO14R	TM00R/PO00R	-
IIO2IR	00A216	-	-	SIO1RR	G1RIR	-	TM12R/PO12R	-	-
IIO3IR	00A316	-	-	SIO1TR	G1TOR	PO27R	PO10R	TM03R	-
IIO4IR	00A416	SRT0R	SRT1R	-	BT1R	PO32R	TM17R/PO17R	TM04R/PO04R	-
IIO5IR	00A516	-	-	-	SIO2RR	PO33R	PO21R	TM05R/PO05R	-
IIO6IR	00A616	-	-	-	SIO2TR	PO34R	PO20R	TM06R	-
IIO7IR	00A716	IE0R	-	-	BT0R	PO35R	PO22R	TM07R	
IIO8IR	00A816	IE1R	IE2R	-	BT2R	PO36R	PO23R	TM11R/PO11R	-
IIO9IR	00A916	CAN0R	-	-	SIO3RR	PO31R	PO24R	PO15R	-
IIO10IR	00AA16	CAN1R	-	-	SIO3TR	PO30R	PO25R	TM16R/PO16R	1
IIO11IR	00AB ₁₆	CAN2R	-	-	BT3R	PO37R	PO26R	TM01R/PO01R	•

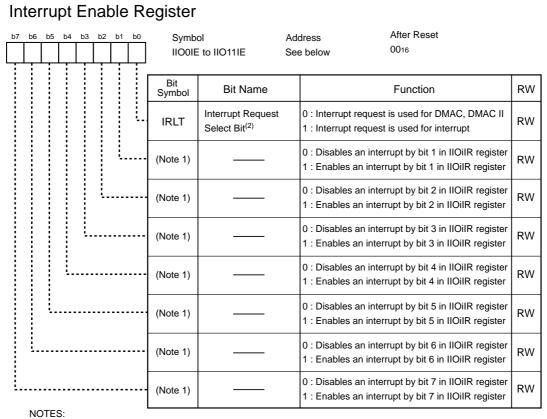
BTiR : Intelligent I/O Group i Base Timer Interrupt Request Bit (i=0 to 3)

TMmjR : Intelligent I/O Group m Time Measurement j Interrupt Request Bit (j=0 to 7)(m=0,1)
POijR : Intelligent I/O Group i Waveform Generation Function j Interrupt Request Bit

SIOiRR/SIOiTR: Intelligent I/O Group i Communication Function Interrupt Request Bit (RR:receive, TR:transmit)

GmRIR/GmTOR Intelligent I/O Group m HDLC Data Processing Function Interrupt Request Bit

(RIR:input to receive, TOR:input to transmit)


SRTmR : Intelligent I/O Group m Special Communication Function Interrupt Request Bit

 $IEkR \hspace{1.5cm} : Intelligent \hspace{0.1cm} I/O \hspace{0.1cm} Group \hspace{0.1cm} 2 \hspace{0.1cm} IEBus \hspace{0.1cm} Communication \hspace{0.1cm} Function \hspace{0.1cm} Interrupt \hspace{0.1cm} Request \hspace{0.1cm} Bit \hspace{0.1cm} (k=0 \hspace{0.1cm} to \hspace{0.1cm} 2)$

CANkR : CAN Communication Function Interrupt Request Bit

- : Reserved bit. Set to "0".

Figure 10.14 IIO0IR to IIO11IR Registers

1. See table below for bit symbols.

Bit Symbols for the Interrupt Enable Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IE	00B016	-	-	SIO0RE	G0RIE	-	PO13E	TM02E	IRLT
IIO1IE	00B1 ₁₆	-	-	SIO0TE	G0TOE	-	PO14E	TM00E/PO00E	IRLT
IIO2IE	00B216	•	ı	SIO1RE	G1RIE	ı	TM12E/PO12E	-	IRLT
IIO3IE	00B316	-	-	SIO1TE	G1TOE	PO27E	PO10E	TM03E	IRLT
IIO4IE	00B416	SRT0E	SRT1E	-	BT1E	PO32E	TM17E/PO17E	TM04E/PO04E	IRLT
IIO5IE	00B516	-	-	-	SIO2RE	PO33E	PO21E	TM05E/PO05E	IRLT
IIO6IE	00B616	-	-	-	SIO2TE	PO34E	PO20E	TM06E	IRLT
IIO7IE	00B7 ₁₆	IE0E	-	-	BT0E	PO35E	PO22E	TM07E	IRLT
IIO8IE	00B816	IE1E	IE2E	-	BT2E	PO36E	PO23E	TM11E/PO11E	IRLT
IIO9IE	00B916	CAN0E	-	-	SIO3RE	PO31E	PO24E	PO15E	IRLT
IIO10IE	00BA ₁₆	CAN1E		-	SIO3TE	PO30E	PO25E	TM16E/PO16E	IRLT
IIO11IE	00BB16	CAN2E	-	-	ВТ3Е	PO37E	PO26E	TM01E/PO01E	IRLT

BTiE : Intelligent I/O Group i Base Timer Interrupt Enable Bit (i=0 to 3)

TMmjE : Intelligent I/O Group m Time Measurement j Interrupt Enable Bit (j=0 to 7)(m=0,1)
POijE : Intelligent I/O Group i Waveform Generation Function j Interrupt Enable Bit

 ${\bf SIOiRE/SIOiTE} \quad : Intelligent I/O \ Group \ i \ Communication \ Function \ Interrupt \ Enable \ Bit \ (RE:receive, \ TE:transmit)$

 ${\sf GmRIE/GmTOE}: Intelligent \ {\sf I/O}\ {\sf Group}\ {\sf m}\ {\sf HDLC}\ {\sf Data}\ {\sf Processing}\ {\sf Function}\ {\sf Interrupt}\ {\sf Enable}\ {\sf Bit}$

(RIE:input to receive, TOE:input to transmit)

SRTME : Intelligent I/O Group m Special Communication Function Interrupt Enable Bit

IEkE : Intelligent I/O Group 2 IEBus Communication Function Interrupt Enable Bit (k=0 to 2)

CANKE : CAN Communication Function Interrupt Enable Bit

- : Reserved bit. Set to "0".

Figure 10.15 IIO0IE to IIO11IE Registers

^{2.} If an interrupt request is used for interrupt, set bit 1 to 7 to "1" after the IRLT bit is set to "1".

11. Watchdog Timer

The watchdog timer detects a program which is out of control. The watchdog timer contains a 15-bit counter which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether the watchdog timer interrupt request or reset is generated when the watchdog timer underflows. The CM06 bit can be set to "1" (reset) only. Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset.

When the main clock, on-chip oscillator clock, or the PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determines whether the prescaler divides by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock:

When the sub clock is selected as the CPU clock,

For example, if the CPU clock frequency is 30MHz and the prescaler divides by 16, watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

Write the WDTS register with shorter cycle than the watchdog timer cycle. Set the WDTS register also in the beginning of the watchdog timer interrupt routine.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 11.1 shows a block diagram of the watchdog timer. Figure 11.2 shows registers associated with the watchdog timer.

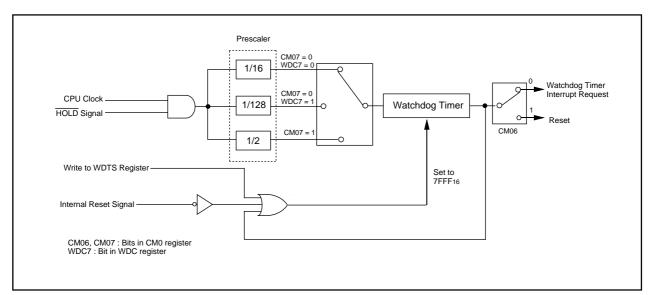


Figure 11.1 Watchdog Timer Block Diagram

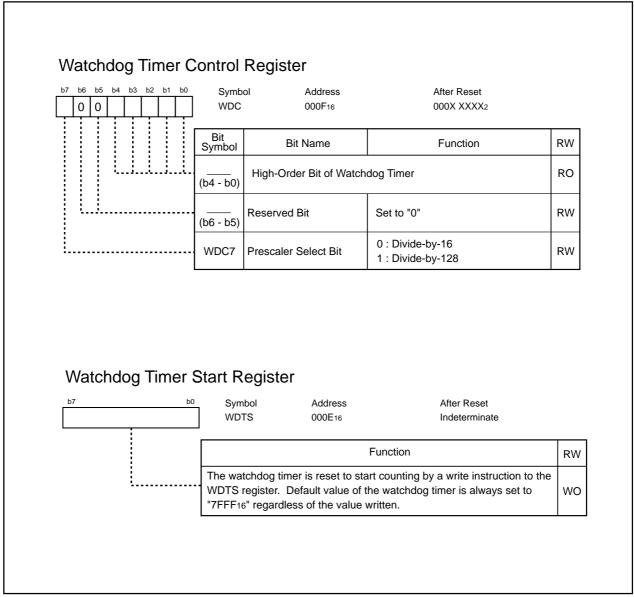
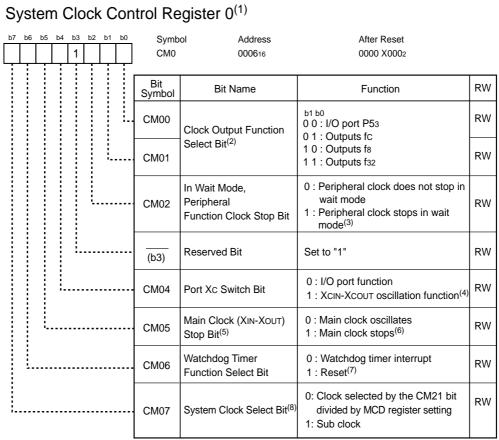



Figure 11.2 WDC Register and WDTS Register

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 to CM00 bits to "002". When the PM15 to PM14 bits in the PM1 register is set to "012" (ALE output to P53), set the CM01 to CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 to CM00 bits) in microprocessor or memory expansion mode, and the CM01 to CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit to "1" (XCIN-XCOUT oscillation), set the PD8_7 to PD8_6 bits to "002" (with port P87 and P86 input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering the low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", XOUT becomes "H". The built-in feedback resistor remains on. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD register is set to "0816" (divide-by-8 mode). In on-chip oscillation mode, the MCD register is not divided by eight even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bits simultaneously.

Figure 11.3 CM0 Register

12. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized when using DMAC. DMAC2 and DMAC3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed by DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 12.1 shows a mapping of registers to be used for DMAC. Table 12.1 lists specifications of DMAC. Figures 12.2 to 12.5 show registers associated with DMAC.

Because the registers shown in Figure 12.1 are allocated to the CPU, use the LDC instruction to write to the registers. To set DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set R0 to R3, A0, A1 registers with the MOV instruction.

To set DSA2 and DSA3 registers, set the B flag to "1" and set the SB, FB, SVP, VCT registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP, VCT registers with the LDC instruction.

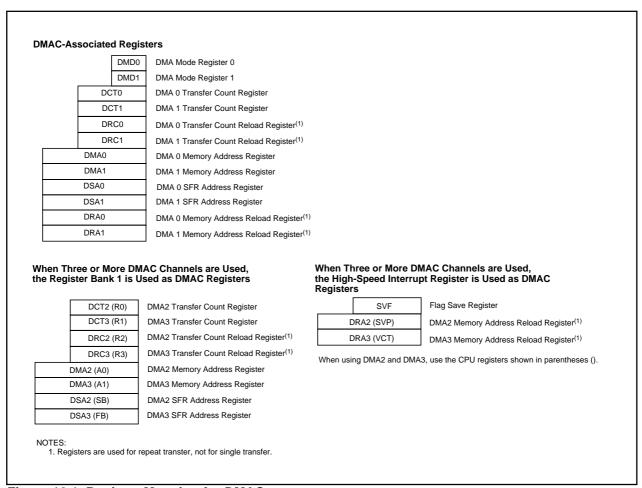


Figure 12.1 Register Mapping for DMAC

DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Table 12.1 DMAC Specifications

ltem	Specification			
Channels	4 channels (cycle-steal method)			
Transfer Memory Space	From a desired address in a 16M-byte space to a fixed address in a			
	16M-byte space			
	• From a fixed address in a 16M-byte space to a desired address in a			
	16M-byte space			
Maximum Bytes Transferred	128K bytes (when a 16-bit data is transferred) or 64K bytes (when an 8-			
	bit data is transferred)			
DMA Request Factors ⁽¹⁾	Falling edge or both edges of input signals to the INTO to INT3 pins			
	Timer A0 to timer A4 interrupt requests			
	Timer B0 to timer B5 interrupt requests			
	UART0 to UART4 transmit and receive interrupt requests			
	A/D conversion interrupt request			
	Intelligent I/O interrupt request			
	CAN interrupt request			
	Software trigger			
Channel Priority	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)			
Transfer Unit	8 bits, 16 bits			
Destination Address	Forward/fixed (forward and fixed directions cannot be specified when			
	specifying source and destination addresses simultaneously)			
Transfer Mode Single Transfer	Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"			
Repeat Transfer	When the DCTi register is set to "000016", the value of the DRCi register			
	is reloaded into the DCTi register and the DMA transfer is continued			
DMA Interrupt Request Generation Timing	When the DCTi register changes "000116" to "000016"			
DMA Startup Single Transfer	DMA starts when a DMA request is generated after the DCTi register is			
	set to "000116" or more and the MDi1 to MD0 bits in the DMDj register (j			
	= 0 to 1) are set to "012" (single transfer)			
Repeat Transfer	DMA starts when a DMA request is generated after the DCTi register is			
	set to "000116" or more and the MDi1 to MDi0 bits are set to "112" (re-			
	peat transfer)			
DMA Stop Single Transfer	DMA stops when the MDi1 to MDi0 bits are set to "002" (DMA disabled)			
	or when the DCTi register is set to "000016" (0 DMA transfer) by DMA			
	transfer or write			
Repeat Transfer	DMA stops when the MDi1 to MDi0 bits are set to "002" or when the			
	DCTi register is set to "000016" and the DRCi register set to "000016"			
Reload Timing to the DCTi	When the DCTi register is set to "000016" from "000116" in repeat trans-			
or DMAi Register	fer mode			
DMA Transfer Cycles	Minimum 3 cycles between SFR and internal RAM			

NOTES:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

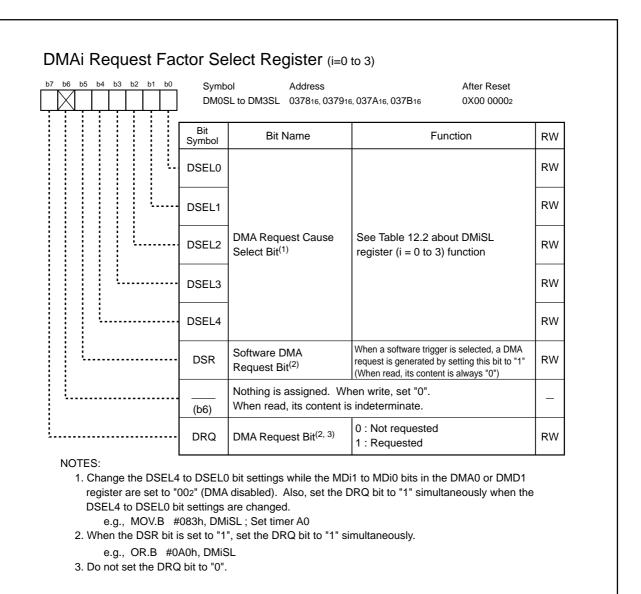


Figure 12.2 DM0SL to DM3SL Registers

Table 12.2 DMiSL Register (i = 0 to 3) Function

					_				
Setting Value		DMA Request Car	use						
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3					
0 0 0 0 0		Software Trigger							
0 0 0 0 1	Falling edge of INT0	Falling edge of INT1	Falling edge of INT2	Falling edge of INT3 ⁽¹⁾	(N				
0 0 0 1 0	Both edges of INT0	Both edges of INT1	Both edges of INT2	Both edges of INT3 ⁽¹⁾	(N				
0 0 0 1 1		Timer A0 Inte	rrupt Request						
0 0 1 0 0		Timer A1 Inte	rrupt Request						
0 0 1 0 1		Timer A2 Inte	rrupt Request						
0 0 1 1 0		Timer A3 Inte	rrupt Request						
0 0 1 1 1		Timer A4 Inte	rrupt Request						
0 1 0 0 0		Timer B0 Inte	rrupt Request						
0 1 0 0 1		Timer B1 Inte	rrupt Request						
0 1 0 1 0		Timer B2 Inte	rrupt Request						
0 1 0 1 1		Timer B3 Inte	rrupt Request						
0 1 1 0 0		Timer B4 Inte	rrupt Request						
0 1 1 0 1		Timer B5 Inte	rrupt Request						
0 1 1 1 0		UART0 Transmit	Interrupt Request						
0 1 1 1 1		UARTO Receive or AC	K Interrupt Request ⁽³⁾						
1 0 0 0 0		UART1 Transmit	Interrupt Request						
1 0 0 0 1		UART1 Receive or AC	K Interrupt Request ⁽³⁾						
1 0 0 1 0		UART2 Transmit	Interrupt Request						
1 0 0 1 1		UART2 Receive or AC	K Interrupt Request(3)						
1 0 1 0 0		UART3 Transmit	Interrupt Request						
1 0 1 0 1		UART3 Receive or AC	K Interrupt Request ⁽³⁾						
1 0 1 1 0		UART4 Transmit	Interrupt Request						
1 0 1 1 1		UART4 Receive or AC	K Interrupt Request(3)						
1 1 0 0 0	A/D0 Interrupt Request	A/D1 Interrupt Request	A/D0 Interrupt request	A/D1 Interrupt Request					
1 1 0 0 1	Intelligent I/O Interrupt 0 Request	Intelligent I/O Interrupt 7 Request	Intelligent I/O Interrupt 2 Request	Intelligent I/O Interrupt 9 Request ⁽⁴⁾					
1 1 0 1 0	Intelligent I/O Interrupt 1 Request	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request	Intelligent I/O Interrupt 10 Request ⁽⁵⁾					
1 1 0 1 1	Intelligent I/O Interrupt 2 Request	Intelligent I/O Interrupt 9 Request ⁽⁴⁾	Intelligent I/O Interrupt 4 Request	Intelligent I/O Interrupt 11 Request ⁽⁶⁾					
1 1 1 0 0	Intelligent I/O Interrupt 3 Request	Intelligent I/O Interrupt 10 Request ⁽⁵⁾	Intelligent I/O Interrupt 5 Request	Intelligent I/O Interrupt 0 Request					
1 1 1 0 1	Intelligent I/O Interrupt 4 Request	Intelligent I/O Interrupt 11 Request ⁽⁶⁾	Intelligent I/O Interrupt 6 Request	Intelligent I/O Interrupt 1 Request					
1 1 1 1 0	Intelligent I/O Interrupt 5 Request	Intelligent I/O Interrupt 0 Request	Intelligent I/O Interrupt 7 Request	Intelligent I/O Interrupt 2 Request					
1 1 1 1 1	Intelligent I/O Interrupt 6 Request	Intelligent I/O Interrupt 1 Request	Intelligent I/O Interrupt 8 Request	Intelligent I/O Interrupt 3 Request					

NOTES:

- 1. If the INT3 pin is used as data bus in the memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by an input signal to the INT3 pin.
- 2. The falling edge and both edges of input signal into the \overline{INTj} pin (j = 0 to 3) cause a DMA request. The \overline{INT} interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.
- 3. The UkSMR register and UkSMR2 register (k = 0 to 4) switch the UARTj receive to ACK or ACK to UARTk receive.
- 4. The same setting is used to generate an intelligent I/O interrupt 9 request and a CAN interrupt 0 request.
- 5. The same setting is used to generate an intelligent I/O interrupt 10 request and a CAN interrupt 1 request.
- 6. The same setting is used to generate an intelligent I/O interrupt 11 request and a CAN interrupt 2 request.

DMA Mode Register 0⁽¹⁾ Symbol Address After Reset DMD0 **CPU Internal Register** 0016 Bit Name **Function** RW Symbol RW MD00 0 0 : DMA disabled Channel 0 Transfer 0 1 : Single transfer Mode Select Bit 10: Do not set to this value RW MD01 11: Repeat transfer Channel 0 Transfer 0:8 bits RW Unit Select Bit 1:16 bits Channel 0 Transfer 0 : Fixed address to memory (forward direction RW RW0 **Direction Select Bit** 1: Memory (forward direction) to fixed address MD10 RW 0 0 : DMA disabled Channel 1 Transfer 0 1 : Single transfer Mode Select Bit 10: Do not set to this value MD11 RW11: Repeat transfer Channel 1 Transfer 0:8 bits BW1 RW Unit Select Bit 1:16 bits Channel 1 Transfer 0: Fixed address to memory (forward direction) RW RW1 **Direction Select Bit** 1: Memory (forward direction) to fixed address NOTES:

DMA Mode Register 1⁽¹⁾

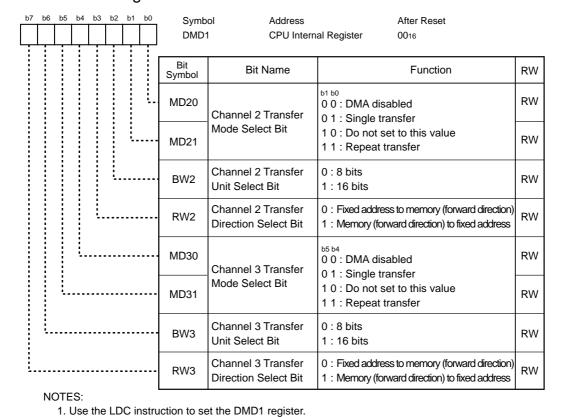
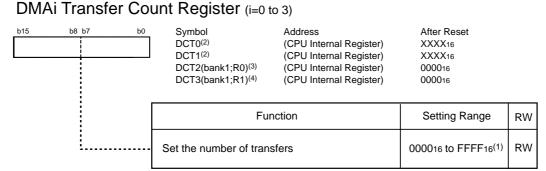
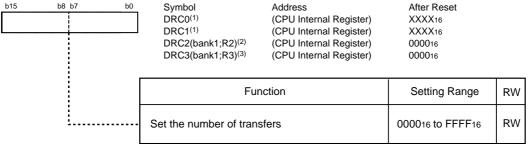



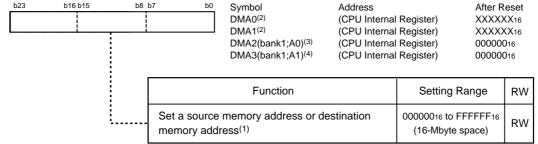
Figure 12.3 DMD0 Register, DMD1 Register


^{1.} Use the LDC instruction to set the DMD0 register.

NOTES:

- 1. When the DCTi register to "000016", no data transfer occurs regardless of a DMA request.
- 2. Use the LDC instruction to set the DCT0 and DCT1 registers.
- To set the DCT2 register, set the B flag in the FLG register to "1" (register bank 1) and set R0 register. Use the MOV instruction to set the R0 register.
- 4. To set the DCT3 register, set the B flag to "1" and set R1 register. Use the MOV instruction to set the R1 register.

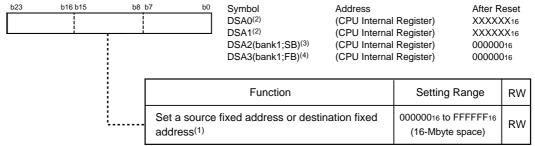
DMAi Transfer Count Reload Register (i=0 to 3)



NOTES:

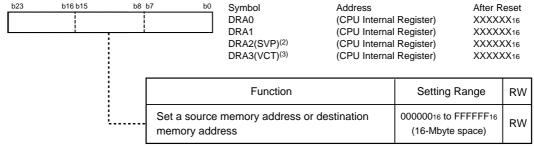
- 1. Use the LDC instruction to set the DRC0 and DRC1 registers.
- To set the DRC2 register, set the B flag in the FLG register to "1" (register bank 1) and set R2 register. Use the MOV instruction to set the R2 register.
- 3. To set the DRC3 register, set the B flag to "1" and set R3 register. Use the MOV instruction to set the R3 register.

Figure 12.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers


DMAi Memory Address Register (i=0 to 3)

NOTES:

- When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1) is set to "0" (fixed address to memory), a
 destination address is selected. When the RWk bit is set to "1" (memory to fixed address), a source
 address is selected.
- 2. Use the LDC instruction to set the DMA0 and DMA1 registers.
- To set the DMA2 register, set the B flag in the FLG register to "1" (register bank 1) and set A0 register. Use the MOV instruction to set the A0 register.
- 4. To set the DMA3 register, set the B flag to "1" and set A1 register. Use the MOV instruction to set the 1 register.


DMAi SFR Address Register (i=0 to 3)

NOTES:

- When the RWk bit (k=0 to 3) in the DMDj register (j=0, 1) is set to "0" (fixed address to memory), a source address is selected. When the RWk bit is set to "1" (memory to fixed address), a destination address is selected.
- 2. Use the LDC instruction to set the DSA0 and DSA1 registers.
- 3. To set the DSA2 register, set the B flag in the FLG register to "1" (register bank 1) and the set the SB register. Use the LDC instruction to set the SB register.
- 4. To set the DSA3 register, set the B flag to "1" and set the FB register. Use the LDC instruction to set the FB register.

DMAi Memory Address Reload Register⁽¹⁾ (i=0 to 3)

- 1. Use the LDC instruction to set the these registers.
- 2. To set the DRA2 register, set the SVP register.
- 3. To set the DRA3 register, set the VCT register.

Figure 12.5 DMA0 to DMA3 Registers, DSA0 to DSA3 Registers and DRA0 to DRA3 Registers

12.1 Transfer Cycles

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the DS register. Software wait state insertion and the \overline{RDY} signal make a bus cycle longer.

12.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus, and the source address starts with an odd address, source read cycle has one more bus cycle compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and the destination address starts with an odd address, destination write cycle has one more bus cycle compared to a destination address starting with an even address.

12.1.2 Effect of the DS Register

In an external space in memory expansion or microprocessor mode, transfer cycle varies depending on the data bus used at the source and destination addresses. See **Figure 7.1** for details about the DS register.

- (1) When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing both source address and destination address, is used to transfer a 16-bit data, 8-bit data is transferred twice. Therefore, two bus cycles are required to read the data and another two bus cycles to write the data.
- (2) When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing source address, and a 16-bit data bus, accessing destination address, are used to transfer a 16-bit data, 8-bit data is read twice but is written once as 16-bit data. Therefore, two bus cycles are required for reading and one bus cycle is for writing.
- (3) When a 16-bit data bus, accessing source address, and an 8-bit data bus, accessing destination address, are used to transfer a 16-bit data, 16-bit data is read once and 8-bit data is written twice. Therefore, one bus cycle is required for reading and two bus cycles is for writing.

12.1.3 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of cycles is incremented by software wait states.

Figure 12.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 12.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination write bus cycle as two BCLK cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle. As shown in example (2) of Figure 12.6, when an 8-bit data bus, accessing both source and destination addresses, is used to transfer a 16-bit data, two bus cycles each are required for the source-read bus cycle and destination-write bus cycle.

12.1.4 Effect of RDY Signal

In memory expansion or microprocessor mode, the \overline{RDY} signal affects a bus cycle of source address or destination address is allocated address in an external space. Refer to **7.2.6** \overline{RDY} **Signal** for details.

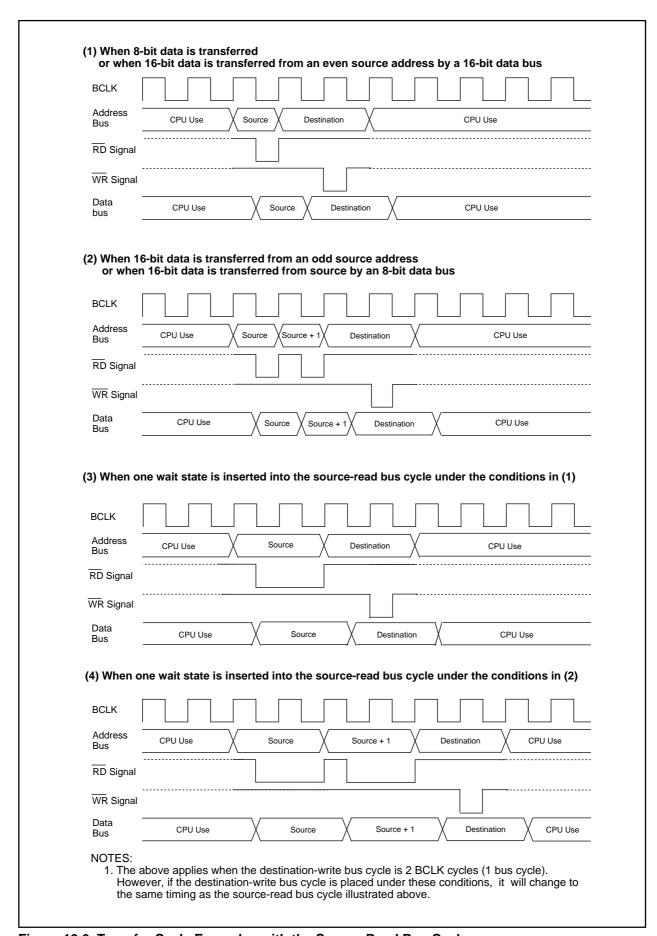


Figure 12.6 Transfer Cycle Examples with the Source-Read Bus Cycle

12.2 DMAC Transfer Cycles

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 12.3 lists the number of DMAC transfer cycles. Table 12.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

Table 12.3 DMAC Transfer Cycles

Transfer Unit	Bus Width	Access Address	Single-Chip Mode		Memory Expansion Mode Microprocessor Mode	
Transier offic	Bus Width	7100000 71001000	Read	Write	Read	Write
			Cycle	Cycle	Cycle	Cycle
	16-bit	Even	1	1	1	1
8-bit transfers		Odd	1	1	1	1
(BWi bit in the DMDp	8-bit	Even	_	_	1	1
register = 0)		Odd	_	_	1	1
	16-bit	Even	1	1	1	1
16-bit transfers		Odd	2	2	2	2
(BWi bit = 1)	8-bit	Even	_	_	2	2
		Odd	_	_	2	2

i = 0 to 3, p = 0 to 1

Table 12.4 Coefficient j, k

Internal Space			External Space					
Internal ROM or Internal RAM with no wait state	Internal ROM or Internal RAM with a wait state	SFR Area	Separate Bus with no wait state	Separate Bus with 1 wait state	Separate Bus with 2 wait states	Separate Bus with 3 wait states	Multiplexed Bus with 2 wait states	Multiplexed Bus with 3 wait states
j = 1 k = 1	j = 2 k = 2	j=2 k=2	j=1 k=2	j = 2 k = 2	j = 3 k = 3	j = 4 k = 4	j = 3 k = 3	j = 4 k = 4

12.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i = 0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is: DMA0 > DMA1 > DMA2 > DMA3.

Figure 12.7 shows an example of the DMA transfer by external factors.

In Figure 12.7, the DMA0 request having the highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 12.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.

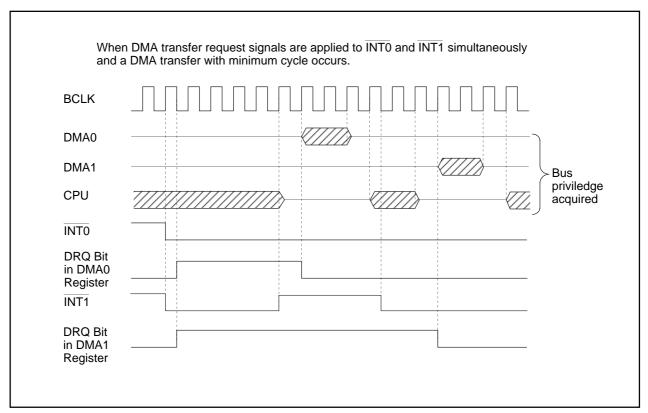


Figure 12.7 DMA Transfer by External Factors

13. DMAC II

The DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions.

Table 13.1 lists specifications of the DMAC II.

Table 13.1 DMAC II Specifications

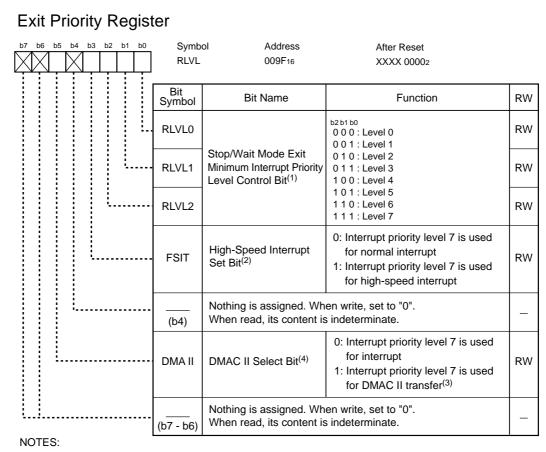
Item	Specification
DMAC II Request Factor	Interrupt requests generated by all peripheral functions when the ILVL2 to
	ILVL0 bits are set to "1112"
Transfer Data	Data in memory is transferred to memory (memory-to-memory transfer)
	• Immediate data is transferred to memory (immediate data transfer)
	• Data in memory (or immediate data) + data in memory are transferred to
	memory (calculation transfer)
Transfer Block	8 bits or 16 bits
Transfer Space	64-Kbyte space in addresses 0000016 to 0FFFF16 ^(1, 2)
Transfer Direction	Fixed or forward address
	Selected separately for each source address and destination address
Transfer Mode	Single transfer, burst transfer
Chained Transfer Function	Parameters (transfer count, transfer address and other information) are
	switched when transfer counter reaches zero
End-of-Transfer Interrupt	Interrupt occurs when a transfer counter reaches zero
Multiple Transfer Function	Multiple data can be transferred by a generated request for one DMA II transfer

NOTES:

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16.
- 2. The actual space where transfer can occur is limited due to internal RAM capacity.

13.1 DMAC II Settings

DMAC II can be made available by setting up the following registers and tables.


- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i = 0 to 11) if using the intelligent I/O or CAN interrupt Refer to 10. Interrupts for details on the IIOiIE register

13.1.1 RLVL Register

When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), the DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 13.1 shows the RLVL register.

- 1. The microcomputer exits stop or wait mode when the requested interrupt priority level is higher than the level set in the RLVL2 to RLVL0 bits. Set the RLVL2 to RLVL0 bits to the same value as IPL in the FLG register.
- 2. When the FSIT bit is set to "1", interrupt priority level 7 becomes the high-speed interrupt. In this case, set only one interrupt to interrupt priority level 7 and the DMA II bit to "0".
- 3. Set the ILVL2 to ILVL0 bits in the interrupt control register after setting the DMAII bit to "1". Do not change the DMAII bit setting to "0" after setting the DMAII bit to "1". Set the FSIT bit to "0" when the DMAII bit to "1".
- 4. After reset, the DMA II bit is indeterminate. When using an interrupt, set the interrupt control register after setting the DMA II bit to "0".

Figure 13.1 RLVL Register

13.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 13.2 shows a configuration of the DMAC II index. Table 13.2 lists a configuration of the DMAC II index in transfer mode.

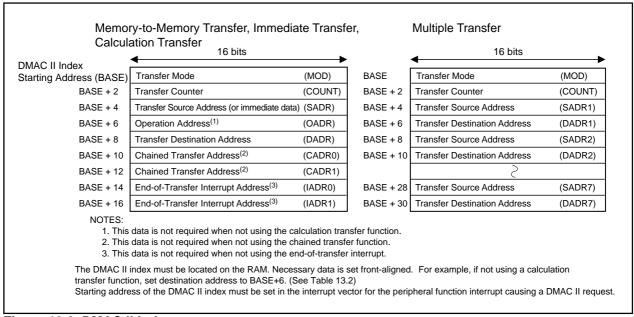


Figure 13.2 DMAC II Index

The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 13.2, according to DMAC II transfer mode.

Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 13.3 shows a configuration for transfer mode.

• Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

• Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

Table 13.2 DMAC II Index Configuration in Transfer Mode

	Memory-to-Memory Transfer /Immediate Data Transfer			Calculation Transfer				Multiple Transfer	
Chained Transfer	Not Used	Used	Not Used	Used	Not Used	Used	Not Used	Used	Not Available
End-of-Transfer Interrupt	Not Used	Not Used	Used	Used	Not Used	Not Used	Used	Used	Not Available
	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD
	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT
	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR1
	DADR	DADR	DADR	DADR	OADR	OADR	OADR	OADR	DADR1
DMAC II	8 bytes	CADR0	IADR0	CADR0	DADR	DADR	DADR	DADR	
Index	0 27100	CADR1	IADR1	CADR1	10 bytes	CADR0	IADR0	CADR0	
	12 bytes	12 bytes	hytes IADR0		CADR1	IADR1	CADR1	SADRi	
		2,100	,	IADR1		14 bytes	14 bytes	IADR0	DADRi
				16 bytes		,		IADR1	i=1 to 7
								18 bytes	Max 32 bytes (when i=7)

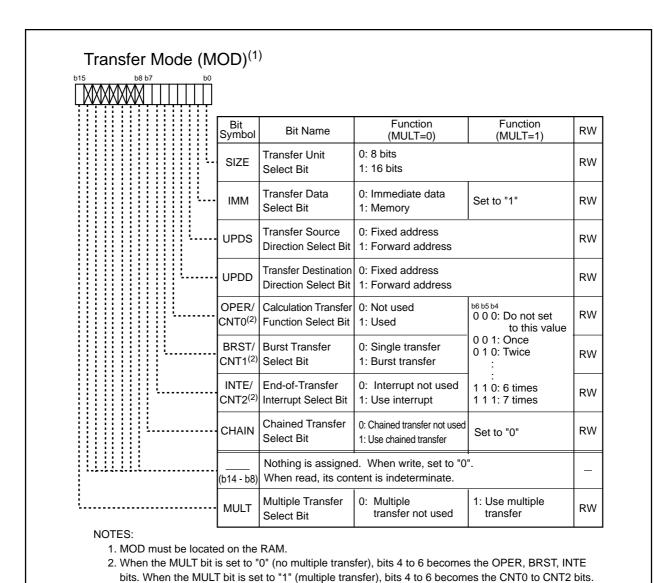


Figure 13.3 MOD

13.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating a DMAC II request, set the ILVL2 to ILVL0 bits to "1112" (level 7).

13.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating a DMAC II request.

When using the chained transfer, the relocatable vector table must be located in the RAM.

13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 11)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

13.2 DMAC II Performance

The DMAC II function is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II request is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), the DMAC II is activated regardless of what state the I flag and IPL is in.

13.3 Transfer Data

The DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer: Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer: Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer: Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64K-byte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16.

13.3.1 Memory-to-Memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the DMAC II increments address, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 00000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

13.3.2 Immediate Data Transfer

The DMAC II transfers immediate data to a desired memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

13.3.3 Calculation Transfer

After two memory data, or an immediate data and memory data are added together, the calculated result is transferred to a desired memory location. SADR must have one memory location address to be calculated or immediate data. OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

13.4 Transfer Modes

In DMAC II, single and burst transfers are available. The BRST bit in MOD selects transfer method, either the single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016". All interrupts are ignored while transfer is in progress.

13.4.1 Single Transfer

For every transfer request factor, the DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the DMAC II increments the address, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

13.4.2 Burst Transfer

For every transfer request factor, the DMAC II continuously transfers data the number of times determined by COUNT. The DMAC II decrements COUNT every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the end-of-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

13.4.3 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memoryto-memory transfer. One transfer request factor initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately to addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

13.4.4 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

- (1) Transfer, caused by a transfer request factor, occurs according to the content of the DMAC II index. The vectors of the request factor indicates the address where the DMAC II index is allocated. For each request, the BRST bit in MOD selects either single or burst transfer.
- (2) When COUNT reaches "0", the contents of CADR1 to CADR0 are written to the vector of the request factor. When the INTE bit in the MOD is set to "1," the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the vector rewritten in (2).

Figure 13.4 shows the relocatable vector and DMACII index of when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

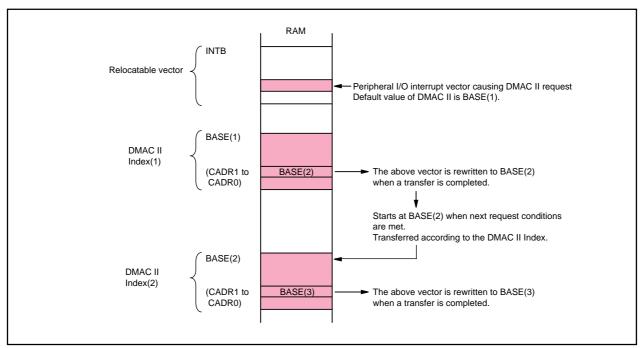


Figure 13.4 Relocatable Vector and DMAC II Index

13.4.5 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt service routine in the IADR1 to IADR0 bits. The end-of-transfer interrupt is generated when COUNT reaches "0."

13.5 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers: $t = 21 + (11 + b + c) \times k$ cycles

Other than multiple transfers: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;

if UPDD = 0 (destination transfer address is a fixed address), c = 1

d: If OPER = 0 (calculation function is not selected), d = 0;

if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;

if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4 m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in COUNT

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may change with CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt service routine is executed in the 8th cycle after the DMAC II transfer is completed.

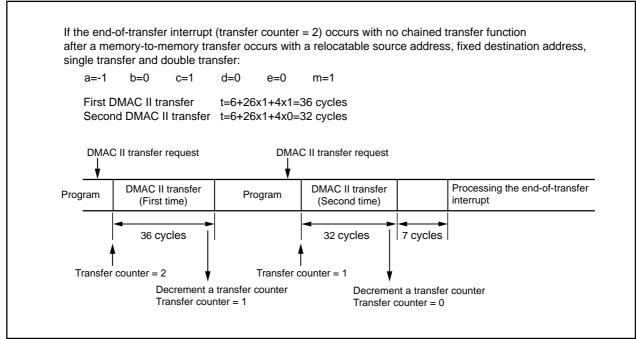


Figure 13.5 Transfer Cycle

When an interrupt request which acts as a DMAC II transfer request factor and another interrupt request with higher priority (e.g., $\overline{\text{NMI}}$ or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

14. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer operates independently. The count source for each timer is the clock for timer operations including counting and reloading, etc. Figures 14.1 and 14.2 show block diagrams of timer A and timer B configuration.

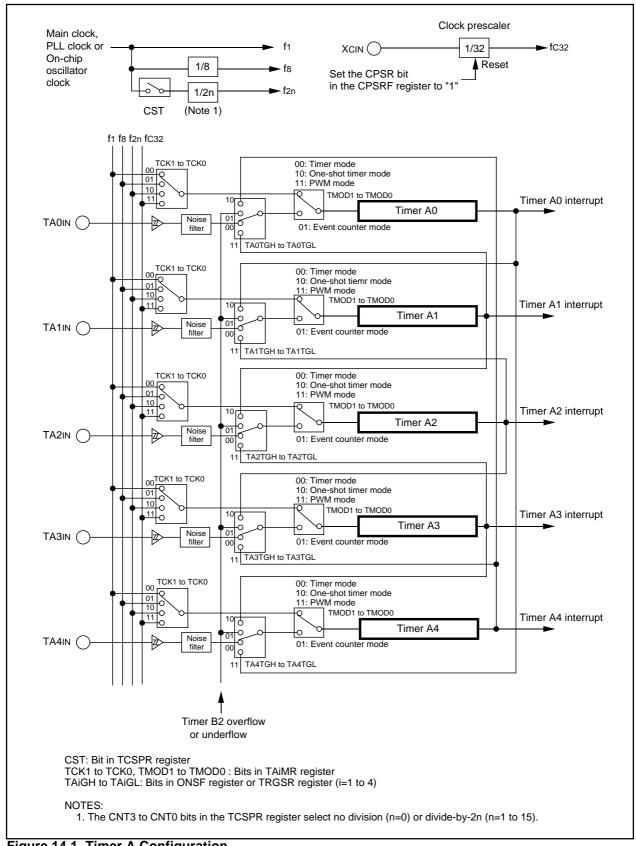


Figure 14.1 Timer A Configuration

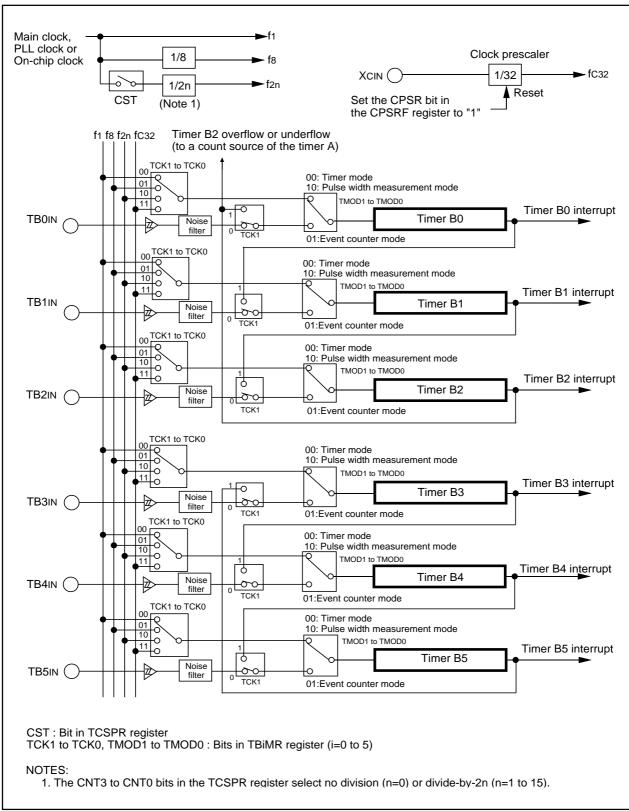


Figure 14.2 Timer B Configuration

14.1 Timer A

Figure 14.3 shows a block diagram of the timer A. Figures 14.4 to 14.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 to TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until the counter reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 14.1 lists TAiout pin settings when used as an output. Table 14.2 lists TAiin and TAiout pin settings when used as an input.

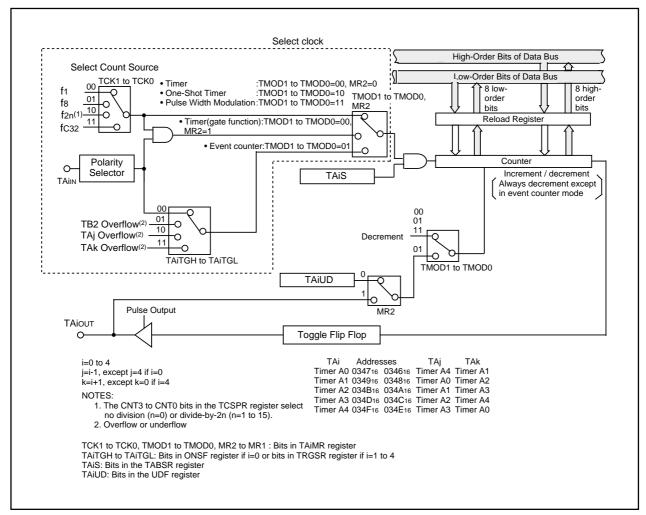
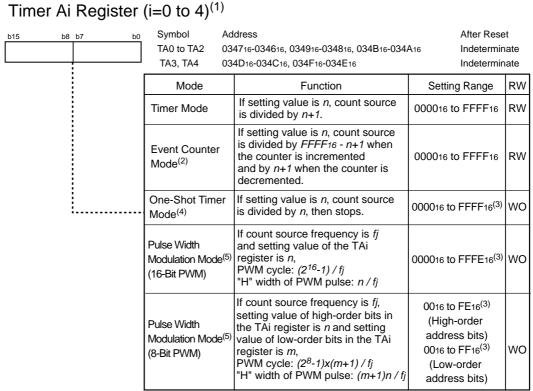



Figure 14.3 Timer A Block Diagram

fj : f1, f8, f2n, fC32 NOTES:

- 1. Use 16-bit data for reading and writing.
- The TAi register counts how many pulses are input externally or how many times another timer counter overflows and underflows.
- 3. Use the MOV instruction to set the TAi register.
- 4. When the TAi register is set to "000016", the counter does not start and the timer Ai interrupt request is not generated.
- 5. When the TAi register is set to "000016", the pulse width modulator does not operate and the TAiout pin is held "L". The TAi interrupt request is also not generated. The same situation occurs in 8-bit pulse width modulator mode if the 8 high-order bits in the TAi register are set to "0016".

Figure 14.4 TA0 to TA4 Registers

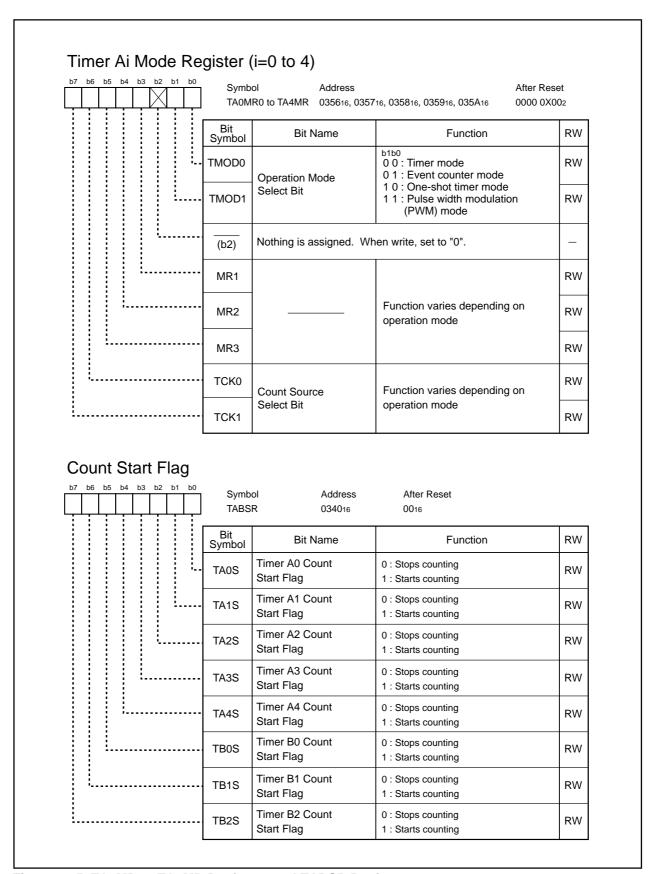
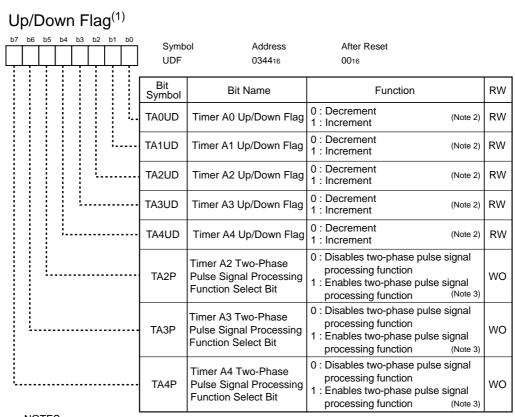
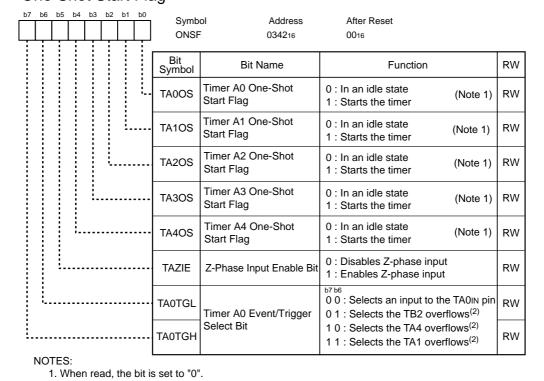




Figure 14.5 TA0MR to TA4MR Registers and TABSR Register

- 1. Use the MOV instruction to set the UDF register.
- 2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.
- 3. Set this bit to "0" when not using the two-phase pulse signal processing function.

One-Shot Start Flag

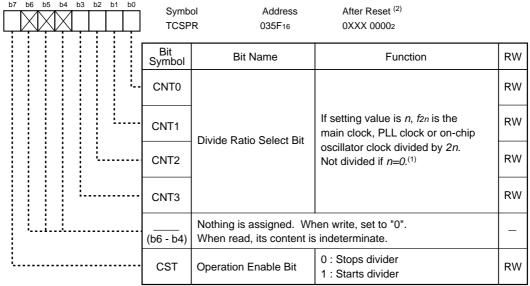

2. Overflow or underflow.

Figure 14.6 UDF Register and ONSF Register

Trigger Select Register Address After Reset Symbol TRGSR 034316 0016 Bit RW Bit Name **Function** Symbol b0 b1 RW TA1TGL 00: Selects an input to the TA1IN pin Timer A1 Event/Trigger 0 1 : Selects the TB2 overflows(1) Select Bit 1 0 : Selects the TA0 overflows⁽¹⁾ TA1TGH RW 1 1 : Selects the TA2 overflows⁽¹⁾ TA2TGL RW 0 0 : Selects an input to the TA2IN pin Timer A2 Event/Trigger 0 1 : Selects the TB2 overflows(1) Select Bit 1 0 : Selects the TA1 overflows⁽¹⁾ TA2TGH RW 1 1 : Selects the TA3 overflows $^{(1)}$ h5 h4 TA3TGL RW 00: Selects an input to the TA3IN pin Timer A3 Event/Trigger 0 1 : Selects the TB2 overflows(1) Select Bit 1 0 : Selects the TA2 overflows⁽¹⁾ **TA3TGH** RW 1 1 : Selects the TA4 overflows⁽¹⁾ b7 b6 RW TA4TGL 00: Selects an input to the TA4IN pin Timer A4 Event/Trigger 0 1 : Selects the TB2 overflows⁽¹⁾ Select Bit 1 0 : Selects the TA3 overflows⁽¹⁾ TA4TGH RW 1 1: Selects the TA0 overflows(1) NOTES:

1. Overflow or underflow.

Count Source Prescaler Register

- 1. Set the CST bit to "0" before the CNT3 to CNT0 bits are rewritten.
- The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has performed.

Figure 14.7 TRGSR Register and TCSPR Register

Table 14.1 Pin Settings for Output from TAiouT Pin (i=0 to 4)

Pin	Setting					
	PS1, PS2 Registers	PSL1, PSL2 Registers	PSC Register			
P70/TA0ouT ⁽¹⁾	PS1_0= 1	PSL1_0=1	PSC_0= 0			
P72/TA1out	PS1_2= 1	PSL1_2=1	PSC_2= 0			
P74/TA2out	PS1_4= 1	PSL1_4=0	PSC_4= 0			
P76/TA3out	PS1_6= 1	PSL1_6=1	PSC_6= 0			
P80/TA4OUT	PS2_0= 1	PSL2_0=0	_			

Table 14.2 Pin Settings for Input to TAilN and TAiOUT Pins (i=0 to 4)

Pin	Setting			
	PS1, PS2 Registers	PD7, PD8 Registers		
Р70/ТА0оит	PS1_0=0	PD7_0=0		
P71/TA0IN	PS1_1=0	PD7_1=0		
P72/TA10UT	PS1_2=0	PD7_2=0		
P73/TA1IN	PS1_3=0	PD7_3=0		
P74TA2out	PS1_4=0	PD7_4=0		
P75/TA2IN	PS1_5=0	PD7_5=0		
Р76ТАЗООТ	PS1_6=0	PD7_6=0		
P77/TA3IN	PS1_7=0	PD7_7=0		
Р80/ТА4оит	PS2_0=0	PD8_0=0		
P81/TA4IN	PS2_1=0	PD8_1=0		

^{1.} P70/TA0out is a port for the N-channel open drain output.

14.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see Table 14.3). Figure 14.8 shows the TAiMR register (i=0 to 4) in timer mode.

Table 14.3 Specifications in Timer Mode

Item	Specification					
Count Source	f1, f8, f2n ⁽¹⁾ , fC32					
Counting Operation	The timer decrements a counter value					
	When the timer counter underflows, content of the reload register is reloaded into the					
	count register and counting resumes.					
Divide Ratio	1/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16					
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)					
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)					
Interrupt Request Generation Timing	The timer counter underflows					
TAilN Pin Function	Programmable I/O port or gate input					
TAIOUT Pin Function	Programmable I/O port or pulse output					
Read from Timer	The TAi register indicates counter value					
Write to Timer	When the timer counter stops,					
	the value written to the TAi register is also written to both reload register and counter					
	While counting,					
	the value written to the TAi register is written to the reload register					
	(It is transferred to the counter at the next reload timing)					
Selectable Function	Gate function					
	Input signal to the TAilN pin determines whether the timer counter starts or stops counting					
	Pulse output function					
	The polarity of the TAiout pin is inversed whenever the timer counter underflows					

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

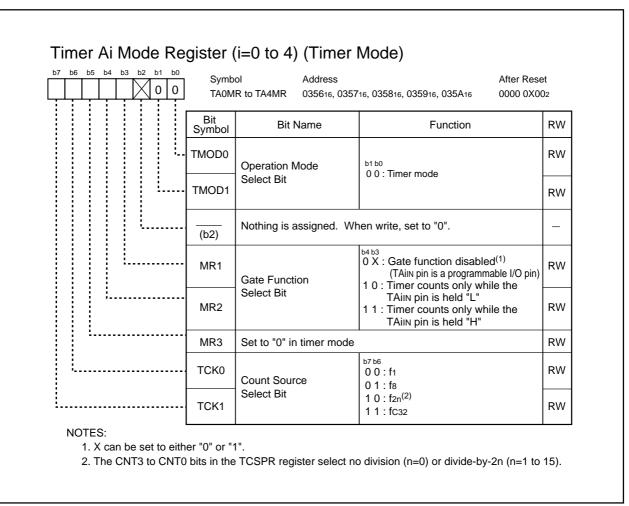


Figure 14.8 TA0MR to TA4MR Registers

14.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 14.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 14.5 lists specifications in event counter mode (when handling a two-phase pulse signal with the timer A2, A3 and A4). Figure 14.9 shows the TAiMR (i=0 to 4) register in event counter mode.

Table 14.4 Specifications in Event Counter Mode (when not processing two-phase pulse signal)

Item	Specification
Count Source	• External signal applied to the TAilN pin (i = 0 to 4) (valid edge can be selected by
	program)
	• Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,
	except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)
Counting Operation	External signal and program can determine whether the timer increments or decre-
	ments the counter
	When the timer counter underflows or overflows, the content of the reload register is
	reloaded into the count register and counting resumes. When the free-running count
	function is selected, the timer counter continues running without reloading.
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment
	• 1/(n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter overflows or underflows
TAilN Pin Function	Programmable I/O port or count source input
TAIOUT Pin Function	Programmable I/O port, pulse output or input selecting a counter increment or decrement
Read from Timer	The TAi register indicates counter value
Write to Timer	When the timer counter stops,
	the value written to the TAi register is also written to both reload register and counter
	While counting,
	the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)
Selectable Function	Free-running count function
	Content of the reload register is not reloaded even if the timer counter overflows or
	underflows
	Pulse output function
	The polarity of the TAiout pin is inversed whenever the timer counter overflows or
	underflows

Table 14.5 Specifications in Event Counter Mode (when processing two-phase pulse signal on timer A2, A3 and A4)

Item	Specification				
Count Source	Two-phase pulse signal applied to the TAil pin, or TAil and TAiOUT pin (i = 2 to 4)				
Counting Operation	Two-phase pulse signal determines whether the timer increments or decrements a				
	counter value				
	When the timer counter overflows or underflows, content of the reload register is				
	reloaded into the count register and counting resumes. With the free-running count				
	function, the timer counter continues running without reloading.				
Divide Ratio	• 1/ (FFFF16 - n + 1) for counter increment				
	• 1/ (n + 1) for counter decrement n: setting value of the TAi register 000016 to FFFF16				
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)				
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)				
Interrupt Request Generation Timing	The timer counter overflows or underflows				
TAilN Pin Function	Two-phase pulse signal is applied				
TAiout Pin Function	Two-phase pulse signal is applied				
Read from Timer	The TAi register indicates counter value				
Write to Timer	When the timer counter stops,				
	the value written to the TAi register is also written to both reload register and counter				
	While counting,				
	the value written to the TAi register is written to the reload register				
	(It is transferred to the counter at the next reload timing)				
Selectable Function ⁽¹⁾	Normal processing operation (the timer A2 and timer A3)				
	While a high-level ("H") signal is applied to the TAjo∪T pin (j = 2 or 3), the timer incre-				
	ments a counter value on the rising edge of the TAjıN pin or decrements a counter				
	value on the falling edge.				
	ТАјоит				
	TAjIN Increment Increment Decrement Decrement Decrement				
	Multiply-by-4 processing operation (the timer A3 and timer A4)				
	While an "H" signal is applied to the TAko∪⊤ pin (k = 3 or 4) with the rising edge of the				
	TAkin pin, the timer counter increments a counter value on the rising and falling edges of				
	the TAkout and TAkın pins.				
	While "H" is applied to the TAkou⊤ pin on the falling edge of the TAkıN pin, the timer				
	decrements a counter value on the rising and falling edges of the TAko∪T and TAkıN pins.				
	TAKOUT A A A A A A				
	TAKIN				
	Increment on all edges Decrement on all edges				

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.

Timer Ai Mode Re	gister (i=0 to 4) (Eve	ent Counter Mo	de)	
b7 b6 b5 b4 b3 b2 b1 b0 0 1	Symb TA0M		s 035716, 035816, 035916,	After Reset 035A ₁₆ 0000 0X00 ₁₆	
	Bit Symbol	Bit Name	Function (When not using two-phase pulse signal processing)	Function (When using two-phase pulse signal processing)	RW
	TMOD0	Operation Mode	b1 b0 0 1 : Event counter m	ode ⁽¹⁾	RW
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TMOD1	Select Bit			RW
	(b2)	Nothing is assigned	. When write, set to "0		RW
	MR1	Count Polarity Select Bit ⁽²⁾	Counts falling edges of an external signal Counts rising edges of an external signal	Set to "0"	RW
	MR2	Increment/Decrement Switching Cause Select Bit	0 : Setting of the UDF register 1 : Input signal to ΤΑίουτ pin ⁽³⁾	Set to "1"	RW
	MR3	Set to "0" in event counter mode			RW
	ТСК0	Count Operation Type Select Bit	0 : Reloading 1 : Free running		RW
	TCK1	Two-Phase Pulse Signal Processing Operation Select Bit ^(4,5)	Set to "0"	Normal processing operation Multiplied-by-4 processing operation	RW

- The TAiTGH to TAiTGL bits in the ONSF or TRGSR register determine the count source in the event counter mode.
- 2. The MR1 bit is enabled only when counting how many times external signals are applied.
- 3. The timer decrements a counter value when "L" is applied to the TAiOUT pin and the timer increments a counter value when "H" is applied to the TAiOUT pin.
- 4. The TCK1 bit is enabled only in the TA3MR register.
- 5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (two-phase pulse signal processing function enabled) and the TAiTGH and TAiTGL bits to "002" (input to the TAjIN pin).

Figure 14.9 TA0MR to TA4MR Registers

14.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

The timer counter is reset to "0" by a Z-phase input when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, freerun type or multiply-by-4 processing. The Z-phase signal is applied to the INT2 pin.

When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), the timer counter can be reset by a Z-phase input. To reset the timer counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the INT2 pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more. Figure 14.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the counter in the next count source following Z-phase input. Figure 14.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice when a timer A3 overflow or underflow, and a counter reset by INT2 input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

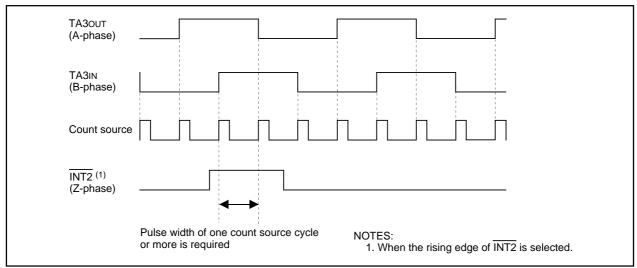


Figure 14.10 Two-phase Pulse (A-phase and B-phase) and Z-phase

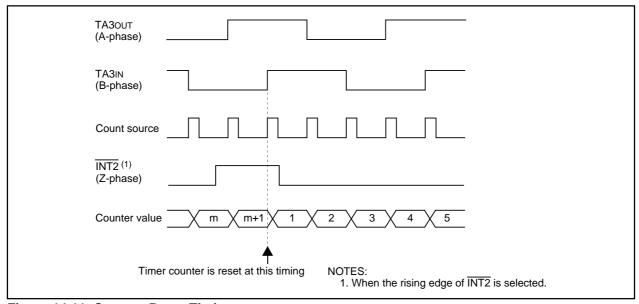


Figure 14.11 Counter Reset Timing

14.1.3 One-shot Timer Mode

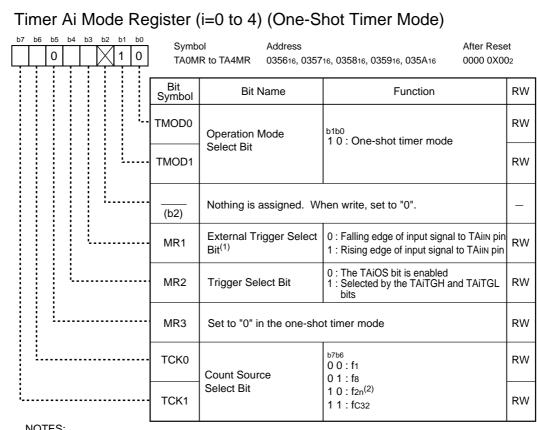

In one-shot timer mode, the timer operates only once for each trigger (see **Table 14.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 14.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

Table 14.6 Specifications in One-shot Timer Mode

Item	Specification
Count Source	f1, f8, f2n ⁽¹⁾ , fC32
Counting Operation	The timer decrements a counter value
	When the timer counter reaches "000016", it stops counting after reloading.
	• If a trigger occurs while counting, content of the reload register is reloaded into the
	count register and counting resumes.
Divide Ratio	1/n n : setting value of the TAi register (i=0 to 4) 000016 to FFFF16
	but the timer counter does not run if n=000016
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers
	occur:
	External trigger input
	The timer overflow or underflow signal
	The TAiOS bit in the ONSF register is set to "1" (timer started)
Counter Stop Condition	After the timer counter has reached "000016" and is reloaded
	When the TAiS bit is set to "0" (timer stopped)
Interrupt Request Generation Timing	The timer counter reaches "000016"
TAilN Pin Function	Programmable I/O port or trigger input
TAIOUT Pin Function	Programmable I/O port or pulse output
Read from Timer	The value in the TAi register is indeterminate when read
Write to Timer	When the timer counter stops,
	the value written to the TAi register is also written to both reload register and counter
	While counting,
	the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)

NOTES:

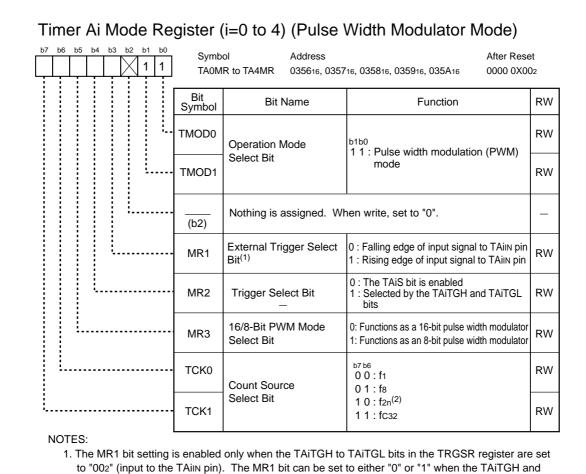
1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

- 1. The MR1 bit setting is enabled only when the TAiTGH to TAiTGL bits in the TRGSR register are set to "002" (input to the TAinv pin). The MR1 bit can be set to either "0" or "1" when the TAiTGH and TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow) or "112" (TAi overflow and underflow).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.12 TA0MR to TA4MR Registers

14.1.4 Pulse Width Modulation Mode

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 14.7**). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 14.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 14.14 and 14.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.


Table 14.7 Specifications in Pulse Width Modulation Mode

Item	Specification					
Count Source	f1, f8, f2n ⁽¹⁾ , fC32					
Counting Operation	The timer decrements the counter					
	(The counter functions as an 8-bit or a 16-bit pulse width modulator)					
	The timer reloads on the rising edge of PWM pulse and continues counting.					
	• The timer is not affected by the trigger that is generated during counting.					
16-Bit PWM	• "H" width = n / fj n : setting value of the TAi register 000016 to FFFE16					
	fj : Count source frequency					
	• Cycle = $(2^{16}-1) / f_j$ fixed					
8-Bit PWM	• "H" width = n x (m+1) / fj					
	n : setting value of high-order bit address of the TAi register 0016 to FE16					
	• Cycles = (2 ⁸ -1) x (m+1) / fj					
	m : setting value of low-order bit address of the TAi register 0016 to FF16					
Counter Start Condition	External trigger is input					
	The timer overflows and underflows					
	• The TAiS bit in the TABSR register is set to "1" (start counting)					
Counter Stop Condition	The TAiS bit is set to "0" (stop counting)					
Interrupt Request Generation Timing	On the falling edge of the PWM pulse					
TAilN Pin Function	Programmable I/O port or trigger input					
TAIOUT Pin Function	Pulse output					
Read from Timer	The value in the TAi register is indeterminate when read					
Write to Timer	When the timer counter stops,					
	the value written to the TAi register is also written to both reload register and counter					
	While counting,					
	the value written to the TAi register is written to the reload register					
	(It is transferred to the counter at the next reload timing)					

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

TAiTGL bits are set to "012" (TB2 overflow and underflow), "102" (TAi overflow and underflow) or

"112" (TAi overflow and underflow).

2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.13 TA0MR to TA4MR Registers

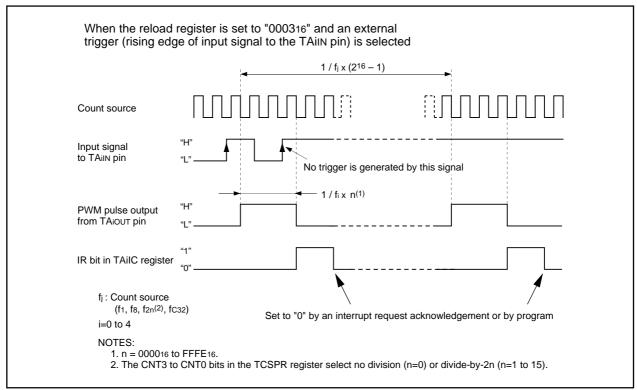


Figure 14.14 16-bit Pulse Width Modulator Operation

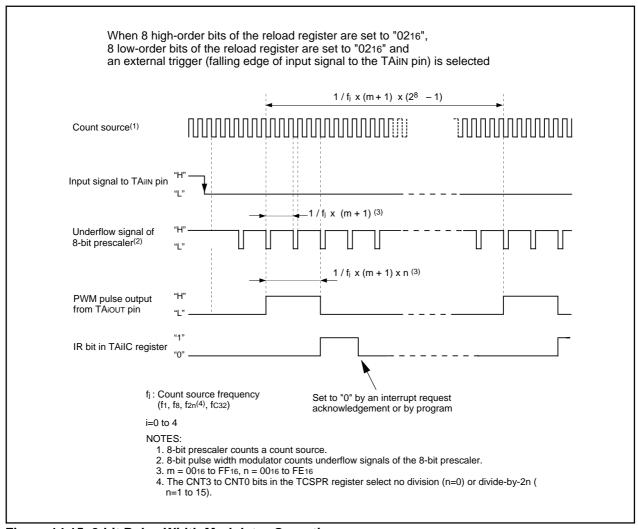


Figure 14.15 8-bit Pulse Width Modulator Operation

14.2 Timer B

Figure 14.16 shows a block diagram of the timer B. Figures 14.17 to 14.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 to TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode : The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 14.18 lists TBil pin settings.

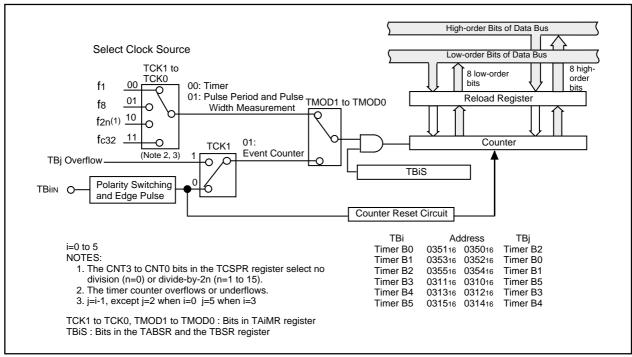


Figure 14.16 Timer B Block Diagram

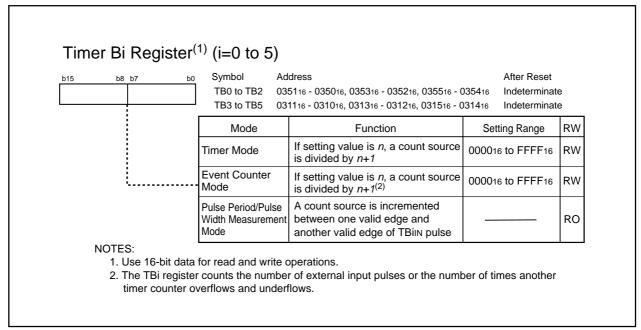
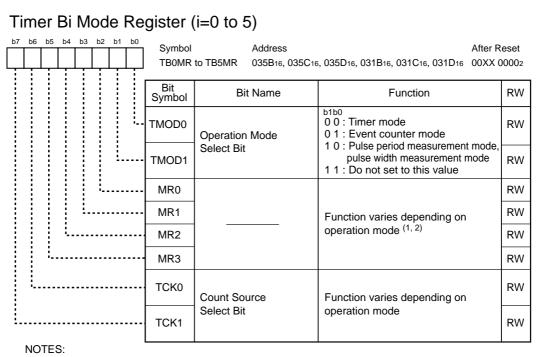



Figure 14.17 TB0 to TB5 Registers

- 1. Only MR2 bits in the TB0MR and TB3MR registers are enabled.
- Nothing is assigned in the MR2 bit in the TB1MR, TB2MR, TB4MR and TB5MR registers. When write, set to "0". When read, its content is indeterminate.

Count Start Flag

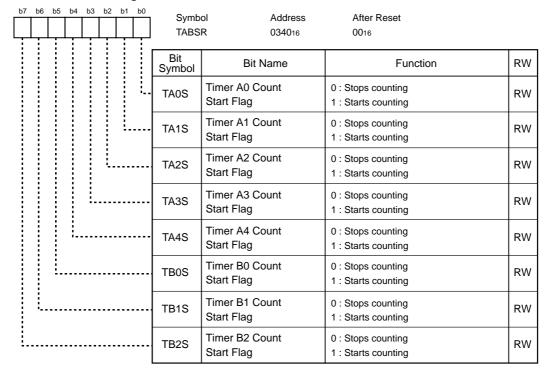


Figure 14.18 TB0MR to TB5MR Registers, TABSR Register

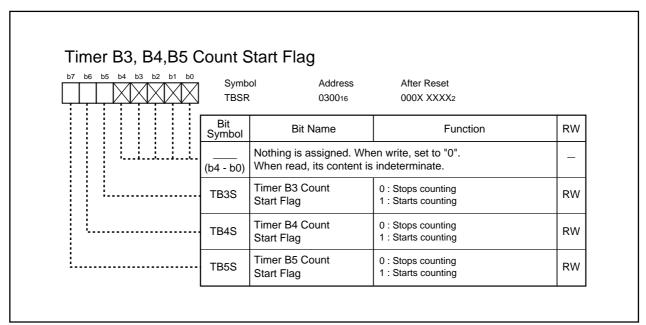


Figure 14.19 TBSR Register

Table 14.8 Settings for the TBin Pins (i=0 to 5)

Port Name	Function	Setting	
		PS1, PS3 ⁽¹⁾ Registers	PD7, PD9 ⁽¹⁾ Registers
P90	TB0in	PS3_0=0	PD9_0=0
P91	TB1IN	PS3_1=0	PD9_1=0
P92	TB2IN	PS3_2=0	PD9_2=0
P93	TB3IN	PS3_3=0	PD9_3=0
P94	TB4IN	PS3_4=0	PD9_4=0
P71	TB5IN	PS1_1=0	PD7_1=0

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

14.2.1 Timer Mode

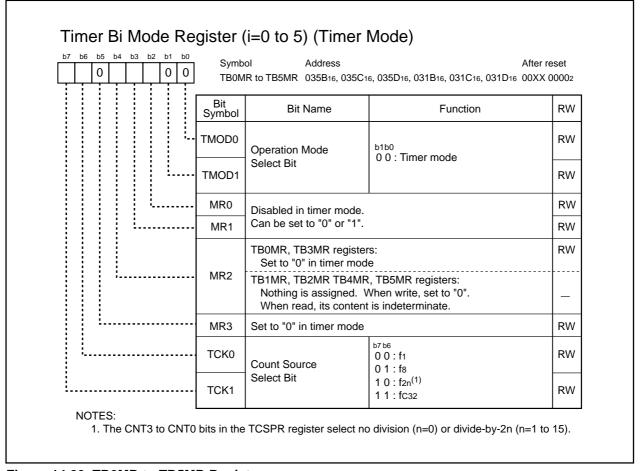
In timer mode, the timer counts an internally generated count source (see Table 14.9). Figure 14.20 shows the TBiMR register (i=0 to 5) in timer mode.

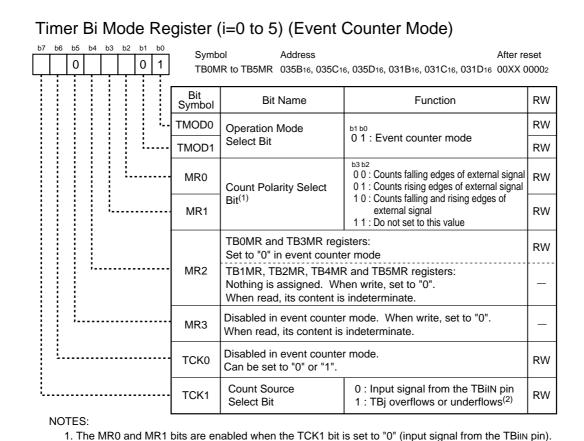
Table 14.9 Specifications in Timer Mode

Item	Specification			
Count Source	f1, f8, f2n ⁽¹⁾ , fC32			
Counting Operation	The timer decrements a counter value			
	When the timer counter underflows, content of the reload register is reloaded into the			
	count register and counting resumes			
Divide Ratio	1/(n+1) n: setting value of the TBi register (i=0 to 5) 000016 to FFFF16			
Counter Start Condition	The TBiS bits in the TABSR or TBSR registers are set to "1" (starts counting)			
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)			
Interrupt Request Generation Timing	The timer counter underflows			
TBilN Pin Function	Programmable I/O port			
Read from Timer	The TBi register indicates counter value			
Write to Timer	When the timer counter stops,			
	the value written to the TBi register is also written to both reload register and counter			
	While counting,			
	the value written to the TBi register is written to the reload register			
	(It is transferred to the counter at the next reload timing)			

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).




Figure 14.20 TB0MR to TB5MR Registers

14.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See Table 14.10) Figure 14.21 shows the TBiMR register (i=0 to 5) in event counter mode.

Table 14.10 Specifications in Event Counter Mode

Item	Specification		
Count Source	• External signal applied to the TBin pin (i = 0 to 5) (valid edge can be selected by		
	program)		
	• TBj overflows or underflows (j=i-1, except j=2 when i=0, j=5 when i=3)		
Counting Operation	The timer decrements a counter value		
	When the timer counter underflows, content of the reload register is reloaded into the		
	count register to continue counting		
Divide Ratio	1/(n+1) n: setting value of the TBi register 000016 to FFFF16		
Counter Start Condition	The TBiS bit in the TABSR or TBSR register is set to "1" (starts counting)		
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	The timer counter underflows		
TBiIN Pin Function	Programmable I/O port or count source input		
Read from Timer	The TBi register indicates the value of the counter		
Write to Timer	When the timer counter stops,		
	the value written to the TBi register is also written to both reload register and counter		
	While counting,		
	the value written to the TBi register is written to the reload register		
	(It is transferred to the counter at the next reload timing)		

The MR1 bit can be set to either "0" or "1", when the TCK1 bit is set to "1" (timer overflow or

Figure 14.21 TB0MR to TB5MR Registers

underflow).

2. j=i - 1, except j=2 when i=0 and j=5 when i=3.

14.2.3 Pulse Period/Pulse Width Measurement Mode

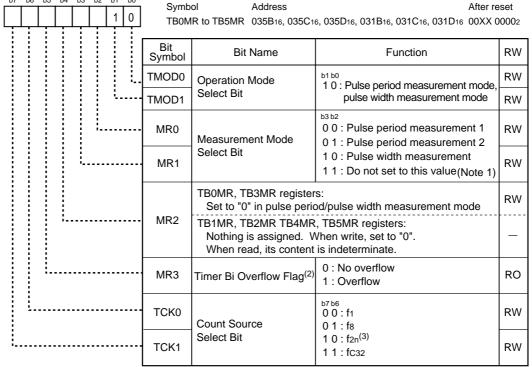

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See Table 14.11) Figure 14.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 14.23 shows an example of an operation timing when measuring a pulse period. Figure 14.24 shows an example of the pulse width measurement.

Table 14.11 Specifications in Pulse Period/Pulse Width Measurement Mode

Item	Specification		
Count Source	f1, f8, f2n ⁽³⁾ , fC32		
Counting Operation	The timer increments a counter value		
	Counter value is transferred to the reload register on the valid edge of a pulse to be		
	measured. It is set to "000016" and the timer continues counting		
Counter Start Condition	The TBiS bit (i=0 to 5) in the TABSR or TBSR register is set to "1" (starts counting)		
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)		
Interrupt Request Generation Timing	On the valid edge of a pulse to be measured ⁽¹⁾		
	The timer counter overflows		
	The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the		
	TBiS bit is set to "1" (start counting) and the next count source is counted after setting		
	the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to		
	the TBiMR register.		
TBilN Pin Function	Input for a pulse to be measured		
Read from Timer	The TBi register indicates reload register values (measurement results) ⁽²⁾		
Write to Timer	Value written to the TBi register can be written to neither reload register nor counter		

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Timer Bi Mode Register (i=0 to 5) (Pulse Period / Pulse Width Measurement Mode)

NOTES:

1. The MR1 to MR0 bits selects the following measurements.

Pulse period measurement 1 (MR1 to MR0 bits = 002):

Measures between the falling edge and the next falling edge of a pulse to be measured Pulse period measurement 2 (MR1 to MR0 bits = 012):

Measures between the rising edge and the next rising edge of a pulse to be measured Pulse width measurement (MR1 to MR0 bits = 102):

Measures between a falling edge and the next rising edge of a pulse to be measured and between the rising edge and the next falling edge of a pulse to be measured

2. The MR3 bit is indeterminate when reset.

When the timer overflows, the MR3 bit is set to "1" (overflow) simultaneously. When the TBiS bit is set to "1" (start counting) and the next count source is counted after the MR3 bit is set to "1", the MR3 bit is set to "0" (no overflow) by writing again.

The MR3 bit cannot be set to "1" by program.

3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.22 TB0MR to TB5MR Registers

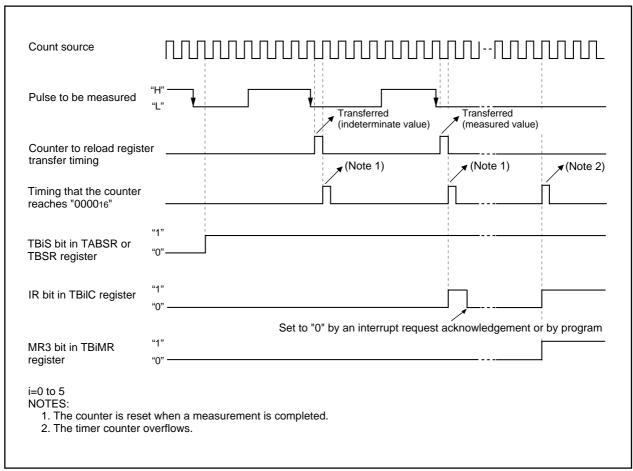


Figure 14.23 Pulse Period 1 Measurement

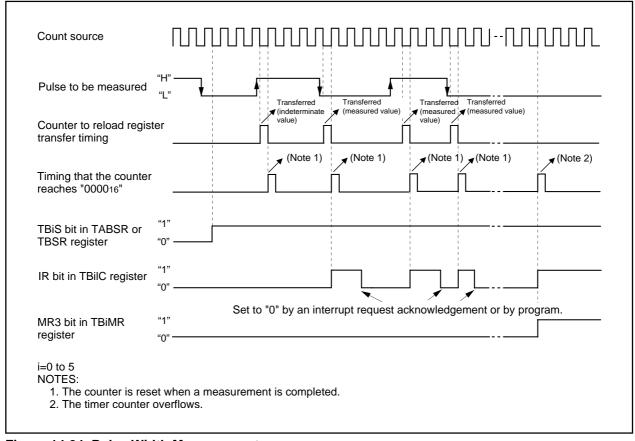


Figure 14.24 Pulse Width Measurement

15. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 15.1 lists specifications of the three-phase motor control timer functions. Table 15.2 lists pin settings. Figure 15.1 shows a block diagram. Figures 15.2 to 15.7 show registers associated with the three-phase control timer functions.

Table 15.1 Three-Phase Motor Control Timer Functions Specification

Item	Specification		
Three-Phase Waveform Output Pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$		
Forced Cutoff ⁽¹⁾	Apply a low-level signal ("L") to the NMI pin		
Timers to be Used	Timer A4, A1, A2 (used in one-shot timer mode)		
	Timer A4: U- and U-phase waveform control		
	Timer A1: V- and $\overline{ extsf{V}}$ -phase waveform control		
	Timer A2: W- and W-phase waveform control		
	Timer B2 (used in timer mode)		
	Carrier wave cycle control		
	Dead time timer (three 8-bit timers share reload register)		
	Dead time control		
Output Waveform	Triangular wave modulation, Sawtooth wave modification		
	Can output a high-level waveform or a low-level waveform for one cycle		
	Can set positive-phase level and negative-phase level separately		
Carrier Wave Cycle	Triangular wave modulation: count source x (m+1) x 2		
	Sawtooth wave modulation: count source x (m+1)		
	m: setting value of the TB2 register, 000016 to FFFF16		
	Count source: f1, f8, f2n ⁽²⁾ , fc32		
Three-Phase PWM Output Width	Triangular wave modulation: count source x n x 2		
	Sawtooth wave modulation: count source x n		
	n : setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA11,		
	TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFFF16		
	Count source: f1, f8, f2n ⁽²⁾ , fc32		
Dead Time	Count source x p, or no dead time		
	p: setting value of the DTT register, 0116 to FF16		
	Count source: f1, or f1 divided by 2		
Active Level	Selected from a high level ("H") or low level ("L")		
Positive and Negative-Phase Con-	Positive and negative-phases concurrent active disable function		
current Active Disable Function	Positive and negative-phases concurrent active detect function		
Interrupt Frequency	For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15		
	time- carrier wave cycle-to-cycle basis can be selected		

- 1. Forced cutoff by the signal applied to the NMI pin is available when the INV02 bit is set to "1" (three-phase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 15.2 Pin Settings

Pin	Setting			
	PS1, PS2 Registers ⁽¹⁾	PSL1, PSL2 Registers	PSC Register	
P72/V	PS1_2 =1	PSL1_2 =0	PSC_2 =1	
P73/V	PS1_3 =1	PSL1_3 =1	PSC_3 =0	
P74/W	PS1_4 =1	PSL1_4 =1	PSC_4 =0	
P75/W	PS1_5 =1	PSL1_5 =0		
P80/U	PS2_0 =1	PSL2_0 =1		
P81/Ū	PS2_1 =1	PSL2_1 =0		

^{1.} Set the PS1_2 to PS1_5 and PS2_0 to PS2_1 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".

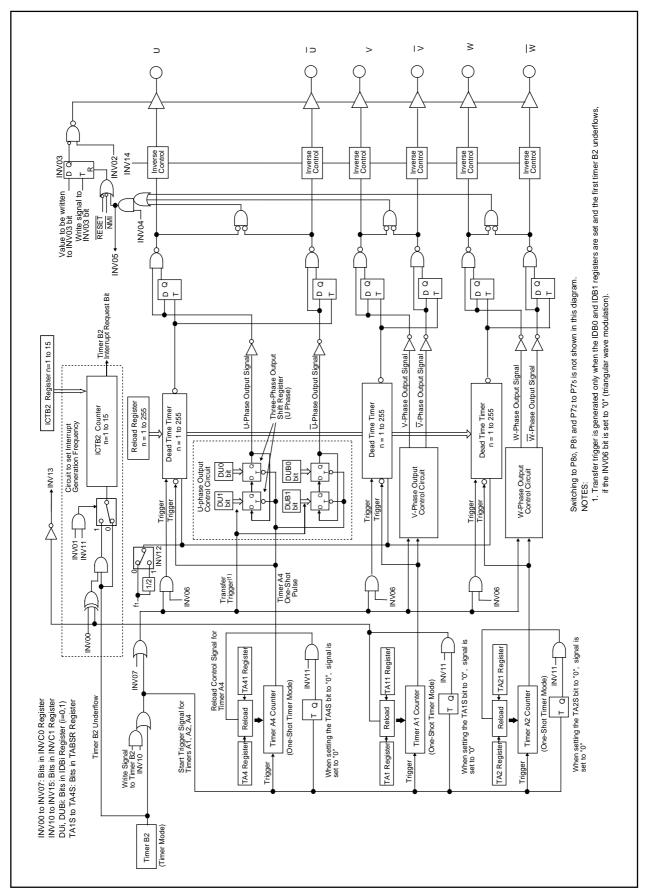


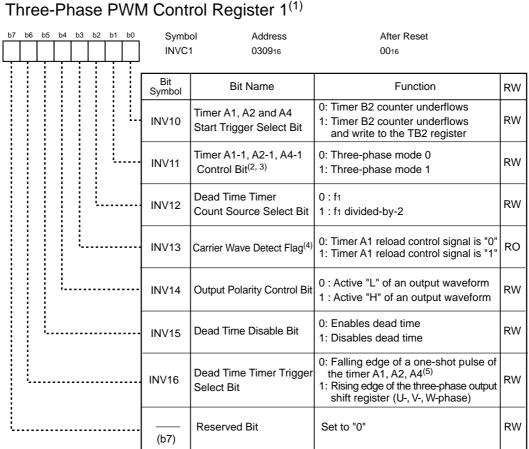
Figure 15.1 Three-Phase Motor Control Timer Functions Block Diagram

Three-Phase PWM Control Register 0⁽¹⁾ Symbol Address After Reset INVC0 030816 0016 Bit Name **Function** Symbol 0: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal Interrupt Enable Output INV00 RW 1: The ICTB2 counter is incremented by one on the Polarity Select Bit⁽³⁾ falling edge of the timer A1 reload control signal 0: ICTB2 counter is incremented by one Interrupt Enable Output INV/01 RW whenever the timer B2 counter underflows Specification Bit(2, 3) 1: Selected by the INV00 bit 0: No three-phase control timer functions Mode Select Bit (4, 5, 6) INV02 RW 1: Three-phase control timer function 0: Disables three-phase control timer output Output Control Bit(6, 7) INV03 RW 1: Enables three-phase control timer output Positive and Negative-0: Enables concurrent active output RW INV04 **Phases Concurrent Active** 1: Disables concurrent active output Disable Function Enable Bit Positive and Negative-0: Not detected INV05 Phases Concurrent Active RW 1: Detected Output Detect Flag⁽⁸⁾ 0: Triangular wave modulation mode Modulation Mode INV06 RW Select^(9, 10) 1: Sawtooth wave modulation mode Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead INV07 Software Trigger Select RW time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read

NOTES:

- Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable). Rewrite the INV00 to INV02 and INV06 bits when the timers A1,A2, A4 and B2 stop.
- 2. Set the INV01 bit to "1" after setting the ICTB2 register .
- 3. The INV00 and INV01 bits are enabled only when the INV11 bit is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV00 and INV01 bit settings, when the INV11 bit is set to "0" (three-phase mode).

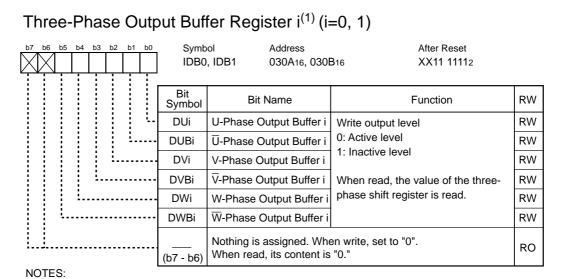
When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflow. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows *n-1* times, if *n* is the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.


- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and the ICTB2 counter.
- 5. Set pins after the INV02 bit is set to "1". See Table 15.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", U, \overline{U} , V, \overline{V} , W and \overline{W} pins, including pins shared with other output functions, are placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :
 - Reset
 - A concurrent active state occurs while INV04 bit is set to "1"
 - The INV03 bit is set to "0" by program
 - A signal applied to the NMI pin changes "H" to "L"
- 8. The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 9. The following table describes how the INV06 bit works.

<u>I</u> tem	INV06 = 0	. INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing to Transfer from the IDB0 and IDB1 Registers to Three-Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger: Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

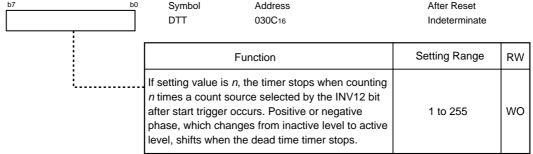
Figure 15.2 INVC0 Register



- 1. Rewrite the INVC1 register after the PRC1 bit in the PRCR register is set to "1" (write enable). The timers A1, A2, A4, and B2 must be stopped during rewrite.
- 2. The following table lists how the INV11 bit works.

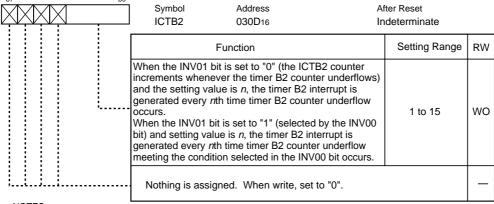
Item	INV11 = 0	JNV11 = 1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21 and TA41 Registers	Not used	Used
INV00 and INV01 Bits in the INVC0 Register	Disabled. The ICTB2 counter is incremented whenever the timer B2 counter underflows	Enabled
INV13 Bit	Disabled	Enabled when INV11=1 and INV06=0

- 3. When the INV06 bit is set to "1" (sawtooth wave modulation mode), set the INV11 bit to "0" (threephase mode 0). Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).
- 4. The INV13 bit is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1" (three-phase mode 1).
- 5. If the following conditions are all met, set the INV16 bit to "1".
 - The INV15 bit is set to "0" (dead time timer enabled)
 - The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to "1". (The positive-phase and negative-phase always output opposite level signals.) If above conditions are not met, set the INV16 bit to "0".


Figure 15.3 INVC1 Register

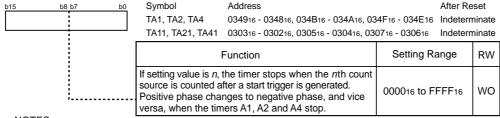
1. Values of the IDB0 and IDB1 registers are transferred to the three-phase output shift register by a transfer trigger.

After the transfer trigger occurs, the values written in the IDB0 register determine each phase output signal first. Then the value written in the IDB1 register on the falling edge of timers A1, A2 and A4 one-shot pulse determines each phase output signal.


Dead Time Timer^(1, 2)

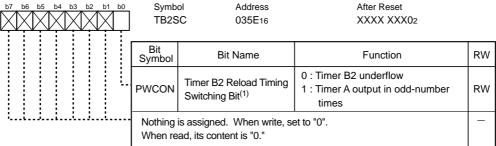
- 1. Use the MOV instruction to set the DTT register.
- 2. The DTT register is enabled when the INV15 bit in the INVC1 register is set to "0" (dead time enabled). No dead time can be set when the INV15 bit is set to "1" (dead time disabled). The INV06 bit in the INVC0 register determines start trigger of the DTT register.

Figure 15.4 IDB0, IDB1 and DTT Registers


Timer B2 Interrupt Generation Frequency Set Counter^(1, 2, 3)

NOTES:

- 1. Use the MOV instruction to set the ICTB2 register.
- If the INVO1 bit in the INVC0 register is set to "1", set the ICTB2 register when the TB2S bit is set to "0" (timer B2 counter stopped).
 - If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 counter underflows.
- 3. If the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows *n-1* times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.


Timer Ai, Ai-1 Register (i=1, 2, 4)^(1, 2, 3, 4, 5, 6, 7)

NOTES:

- 1. Use a 16-bit data for read and write.
- 2. If the TAi or TAi1 register is set to "000016", no counters start and no timer Ai interrupt is generated.
- 3. Use the MOV instruction to set the TAi and TAi1 registers.
- 4. When the INV15 bit in the INVC1 register is set to "0" (dead timer enabled), phase switches from an inactive level to an active level when the dead time timer stops.
- 5. When the INV11 bit is set to "0" (three-phase mode 0), the value of the TAi register is transferred to the reload register by a timer Ai start trigger.
 - When the INV11 bit is set to "1" (three-phase mode 1), the value of the TAi1 register is first transferred to the reload register by a timer Ai start trigger. Then, the value of the TAi register is transferred by the next trigger. The values of the TAi1 and TAi registers are transferred alternately to the reload register with every timer Ai start trigger.
- 6. Do not write to these registers when the timer B2 counter underflows.
- 7. Follow the procedure below to set the TAi1 register.
 - (1) Write value to the TAi1 register.
 - (2) Wait one timer Ai count source cycle.
 - (3) Write the same value as (1) to the TAi1 register.

Timer B2 Special Mode Register

NOTES:

 When setting the INV11 bit to "0" (three-phase mode 0) or the INV06 bit to "1" (sawtooth wave modulation mode), set the PWCON bit to "0".

Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers and TB2SC Register

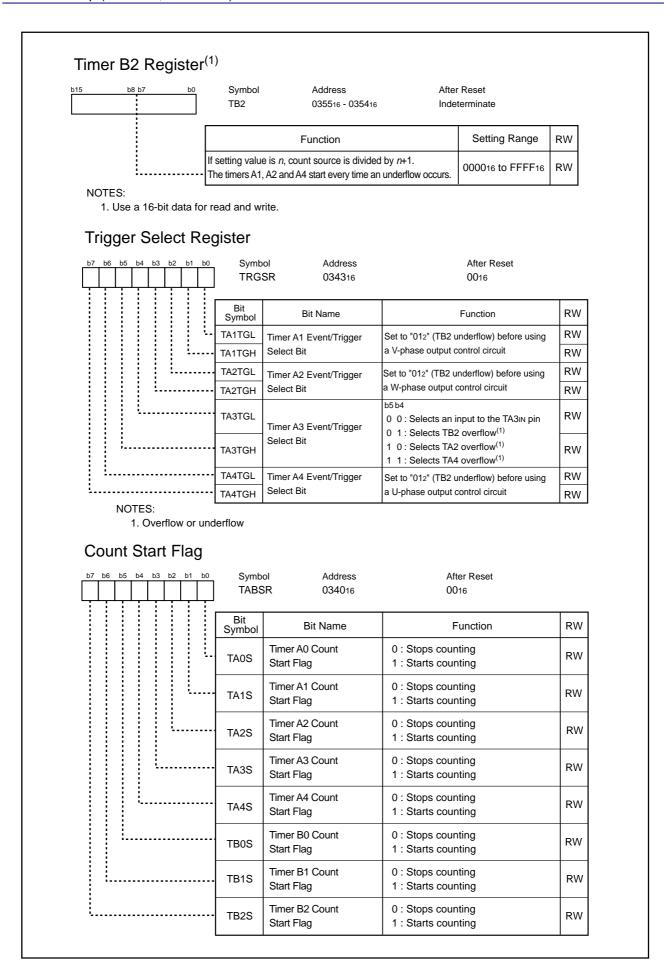
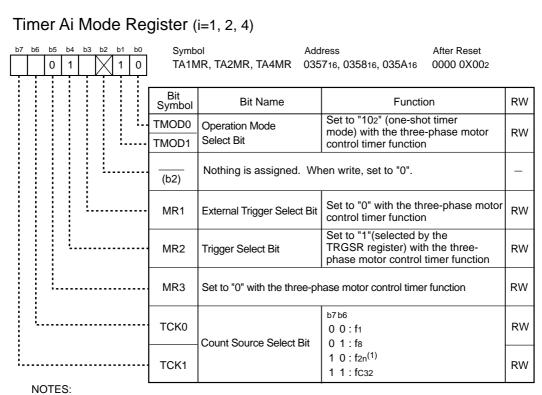



Figure 15.6 TB2, TRGSR and TABSR Registers

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Timer B2 Mode Register

Figure 15.7 TA1MR, TA2MR, TA4MR Registers and TB2MR Register

The three-phase control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and timers A4, A1, A2 for three-phase PWM output (U, \overline{U} , V, \overline{V} , W, \overline{W}) control. An exclusive dead time timer controls dead time. Figure 15.8 shows an example of the triangular modulation waveform. Figure 15.9 shows an example of the sawtooth modulation waveform.

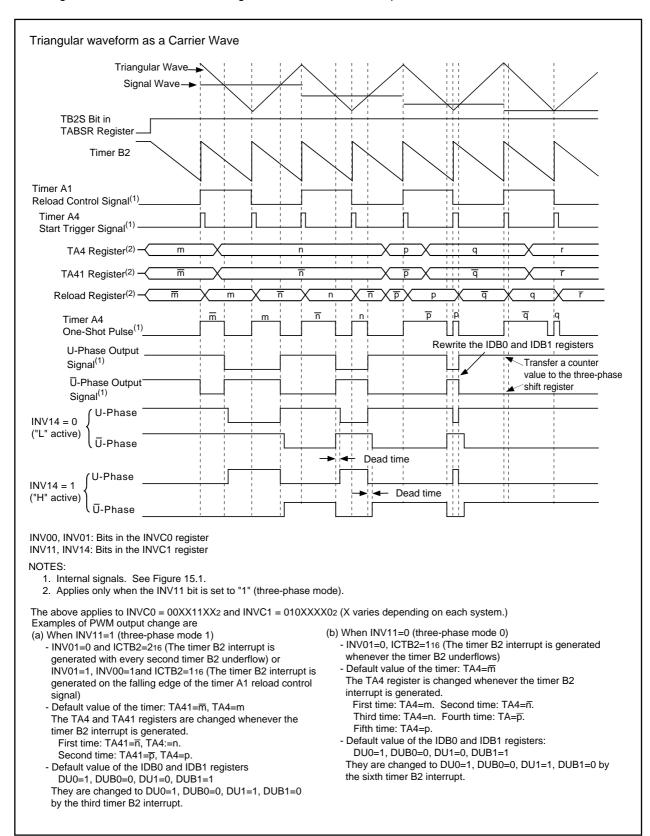


Figure 15.8 Triangular Wave Modulation Operation

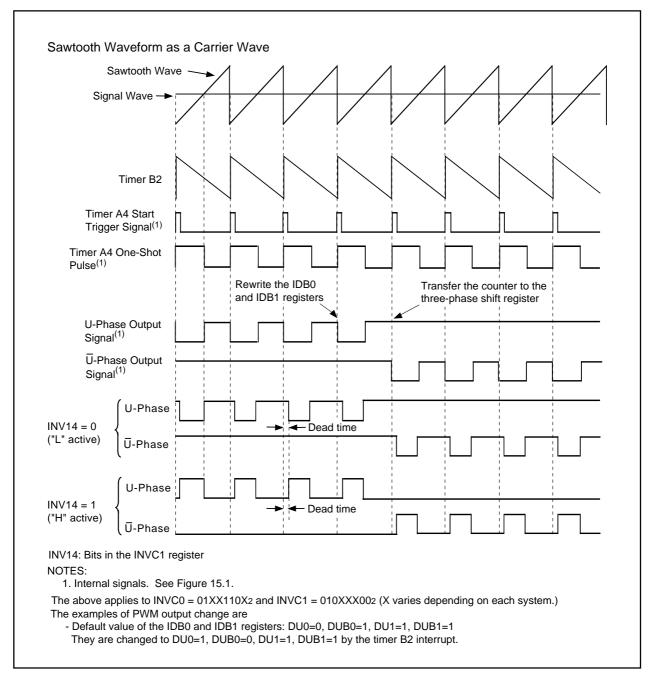


Figure 15.9 Sawtooth Wave Modulation Operation

16. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

Figure 16.1 shows a UARTi block diagram.

UARTi supports the following modes :

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 16.2 to 16.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.

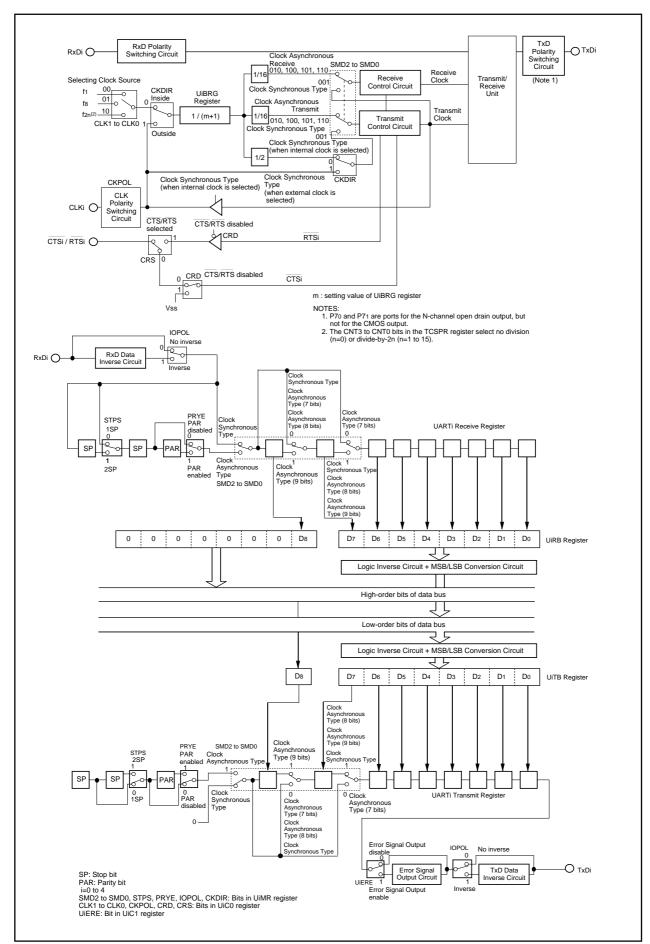
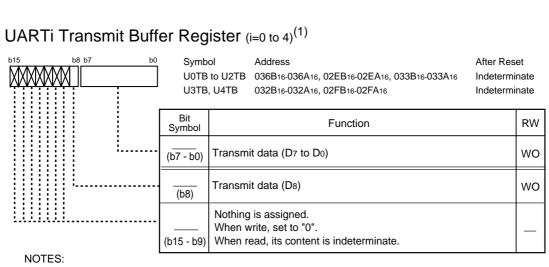
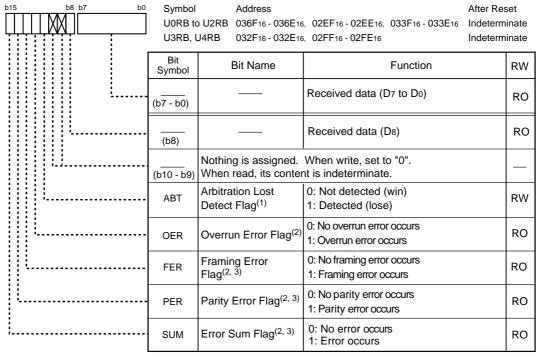




Figure 16.1 UARTi Block Diagram

Use the MOV instruction to set the UiTB register.

UARTi Receive Buffer Register (i=0 to 4)

- 1. The ABT bit can be set to "0" only.
- 2. When the SMD2 to SMD0 bits in the UiMR register is set to "0002" (serial I/O disable) or the RE bit in the UiC1 register is set to "0" (receive disable), the OER, FER, PER and SUM bits are set to "0" (no error occurs).
 - When all OER, FER and PER bits are set to "0" (no error), the SUM bit is set to "0" (no error). Also, the FER and PER bits are set to "0" by reading low-order bits in the UiRB register.
- 3. These error flags are disabled when the SMD2 to SMD0 bits in the UiMR register are set to "0012" (clock synchronous serial I/O mode, special mode 2, or special mode 3) or to "0102" (I²C mode). When read, the contents are indeterminate.

Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers

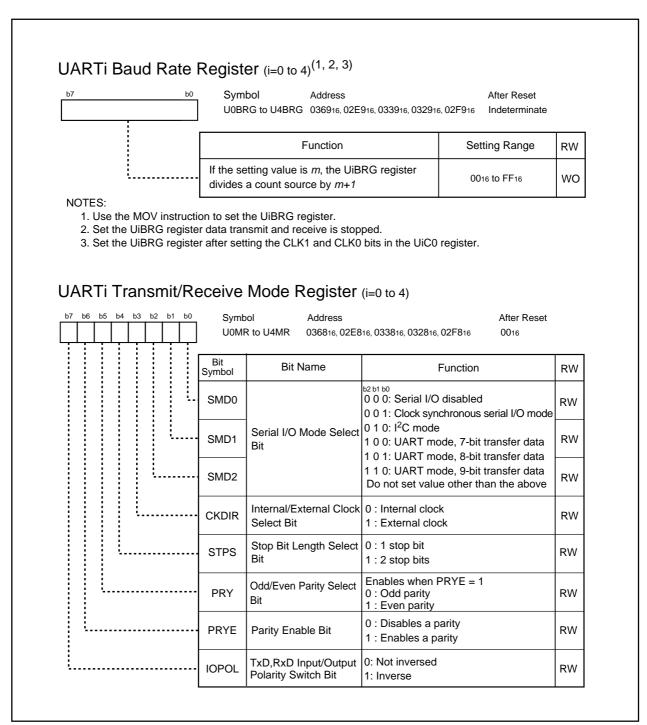
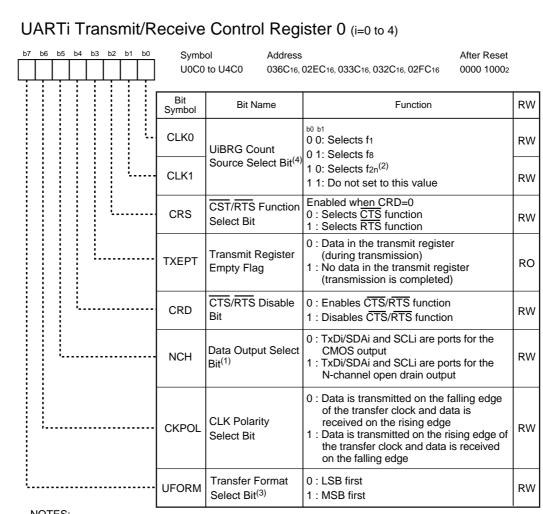
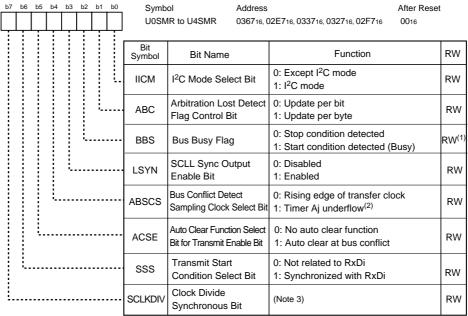



Figure 16.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers

- 1. P70/TxD2 are ports for the N-channel open drain output, but not for the CMOS output.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 3. The UFORM bit is enabled when the SMD2 to SMD0 bits in the UiMR register are set to "0012" (clock synchronous serial I/O mode), or "1012" (UART mode, 8-bit transfer data). Set this bit to "1" when the SMD2 to SMD0 bits are set to "0102" (I²C mode), and to "0" when the SMD2 to SMD0 bits are set to "1002" (UART mode, 7-bit transfer data) or "1102" (UART mode, 9-bit transfer data).
- 4. If the CLK1 and CLK0 bits are changed, set the UiBRG register.


Figure 16.4 U0C0 to U4C0 Registers

UARTi Transmit/Receive Control Register 1 (i=0 to 4) Symbol Address After Reset U0C1 to U4C1 036D16, 02ED16, 033D16, 032D16, 02FD16 0000 00102 Bit Name Function RW 0: Transmit disable Transmit TE RW **Enable Bit** 1: Transmit enable Transmit Buffer 0: Data in the UiTB register RO ΤI 1: No data in the UiTB register **Empty Flag** 0: Receive disable Receive RE RW **Enable Bit** 1: Receive enable 0: No data in the UiRB register Receive RΙ RO Complete Flag 1: Data in the UiRB register **UARTi Transmit** 0: No data in the UiTB register (TI = 1) **UiIRS** RW Interrupt Cause 1: Transmission is completed (TXEPT = 1) Select Bit UARTi Continuous Disables continuous receive mode to be entered UiRRM RW Receive Mode 1: Enables continuous receive mode to be entered 0. Not inversed Data Logic **UiLCH** RW Select Bit 1: Inverse Clock-divided synchronous stop bit (special mode 3) Clock-Divided 0: Stops synchronizing Synchronous SCLKSTPE 1: Starts synchronizing Stop Bit / RW /UiERE Error signal output enable bit (special mode 5) Error Signal Outpu 0: Not output Enable Bit⁽¹⁾

NOTES:

- 1. Set the SCLKSTPB/UiERE bit after setting the SMD2 to SMD0 bits in the UiMR register.
- 2. The UiLCH bit is enabled when the SMD2 to SMD0 bits are set to "0012" (clock synchronous serial I/O mode), "1002" (UART mode, 7-bit transfer data), or "1012" (UART mode, 8-bit transfer data). Set this bit to "0" when the SMD2 to SMD0 bits are set to "0102" (I²C mode) or "1102" (UART mode, 9-bit transfer data)

UARTi Special Mode Register (i=0 to 4)

- 1. The BBS bit is set to "0" by program. It is unchanged if set to "1".
- UART0: timer A3 underflow signal, UART1: timer A4 underflow signal, UART2: timer A0 underflow signal, UART3: timer A3 underflow signal, UART4: timer A4 underflow signal.
- 3. Refer to notes for the SU1HIM bit in the UiSMR2 register.

Figure 16.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

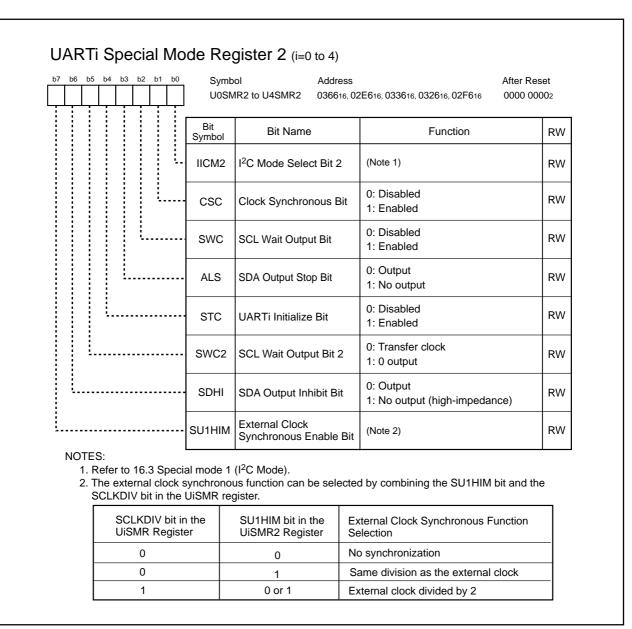
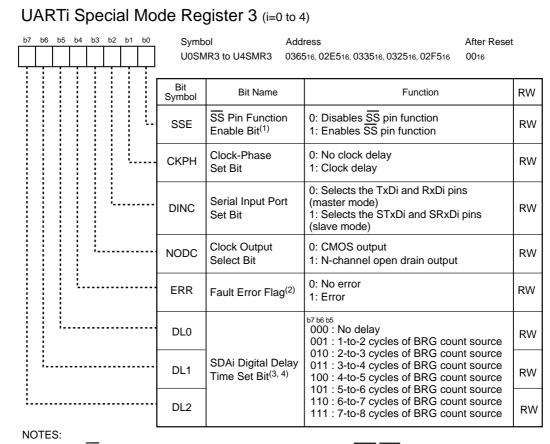



Figure 16.6 U0SMR2 to U4SMR2 Registers

- 1. Set the SS pin after the CRD bit in the UiC0 register is set to "1" (CTS/RTS function disabled).
- 2. The ERR bit is set to "0" by program. It is unchanged if set to "1".
- 3. Digital delay is generated from a SDAi output by the DL2 to DL0 bits in I²C mode. Set these bits to "0002" (no delay) except in the I²C mode.
- 4. When the external clock is selected, approximately 100ns delay is added.

Figure 16.7 U0SMR3 to U4SMR3 Registers

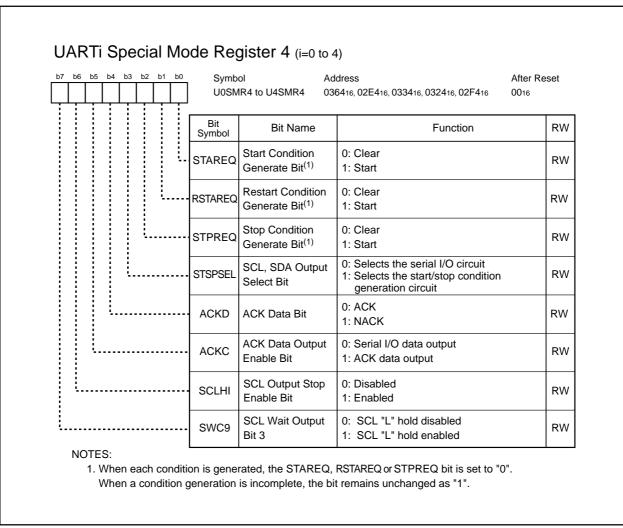


Figure 16.8 U0SMR4 to U4SMR4 Registers

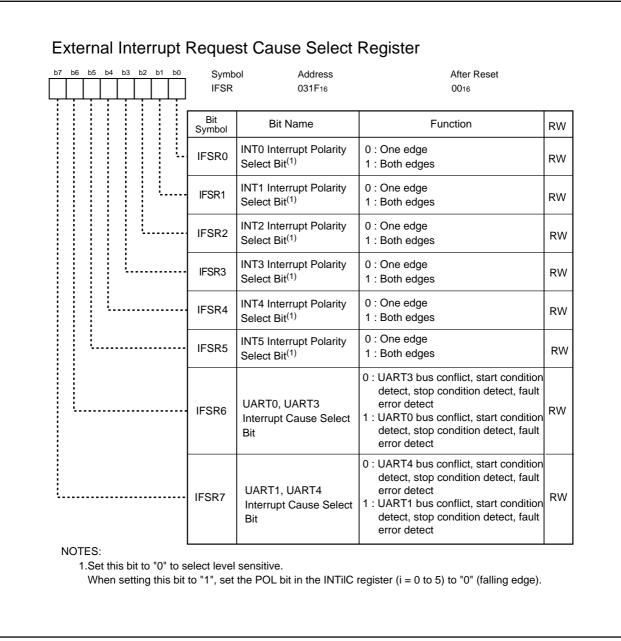


Figure 16.9 IFSR Register

16.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 16.1 lists specifications of clock synchronous serial I/O mode. Table 16.2 lists registers to be used and settings. Tables 16.3 to 16.5 list pin settings. When UARTi (i=0 to 4) operation mode is selected, the TxDi pin outputs an "H" signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.10 shows transmit and receive timings in clock synchronous serial I/O mode.

Table 16.1 Clock Synchronous Serial I/O Mode Specifications

Item	Specification		
Transfer Data Format	Transfer data : 8 bits long		
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):		
	$\frac{f_j}{2(m+1)}$ $f_j=f_1$, f8, f2n ⁽¹⁾ m :setting value of the UiBRG register 0016 to FF16.		
	• The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin		
Transmit/Receive Control	• Selected from the $\overline{\text{CTS}}$ function, $\overline{\text{RTS}}$ function or $\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled		
Transmit Start Condition	• To start transmitting, the following requirements must be met ⁽²⁾ :		
	- Set the TE bit in the UiC1 register to "1" (transmit enable)		
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)		
	- Apply an "L" signal to the $\overline{\text{CTSi}}$ pin when the $\overline{\text{CTS}}$ function is selected		
Receive Start Condition	• To start receiving, the following requirements must be met ⁽²⁾ :		
	- Set the RE bit in the UiC1 register to "1" (receive enable)		
	- Set the TE bit to "1" (transmit enable)		
	- Set the TI bit to "0" (data in the UiTB register)		
Interrupt Request Generation Timing	Transmit interrupt timing can be selected from the followings:		
	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer) :		
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)		
	- The UiIRS bit is set to "1" (transmission completed):		
	when a data transfer from the UARTi transmit register is completed		
	Receive interrupt timing		
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)		
Error Detect	• Overrun error ⁽³⁾		
	This error occurs when the seventh bit of the next received data is read before reading		
	the UiRB register		
Selectable Function	CLK polarity		
	Transferred data is output and input on either the rising edge or falling edge of the		
	transfer clock		
	• LSB first / MSB first		
	Data is transmitted or received in either bit 0 or in bit 7		
	Continuous receive mode		
	Data can be received simultaneously by reading the UiRB register		
	Serial data logic inverse		
	This function inverses transmitted or received data logically		
NOTES:			

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 16.2 Registers to be Used and Setting Value in Clock Synchronous Serial I/O Mode

Register	Bit	Function		
UiTB	0 to 7	Set transmit data		
UiRB	0 to 7	Received data can be read		
	OER	Overrun error flag		
UiBRG	0 to 7	Set bit rate		
UiMR	SMD2 to SMD0	Set to "0012"		
	CKDIR	Select the internal clock or external clock		
	IOPOL	Set to "0"		
UiC0	CLK1 to CLK0	Select count source for the UiBRG register		
	CRS	Select CTS or RTS when using either		
	TXEPT	Transmit register empty flag		
	CRD	Enables or disables the CTS or RTS function		
	NCH	Select output format of the TxDi pin		
	CKPOL	Select transmit clock polarity		
	UFORM	Select either LSB first or MSB first		
UiC1	TE	Set to "1" to enable data transmission and reception		
	TI	Transmit buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UilRS	Select how the UARTi transmit interrupt is generated		
	UiRRM	Set to "1" when using continuous receive mode		
	UiLCH	Set to "1" when using data logic inverse		
	SCLKSTPB	Set to "0"		
UiSMR	0 to 7	Set to "0016"		
UiSMR2	0 to 7	Set to "0016"		
UiSMR3	0 to 2	Set to "0002"		
	NODC	Select clock output format		
	4 to 7	Set to "00002"		
UiSMR4	0 to 7	Set to "0016"		

i=0 to 4

Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input	PS0_0=0	-	PD6_0=0
	RTS0 output	PS0_0=1	-	-
P61	CLK0 input	PS0_1=0	-	PD6_1=0
	CLK0 output	PS0_1=1	-	-
P62	RxD0 input	PS0_2=0	-	PD6_2=0
P63	TxD0 output	PS0_3=1	-	-
P64	CTS1 input	PS0_4=0	-	PD6_4=0
	RTS1 output	PS0_4=1	PSL0_4=0	-
P65	CLK1 input	PS0_5=0	-	PD6_5=0
	CLK1 output	PS0_5=1	-	-
P66	RxD1 input	PS0_6=0	-	PD6_6=0
P67	TxD1 output	PS0_7=1	-	-

Table 16.4 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	-
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	-

Table 16.5 Pin Settings (3)

Port	Function		Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input	PS3_0=0	-	PD9_0=0	
	CLK3 output	PS3_0=1	-	-	
P91	RxD3 input	PS3_1=0	-	PD9_1=0	
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0	
	RTS3 output	PS3_3=1	-	-	
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0	
	RTS4 output	PS3_4=1	-	-	
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0	
	CLK4 output	PS3_5=1	-	-	
P96	TxD4 output	PS3_6=1	-	-	
P97	RxD4 input	PS3_7=0	-	PD9_7=0	

^{1.} P70 and P71 are ports for the N-channel open drain output.

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.10 Transmit and Receive Operation

16.1.1 Selecting CLK Polarity

As shown in Figure 16.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

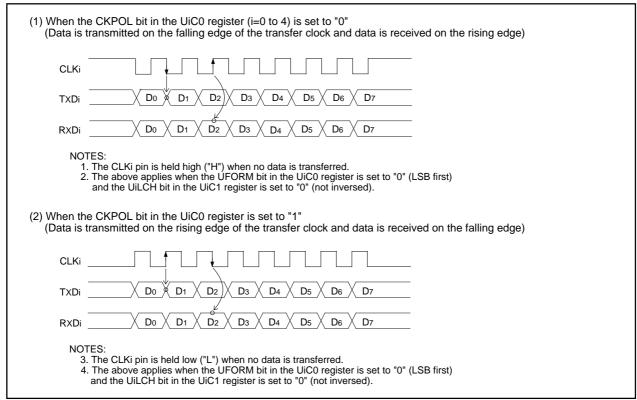


Figure 16.11 Transfer Clock Polarity

16.1.2 Selecting LSB First or MSB First

As shown in Figure 16.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

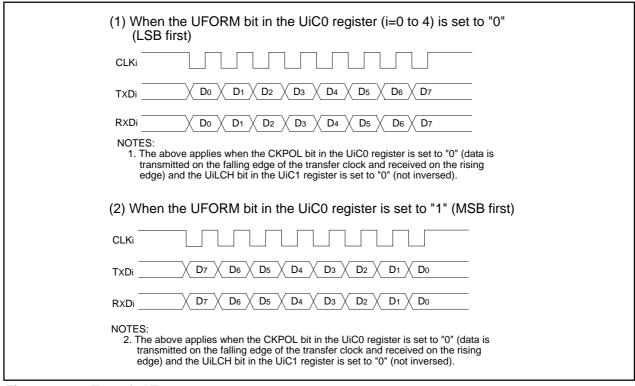


Figure 16.12 Transfer Format

16.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

16.1.4 Serial Data Logic Inverse

When the UiLCH bit in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.13 shows a switching example of the serial data logic.

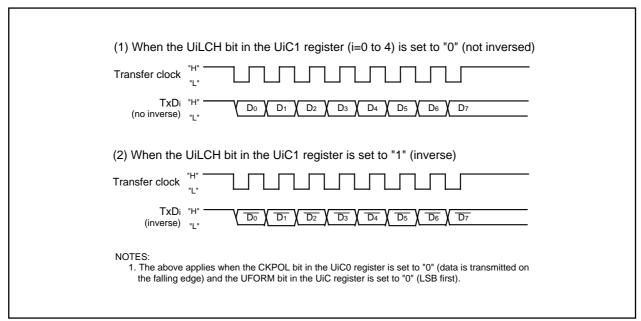


Figure 16.13 Serial Data Logic Inverse

16.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 16.6 lists specifications of UART mode.

Table 16.6 UART Mode Specifications

Item	Specification		
Transfer Data Format	Character bit (transfer data): selected from 7 bits, 8 bits, or 9 bits long		
	Start bit: 1 bit long		
	Parity bit: selected from odd, even, or none		
	Stop bit: selected from 1 bit or 2 bits long		
Transfer Clock	• The CKDIR bit in the UiMR register is set to "0" (internal clock selected) :		
	$f_j/16(m+1)$ $f_j = f_1$, f_8 , $f_{2n}(1)$ m: setting value of the UiBRG register 0016 to FF16		
	• The CKDIR bit is set to "1" (external clock selected):		
	fEXT/16(m+1) fEXT: clock applied to the CLKi pin		
Transmit/Receive Control	Select from CTS function, RTS function or CTS/RTS function disabled		
Transmit Start Condition	To start transmitting, the following requirements must be met:		
	- Set the TE bit in the UiC1 register to "1" (transmit enable)		
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)		
	- Apply an "L" signal to the $\overline{\text{CTS}}$ i pin when the $\overline{\text{CTS}}$ function is selected		
Receive Start Condition	To start receiving, the following requirements must be met:		
	- Set the RE bit in the UiC1 register to "1" (receive enable)		
	- The start bit is detected		
Interrupt Request	Transmit interrupt timing can be selected from the followings:		
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer) :		
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)		
	- The UiIRS bit is set to "1" (transmission completed):		
	when data transmission from the UARTi transfer register is completed		
	Receive interrupt timing		
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)		
Error Detect	Overrun error ⁽²⁾		
	This error occurs when the bit before the last stop bit of the next received data is read		
	prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)		
	• Framing error		
	This error occurs when the number of stop bits set is not detected		
	Parity error		
	When parity is enabled, this error occurs when the number of "1" in parity and character		
	bits does not match the number of "1" set		
	Error sum flag		
	This flag is set to "1" when any of an overrun, framing or parity errors occur		
Selectable Function	• LSB first / MSB first		
	Data is transmitted or received in either bit 0 or in bit 7		
	•Serial data logic inverse		
	Logic values of data to be transmitted or received data are inversed. The start bit and		
	stop bit are not inversed		
	•TxD, RxD I/O polarity switching		
	TxD pin output and RxD pin input are inversed		

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register remains unchanged as "1" (interrupt requested).

Table 16.7 lists registers to be used and settings. Tables 16.8 to 16.10 list pin settings. When UARTi (i=0 to 4) operation mode is selected, the TxDi pin outputs an "H" signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.14 shows an example of a transmit operation in UART mode. Figure 16.15 shows an example of a receive operation in UART mode.

Table 16.7 Registers to be Used and Settings in UART

Register	Bit	Function		
UiTB	0 to 8	Set transmit data ⁽¹⁾		
UiRB	0 to 8	Received data can be read ⁽¹⁾		
	OER, FER,	Error flags		
	PER, SUM			
UiBRG	0 to 7	Set bit rate		
UiMR	MR SMD2 to SMD0 Set to "1002" when transfer data is 7 bits long			
		Set to "1012" when transfer data is 8 bits long		
		Set to "1102" when transfer data is 9 bits long		
	CKDIR	Select the internal clock or external clock		
	STPS	Select stop bit length		
	PRY, PRYE	Select parity enable or disable, odd or even		
	IOPOL	Select TxD / RxD I/O polarity		
UiC0	CLK0, CLK1	Select count source for the UiBRG register		
	CRS	Select either CTS or RTS when using either		
	TXEPT	Transfer register empty flag		
	CRD	Enables or disables the CTS or RTS function		
	NCH	Select output format of the TxDi pin		
	CKPOL	Set to "0"		
	UFORM	Select the LSB first or MSB first when a transfer data is 8 bits long		
		Set to "0" when transfer data is 7 bits or 9 bits long		
UiC1	TE	Set to "1" to enable data transmission		
	TI	Transfer buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UiIRS	Select how the UARTi transmit interrupt is generated		
	UiRRM	Set to "0"		
	UiLCH	Select whether or not data logic is inversed when transfer data length is 7 or		
		8 bits. Set to "0" when transfer data length is 9 bits.		
	UiERE	Set to either "0" or "1"		
UiSMR	0 to 7	Set to "0016"		
UiSMR2	0 to 7	Set to "0016"		
UiSMR3	0 to 7	Set to "0016"		
UiSMR4	0 to 7	Set to "0016"		

NOTES:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.

Table 16.8 Pin Settings in UART (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input	PS0_0=0	_	PD6_0=0
	RTS0 output	PS0_0=1	_	_
P61	CLK0 input	PS0_1=0	_	PD6_1=0
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P64	CTS1 input	PS0_4=0	_	PD6_4=0
	RTS1 output	PS0_4=1	PSL0_4=0	_
P65	CLK1 input	PS0_5=0	_	PD6_5=0
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 16.9 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
P73	CTS2 input	PS1_3=0	_	_	PD7_3=0
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	_

Table 16.10 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	PD9_0=0
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0
	RTS3 output	PS3_3=1	-	_
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0
	RTS4 output	PS3_4=1	_	_
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enable).
 Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

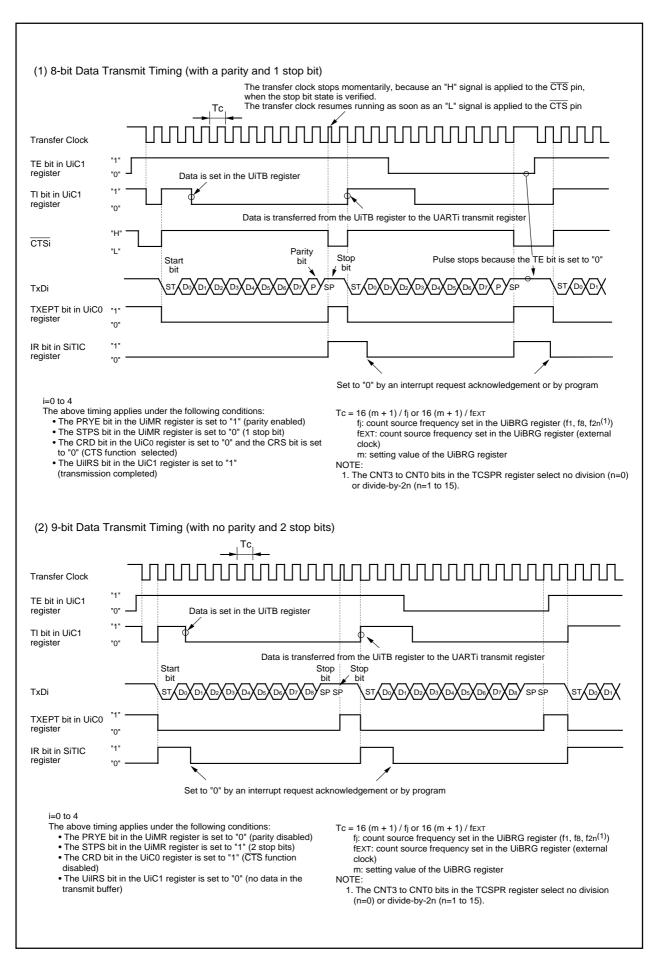


Figure 16.14 Transmit Operation

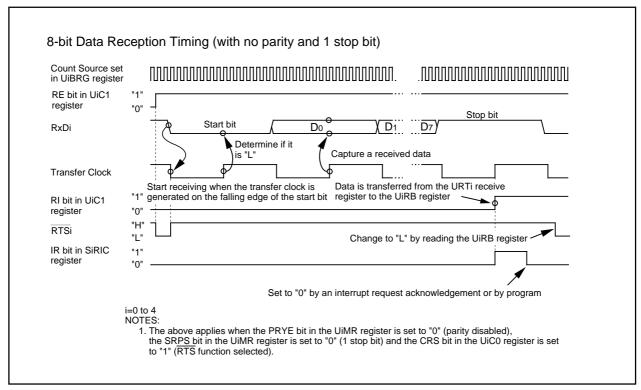


Figure 16.15 Receive Operation

16.2.1 Bit Rate

In UART mode, bit rate is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 16.11 lists an example of bit rate setting.

Table 16.11 Bit Rate

Count Bit Rate Source		16111-		Peripheral Function Clock: 24MHz		Peripheral Function Clock: 32MHz	
(bps)	of UiBRG	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)	Setting Value of UiBRG: n	Actual Bit Rate (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202	207 (CFh)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404	103 (67h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808	51 (33h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615	207 (CFh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423	138 (8Ah)	14388
19200	f1	51 (33h)	19231	77 (46h)	19231	103 (67h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846	68 (44h)	28986
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250	63 (3Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462	51 (33h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724	38 (26h)	51282

16.2.2 Selecting LSB First or MSB First

As shown in Figure 16.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

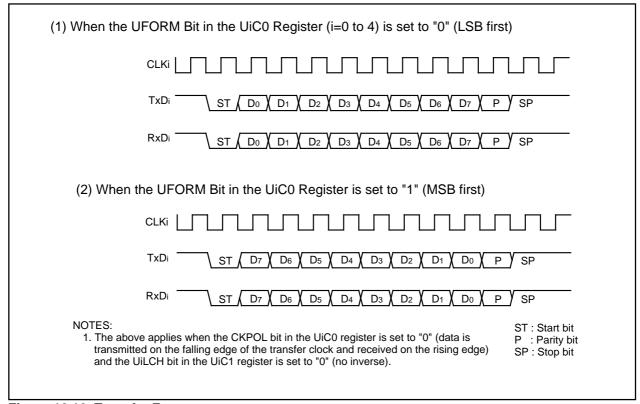


Figure 16.16 Transfer Format

16.2.3 Serial Data Logic Inverse

After the UiLCH bit in the UiC1 register is set to "1", data logic is inversed when writing to the UiTB register (i=0 to 4) and reading from the UiRB register. Figure 16.17 shows a switching example of the serial data logic.

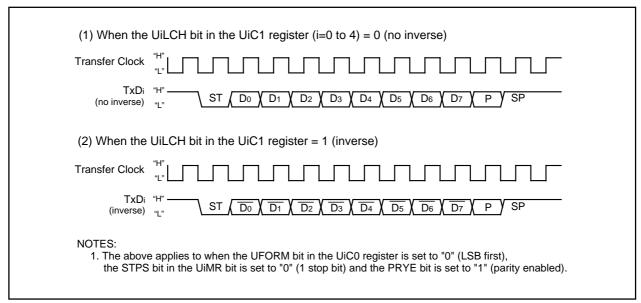


Figure 16.17 Serial Data Logic Inverse

16.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 16.18 shows TxD and RxD I/O polarity inverse.

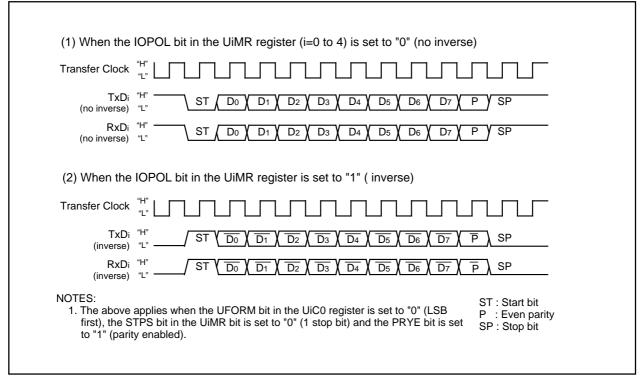


Figure 16.18 TxD, RxD I/O Polarity Inverse

16.3 Special Mode 1 (I²C Mode)

 I^2C mode is a mode to communicate with external devices with a simplified I^2C . Table 16.12 lists specifications of I^2C mode. Table 16.13 lists registers to be used and settings, Table 16.14 lists each function. Figure 16.19 shows a block diagram of I^2C mode. Figure 16.20 shows timings for transfer to the UiRB register and interrupts. Tables 16.14 to 16.16 list pin settings.

As shown in Table 16.14, I^2C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiMR register is set to "1". SDAi output changes after SCLi becomes low ("L") and stabilizes due to a SDAi output via the delay circuit.

Table 16.12 I²C Mode Specifications

Item	Specifications
Interrupt	Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment detect
Selectable Function	Arbitration lost
	The update timing of the ABT bit in the UiRB register can be selected.
	Refer to 16.3.3 Arbitration.
	SDAi digital delay
	Selected from no digital delay or 2 to 8 cycle delay of the count source of BRG.
	Refer to 16.3.5 SDA Output.
	Clock phase setting
	Selected from clock delay or no clock delay.
	Refer to 16.3.4 Transfer Clock.

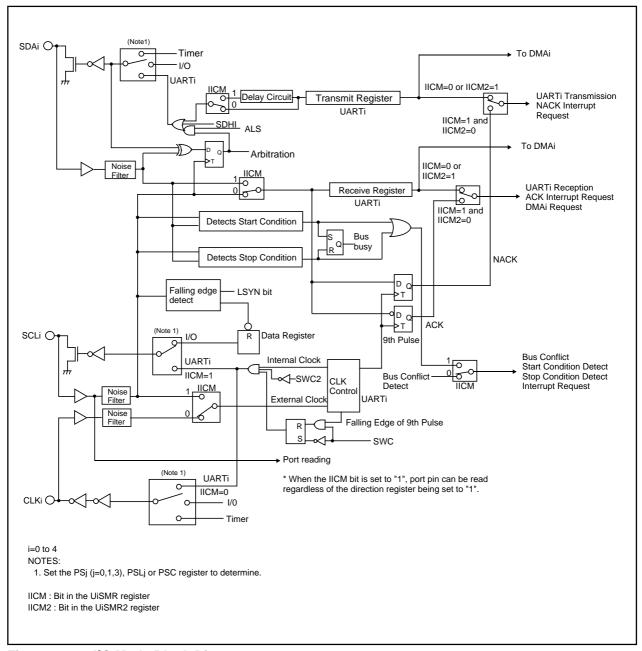


Figure 16.19 I²C Mode Block Diagram

Table 16.13 Registers To Be Used and Settings (I²C Mode)

Register	Bit	Function				
		Master	Slave			
UiTB	0 to 7	Set transmit data				
UiRB	0 to 7	Received data can be read				
	8	ACK or NACK bit can be read				
	ABT	Arbitration lost detect flag	Disabled			
	OER	Overrun error flag				
UiBRG	0 to 7	Set bit rate	Disabled			
UiMR	SMD2 to SMD0	Set to "0102"				
	CKDIR	Set to "0"	Set to "1"			
	IOPOL	Set to "0"				
UiC0	CLK1 to CLK0	Select count source of the UiBRG register	Disabled			
	CRS	Disabled because CRD = 1				
	TXEPT	Transfer register empty flag				
	CRD, NCH	Set to "1"				
	CKPOL	Set to "0"				
	UFORM	Set to "1"				
UiC1	TE	Set to "1" to enable data transmission				
	TI	Transfer buffer empty flag				
	RE	Set to "1" to enable data reception				
	RI	Reception complete flag				
	UiRRM, UiLCH,	Set to "0"				
	UiERE					
UiSMR	IICM	Set to "1"				
	ABC	Select an arbitration lost detect timing Disabled				
	BBS	Bus busy flag				
	3 to 7	Set to "000002"				
UiSMR2	IICM2	See Table 16.14				
	CSC	Set to "1" to enable clock synchronization	Set to "0"			
	SWC	Set to "1" to output fixed "L" from the SDAi on the	ne falling edge of the ninth bit of			
		the transfer clock				
	ALS	Set to "1" to terminate SDA output when	Not used. Set to "0"			
		detecting the arbitration lost				
	STC	Not used. Set to "0"	Set to "1" to reset UARTi			
			by detecting a start condition			
	SWC2	Set to "1" to forcibly output an "L" signal from S0	DL .			
	SDHI	Set to "1" to disable SDA output				
	SU1HIM	Set to "0"				
UiSMR3	SSE	Set to "0"				
	CKPH	See Table 16.14.				
	DINC, NODC, ERR	Set to "0"				
	DL2 to DL0	Set digital delay value				
UiSMR4	STAREQ	Set to "1" when generating start condition	Not used. Set to "0"			
	RSTAREQ	Set to "1" when generating restart condition				
	STPREQ	Set to "1" when generating stop condition				
	STSPSEL	Set to "1" when using a condition generating function				
	ACKD	Select ACK or NACK				
	ACKC	Set to "1" to output ACK data				
	SCLHI	Set to "1" to enable SCL output stop when	Not used. Set to "0"			
	JOLITI		INOLUSEU. SELLO U			
	0)4/00	detecting stop condition	0-44-114114			
	SWC9	Not used. Set to "0"	Set to "1" to output fixed "L" from SCI on the falling edge of the ninth bit of			
IFSR	IFSR6, IFSR7	Set to "1"	the transfer clock			

i=0 to 4

Table 16.14 I²C Mode Functions

		I ² C Mode (SMD2	to SMD0=0102	, IICM=1)	
Function	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012,	IICM2=0 (NACK/ACK inter	rupt)	IICM2=1 (UART transmit /	UART receive interrupt)
	IICM=0)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)
Interrupt Numbers 39 to 41 Generated ⁽¹⁾ (See Figure 16.20)	-	Start condition or	stop condition	detect (See Table	16.17)
Interrupt Number 17, 19, 33, 35 and 37 Generated ⁽¹⁾ (See Figure 16.20)	UARTi Transmission - Transmission started or completed (selected by the UilRS register)	No Acknowlegem (NACK) - Rising edge of 9th		UARTi Transmission - Rising edge of 9th bit of SCLi	UARTi Transmission - Next falling edge after the 9th bit of SCLi
Interrupt Numbers 18, 20, 34, 36 and 38 Generated ⁽¹⁾ (See Figure 16.20)	UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)	Acknowlegement Rising edge of 9th		UARTi Reception Falling edge of 9	
Data Transfer Timing from the UART Receive Shift Register to the UiRB Register	CKPOL=0(rising edge) CKPOL=1(falling edge)	Rising edge of 9th	n bit of SCLi	Falling edge of 9th bit of SCLi	Falling edge and rising edge of 9th bit of SCLi
UARTi Transmit Output Delay	No delay	Delay			
P63, P67, P70, P92, P96 Pin Functions	TxDi output	SDAi input and output			
P62, P66, P71, P91, P97 Pin Functions	RxDi input	SCLi input and output			
P61, P65, P72, P90, P95 Pin Functions	Select CLKi input or output	- (Not used in I ²	C mode)		
Noise Filter Width	15ns	200ns			
Reading RxDi and SCLi Pin Levels	Can be read if port direction bit is set to "0"	Can be read rega	irdless of the po	ort direction bit	
Default Value of TxDi, SDAi Output	CKPOL=0 (H) CKPOL=1 (L)	Values set in the	port register be	efore entering I ² C n	node ⁽²⁾
SCLi Default and End Value	-	н	L	н	L
DMA Generated (See Figure 16.20)	UARTi reception	Acknowlegement (ACK)	detect	UARTi Reception - Falling edge of 9 bit of SCLi	
Store Received Data	1st to 8th bits of the received data are stored into bits 0 to 7 in the	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register		1st to 7th bits of the received data are store into bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.	
	UiRB register				1st to 8th bits are stored into bits 7 to 0 in the UiRB register (
Reading Received Data	The UiRB register status	is read			Bits 6 to 0 in the UiRB registerts ⁽⁴⁾ are read as bit 7 to 1. Bit 8 in the UiRB register is read as bit 0

i=0 to 4

- 1. Follow the procedures below to change how an interrupt is generated.
- (a) Disable interrupt of corresponding interrupt number.
- (b) Change how an interrupt is generated.
- (c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).
- (d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.
- 2. Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).
- 3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).
- 4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

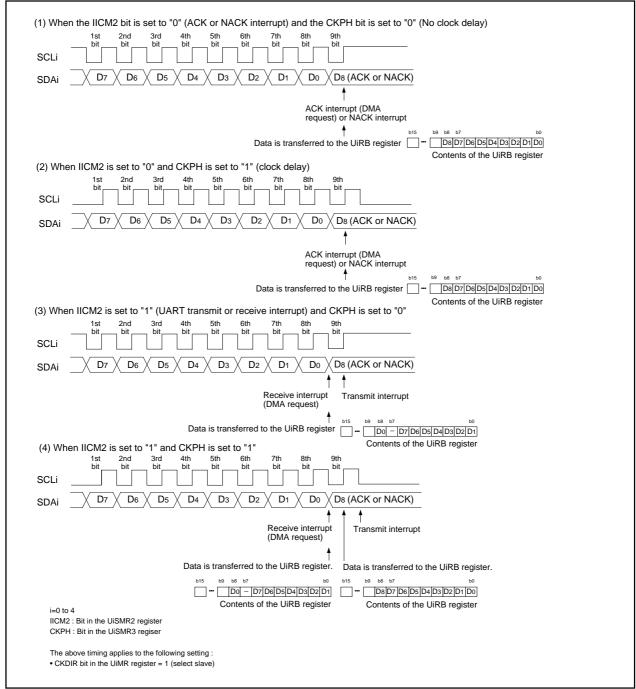


Figure 16.20 UiRB Register Transfer and Interrupt Timings

Table 16.15 Pin Settings in I²C Mode (1)

Port	Function		Setting			
		PS0 Register	PSL0 Register	PD6 Register		
P62	SCL0 output	PS0_2=1	PSL0_2=0	-		
	SCL0 input	PS0_2=0	-	PD6_2=0		
P63	SDA0 output	PS0_3=1	-	-		
	SDA0 input	PS0_3=0	-	PD6_3=0		
P66	SCL1 output	PS0_6=1	PSL0_6=0	-		
	SCL1 input	PS0_6=0	-	PD6_6=0		
P67	SDA1 output	PS0_7=1	-	-		
	SDA1 input	PS0_7=0	-	PD6_7=0		

Table 16.16 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	SDA2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
	SDA2 input	PS1_0=0	-	-	PD7_0=0	
P71 ⁽¹⁾	SCL2 output	PS1_1=1	PSL1_1=0	PSC_1=0		
	SCL2 input	PS1_1=0	-	-	PD7_1=0	

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.17 Pin Settings (3)

	· · · · · · · · · · · · · · · · · ·				
Port	Function		Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	
P91	SCL3 output	PS3_1=1	PSL3_1=0	-	
	SCL3 input	PS3_1=0	-	PD9_1=0	
P92	SDA3 output	PS3_2=1	PSL3_2=0	-	
	SDA3 input	PS3_2=0	-	PD9_2=0	
P96	SDA4 output	PS3_6=1	-	-	
	SDA4 input	PS3_6=0	-	PD9_6=0	
P97	SCL4 output	PS3_7=1	PSL3_7=0	-	
	SCL4 input	PS3_7=0	-	PD9_7=0	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin is held high ("H") and the SDAi pin changes high ("H") to low ("L"). The stop condition detect interrupt is generated when the SCLi pin is held high ("H") and the SDAi pin changes low ("L") to high ("H"). The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

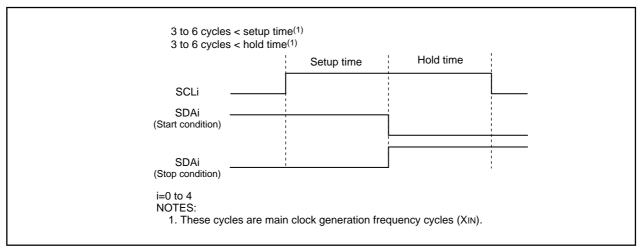


Figure 16.21 Start Condition or Stop Condition Detect

16.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated when the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generation circuit selected). The restart condition is output when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition is output when the STPREQ bit and the STSPSEL bit are set to "1".

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 16.18 lists function of the STSPSEL bit. Figure 16.22 shows functions of the STSPSEL bit.

Table 16.18 STSPSEL Bit Function

Function	STSPSEL = 0	STSPSEL = 1
Start condition and stop condition output	Program with a port determines how the start condition or stop	The STAREQ bit, RSTAREQ bit and STPREQ bit determine how the start
	condition is output	condition or stop condition is output
Timing to generate a start condition and stop condition interrupt request	The start condition and stop condition are detected	Start condition and stop condition generation are completed

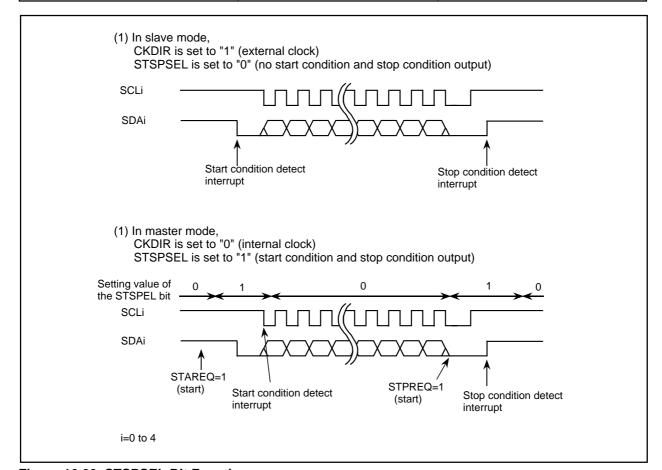


Figure 16.22 STSPSEL Bit Function

16.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of SCLi, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" as soon as a data discrepancy is detected. The ABT bit is set to "0" if not detected. When the ABC bit is set to "1", the ABT bit is set to "1" (detected-arbitration is lost) on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" (not detected-arbitration is won) between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

16.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 16.22

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal input to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to output an "L" signal on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin forcibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock is input to and output from the SCLi pin.

When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to output an "L" signal on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

16.3.5 SDA Output

Values in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are output in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I²C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set in the SDHI bit on the rising edge of the URTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

16.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM bit in the UiSMR register is set to "1" and the CKPH bit is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

16.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin outputs the value set in the ACKD bit.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

16.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register is set to "1" (UARTi initialization enabled) and a start condition is detected.

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when clock is input and when data of the first bit is output. The value remains the same value as when start condition was detected.
- the receive shift register is reset and the first bit starts receiving when the next clock is input.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes low ("L") on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.

16.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The SSi input pin (i=0 to 4) controls the serial bus communication. Table 16.19 lists specifications of special mode 2. Table 16.20 lists registers to be used and settings. Tables 16.20 to 16.22 list pin settings.

Table 16.19. Special Mode 2 Specifications

Transfer data: 8 bits long The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected): $f_1/2(m+1)$ $f_1 = f_1$, $f_2 = f_1$, $f_3 = f_2 = f_1$, $f_4 = f_2 = f_1$, $f_5 = f_4 = f_4$ m: setting value of the UiBRG register 0016 to FF16 The CKDIR bit to "1" (external clock selected): input clock from the CLKi pin
$f_j = f_1$, f_8 , f_{2n} ⁽¹⁾ m: setting value of the UiBRG register 0016 to FF16
The CKDIR bit to "1" (external clock selected): input clock from the CLKi pin
SSi input pin function
•To start transmitting, the following requirements must be met ⁽²⁾ :
- Set the TE bit in the UiC1 register to "1" (transmit enable)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
 To start receiving, the following requirement must be met⁽²⁾:
- Set the RE bit in the UiC1 register to "1" (receive enable)
- Set the TE bit to "1" (receive enable)
- Set the TI bit to "0" (data in the UiTB register)
Transmit interrupt timing can be selected from the followings:
- The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer):
when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
 The UiIRS register is set to "1" (transmission completed): when data transmission from UARTi transfer register is completed
Receive interrupt timing
When data is transferred from the UARTi receive register to the UiRB register (reception completed)
•Overrun error ⁽³⁾
This error occurs when the seventh bit of the next received data is read before reading the
UiRB register
•Fault error
In master mode, the fault error occurs an "L" signal is applied to the SSi pin
CLK polarity
Select from the rising edge or falling edge of the transfer clock when transferred data is output and input • LSB first / MSB first
Data is transmitted or received in either bit 0 or in bit 7
Continuous receive mode
Reception is enabled simultaneously by reading the UiRB register
Serial data logic inverse
This function inverses transmitted or received data logically
• TxD, RxD I/O polarity Inverse
TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed
Clock phase
Select from one of 4 combinations of transfer data polarity and phases
• SSi input pin function
Output pin is placed in a high-impedance state to avoid data conflict between master and other masters or slaves
, , , , , , , , , , , , , , , , , , , ,

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 16.20. Registers To Be Used and Settings in Special Mode 2

Register	Bit	Function			
UiTB	0 to 7	Set transmit data			
UiRB	0 to 7	Received data can be read			
	OER	Overrun error flag			
UiBRG	0 to 7	Set bit rate			
UiMR	SMD2 to SMD0	Set to "0012"			
	CKDIR	Set to "0" in master mode or "1" in slave mode			
	IOPOL	Set to "0"			
UiC0	CLK0, CLK1	Select count source for the UiBRG register			
	CRS	Disabled since CRD = 1			
	TXEPT	Transfer register empty flag			
	CRD	Set to "1"			
	NCH	Select the output format of the TxDi pin			
	CKPOL	Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in			
		the UiSMR3 register			
	UFORM	Select either LSB first or MSB first			
UiC1	TE	Set to "1" to enable data transmission and reception			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UilRS	Select how the UARTi transmit interrupt is generated			
	UiRRM	Set to "1" to enable continuous receive mode			
	UiLCH, SCLKSTPB	Set to "0"			
UiSMR	0 to 7	Set to "0016"			
UiSMR2	0 to 7	Set to "0016"			
UiSMR3	SSE	Set to "1"			
	СКРН	Clock phase can be set by the combination of the CKPH bit and the CKPOL bit			
		in the UiC0 register			
	DINC	Set to "0" in master mode or "1" in slave mode			
	NODC	Set to "0"			
	ERR	Fault error flag			
	5 to 7	Set to "0002"			
UiSMR4	0 to 7	Set to "0016"			
IFSR	IFSR6, IFSR7	Select how fault error occurs			

i=0 to 4

Table 16.21 Pin Settings in Special Mode 2 (1)

Port	Function		Setting	
		PS0 Register	PSL0 Register	PD6 Register
P60	SS0 input	PS0_0=0	_	PD6_0=0
P61	CLK0 input (slave)	PS0_1=0	_	PD6_1=0
	CLK0 output (master)	PS0_1=1	_	_
P62	RxD0 input (master)	PS0_2=0	_	PD6_2=0
	STxD0 output (slave)	PS0_2=1	PSL0_2=1	_
P63	TxD0 output (master)	PS0_3=1	_	_
	SRxD0 input (slave)	PS0_3=0	_	PD6_3=0
P64	SS1 input	PS0_4=0	_	PD6_4=0
P65	CLK1 input (slave)	PS0_5=0	_	PD6_5=0
	CLK1 output (master)	PS0_5=1	_	_
P66	RxD1 input (master)	PS0_6=0	_	PD6_6=0
	STxD1 output (slave)	PS0_6=1	PSL0_6=1	_
P67	TxD1 output (master)	PS0_7=1	_	_
	SRxD1 input (slave)	PS0_7=0	_	PD6_7=0

Table 16.21 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output (master)	PS1_0=1	PSL1_0=0	PSC_0=0	_	
	SRxD2 input (slave)	PS1_0=0	_	_	PD7_0=0	
P71 ⁽¹⁾	RxD2 input (master)	PS1_1=0	_	-	PD7_1=0	
	STxD2 output (slave)	PS1_1=1	PSL1_1=1	PSC_1=0	_	
P72	CLK2 input (slave)	PS1_2=0	_	_	PD7_2=0	
	CLK2 output (master)	PS1_2=1	PSL1_2=0	PSC_2=0	_	
P73	SS2 input	PS1_3=0	_	-	PD7_3=0	

NOTES:

Table 16.23 Pin Settings (3)

Port	Function		Setting	
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input (slave)	PS3_0=0	_	PD9_0=0
	CLK3 output (master)	PS3_0=1	_	_
P91	RxD3 input (master)	PS3_1=0	_	PD9_1=0
	STxD3 output (slave)	PS3_1=1	PSL3_1=1	-
P92	TxD3 output (master)	PS3_2=1	PSL3_2=0	_
	SRxD3 input (slave)	PS3_2=0	_	PD9_2=0
P93	SS3 input	PS3_3=0	PSL3_3=0	PD9_3=0
P94	SS4 input	PS3_4=0	PSL3_4=0	PD9_4=0
P95	CLK4 input (slave)	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output (master)	PS3_5=1	_	_
P96	TxD4 output (master)	PS3_6=1	_	_
	SRxD4 input (slave)	PS3_6=0	PSL3_6=0	PD9_6=0
P97	RxD4 input (master)	PS3_7=0	_	PD9_7=0
	STxD4 output (slave)	PS3_7=1	PSL3_7=1	_

^{1.} Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

^{1.} P70 and P71 are ports for the N-channel open drain output.

16.4.1 SSi Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" (\$\overline{SS}\$ function enabled), the \$\overline{SSi}\$ input pin function is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the SSi pin setting determines which master microcomputer is active and when.

16.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When an "H" signal is applied to the \overline{SSi} pin, the STxDi and SRxDi pins are placed in a high-impedance state and the transfer clock input to the CLKi pin is ignored. When a low-level signal ("L") is applied to the \overline{SSi} input pin, the transfer clock input is valid and serial communication is enabled.

16.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When an "H" signal is applied to the \$\overline{SS}\$i pin, serial communication is available due to transmission privilege. The master outputs the transfer clock. When an "L" signal is applied to the \$\overline{SS}\$i pin, it indicates that another master is active and TxDi, RxDi and CLKi pins are placed in a high-impedance state. Moreover, a fault error occurs and the IR bit in the BCNiIC register is set to "1" (interrupt requested). The ERR bit in the UiSMR3 register indicates whether a fault error occurs.

In master mode, software interrupt numbers 39, 40 and 41 are used for the fault error interrupt. The fault error interrupt is generated when the ERR bit changes "0" to "1". The fault error interrupt of UART0 and of UART3 share an interrupt vector. The fault error interrupt of UART1 and of UART4 share an interrupt vector. The IFSR6 and IFSR7 bits in the IFSR register determine which fault error interrupt is used.

Communication is not terminated even if a fault error is generated while communicating. To stop communication, the SMD 2 to SMD0 bit in the UiMR register is set to "0002" (serial I/O disabled).

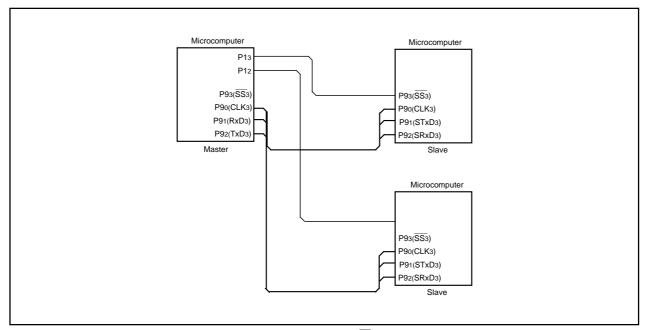


Figure 16.23 Serial Bus Communication Control with SS Pin

16.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

16.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 16.24 shows transmit and receive timing.

16.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the \$\overline{SSi}\$ input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \$\overline{SSi}\$ input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 16.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the \overline{SSi} input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \overline{SSi} pin becomes low ("L"), the first data is output. The serial transmission is synchronized with the transfer clock. Figure 16.26 shows the transmit and receive timing.

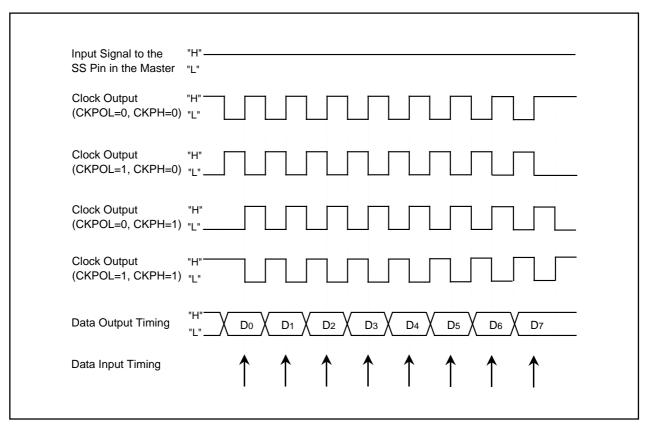


Figure 16.24 Transmit and Receive Timing in Master Mode (Internal Clock)

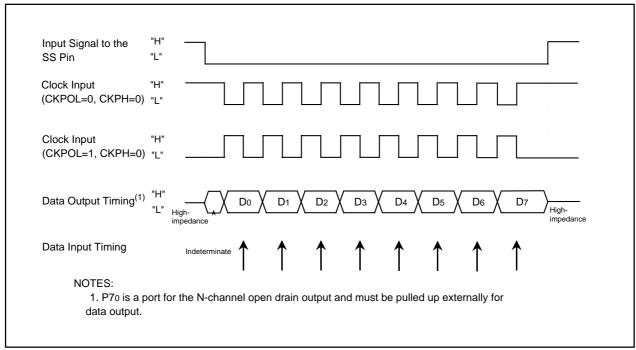


Figure 16.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

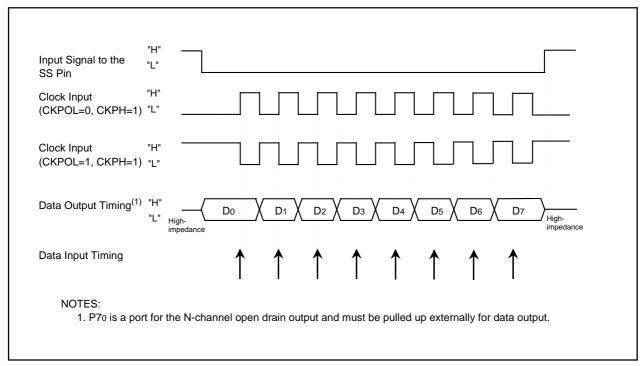


Figure 16.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

16.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 16.24 lists specifications of GCI mode. Table 16.25 lists registers to be used and settings. Tables 16.25 to 16.27 list pin settings.

Table16.24 GCI Mode Specifications

Item	Specification
Transfer Data Format	Transfer data: 8 bits long
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected):
	an input from the CLKi pin
Clock Synchronization Function	The CTSi pin inputs a trigger
Transmit/Receive Start	When a trigger signal is applied to the CTSi pin under the following conditions:
Conditions	Set the TE bit in the UiC1 register to "1" (transmit enable)
	Set the RE bit in the UiC1 register to "1" (receive enable)
	Set the TI bit in the UiC1 register to "0" (data in UiTB register)
Interrupt Request	Transmit interrupt timing can be selected from the followings:
Generation Timing	• The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty) :
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	• The UiIRS bit is set to "1" (transmit completed):
	when a data transmission from the UARTi transfer register is completed
	Receive interrupt timing
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	Overrun error ⁽¹⁾
	This error occurs when the seventh bit of the next received data is read before reading the
	UiRB register.

^{1.} If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Table 16.25 Registers To Be Used and Settings in GCI Mode

Register	Bit	Function
UiTB	0 to 7	Set transmit data
UiRB	0 to 7	Received data
	OER	Overrun error flag
UiBRG	0 to 7	Set to "0016"
UiMR	SMD2 to SMD0	Set to "0012"
	CKDIR	Set to "1"
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Set to "002"
	CRS	Disabled because CRD = 1
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select the output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select how the UARTi transmit interrupt is generated
	UiRRM, UiLCH	Set to "0"
	SCLKSTPB	Set to "0"
UiSMR	0 to 6	Set to "00000002"
	SCLKDIV	See Table 16.29
UiSMR2	0 to 6	Set to "00000002"
	SU1HIM	See Table 16.29
UiSMR3	0 to 2	Set to "0002"
	NODC	Set to "0"
	4 to 7	Set to "00002"
UiSMR4	0 to 7	Set to "0016"

i=0 to 4

Table 16.26 Pin Settings in CGI Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input ⁽¹⁾	PS0_0=0	_	PD6_0=0
P61	CLK0 input	PS0_1=0	_	PD6_1=0
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P64	CTS1 input ⁽¹⁾	PS0_4=0	_	PD6_4=0
P65	CLK1 input	PS0_5=0	_	PD6_5=0
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

NOTES:

1. CTS input is used to input a trigger.

Table 16.27 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
P73	CTS2 input ⁽²⁾	PS1_3=0	_	_	PD7_3=0

NOTES:

- 1. P70 and P71 are ports for the N-channel open drain output.
- 2. CTS input is used to input a trigger.

Table 16.28 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	PD9_0=0
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-
P93	CTS3 input ⁽²⁾	PS3_3=0	PSL3_3=0	PD9_3=0
P94	CTS4 input ⁽²⁾	PS3_4=0	PSL3_4=0	PD9_4=0
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

- 1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.
- 2. CTS input is used to input a trigger.

To generate the internal clock synchronized with the external clock, first set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 16.29. Then apply a trigger signal to the CTSi pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 16.27 shows an example of the clock-divided synchronous function.

Table 16.29 Clock-Divided Synchronous Function Select

SCLKDIV Bit in	SU1HIM Bit in	Clock-Divided Synchronous Function	Example of Waveform
UiSMR Register	UiSMR2 Register		
0	0	Not synchronized	-
0	1	Same division as the external clock	A in Figure 16.27
1	0 or 1	Same division as the external clock	B in Figure 16.27
		divided by 2	

i=0 to 4

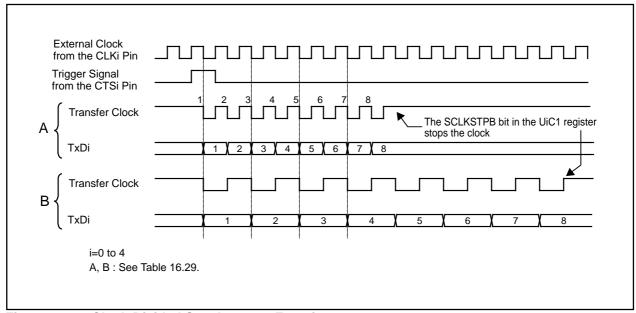


Figure 16.27 Clock-Divided Synchronous Function

16.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode.

Table 16.30 lists registers to be used and settings. Tables 16.30 to 16.32 list pin settings.

Table 16.30. Registers To Be Used and Settings in IE Mode

Register	Bit	Function
UiTB	0 to 8	Set transmit data
UiRB	0 to 8	Received data can be read
	OER, FER,	Error flags
	PER, SUM	
UiBRG	0 to 7	Set bit rate
UiMR	SMD2 to SMD0	Set to "1102"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Disabled because PRYE=0
	PRYE	Set to "0"
	IOPOL	Select TxD and RxD I/O polarity
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Disabled because CRD=1
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select how the UARTi transmit interrupt is generated
	UiRRM, UiLCH,	Set to "0"
	SCLKSTPB	
UiSMR	0 to 3	Set to "00002"
	ABSCS	Select bus conflict detect sampling timing
	ACSE	Set to "1" to automatically clear the transmit enable bit
	SSS	Select transmit start condition
	SCLKDIV	Set to "0"
UiSMR2	0 to 7	Set to "0016"
UiSMR3	0 to 7	Set to "0016"
UiSMR4	0 to 7	Set to "0016"
IFSR	IFSR6, IFSR7	Select how the bus conflict interrupt occurs
i=0 to 4		

i=0 to 4

Table 16.31 Pin Settings in IE Mode (1)

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P61	CLK0 input	PS0_1=0	_	PD6_1=0
	CLK0 output	PS0_1=1	_	_
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	_	_
P65	CLK1 input	PS0_5=0	_	PD6_5=0
	CLK1 output	PS0_5=1	_	_
P66	RxD1 input	PS0_6=0	_	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 16.32 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0
P72	CLK2 input	PS1_2=0	_	_	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	_

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.33 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	_	PD9_0=0
	CLK3 output	PS3_0=1	_	_
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output	PS3_5=1	_	_
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

If the output level of the TxDi pin (i=0 to 4) differs from the input level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UiSMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit is set to "0" (transmit disable).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), the TxDi pin starts transmitting data on the falling edge of the RxDi pin. Figure 16.28 shows bits associated with the bus conflict detect function.

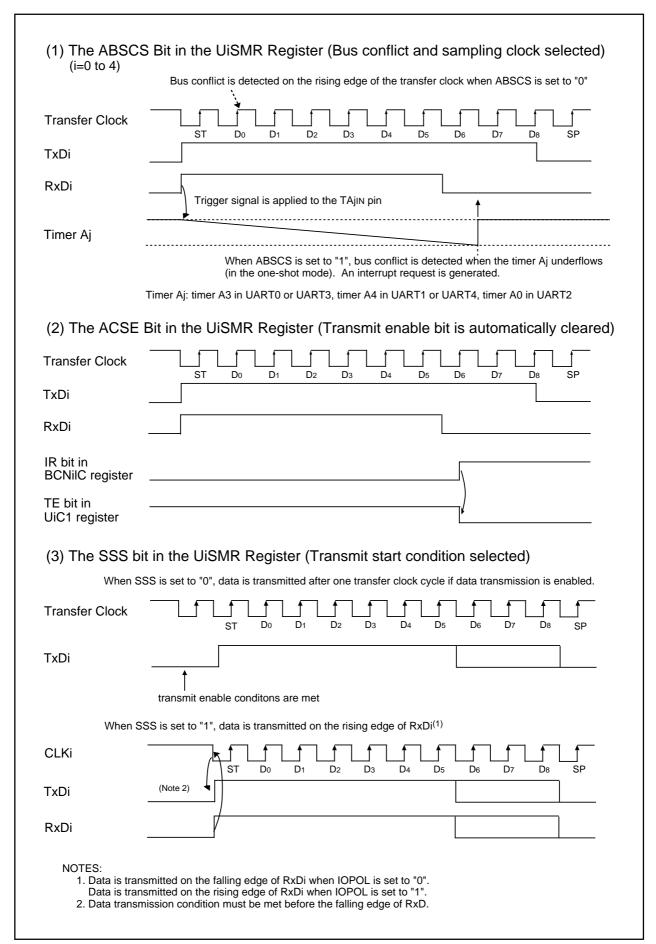


Figure 16.28 Bit Function Related Bus Conflict Detection

16.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and the TxDi pin (i=0 to 4) can output an "L" signal when a parity error is detected.

Table 16.34 lists specifications of SIM mode. Table 16.35 lists registers to be used and register settings in SIM mode. Tables 16.36 to 16.38 list the pin settings.

Table16.34 SIM Mode Specifications

Item	Specification
Transfer Data Format	Transfer data: 8-bit UART mode
	One stop bit
	• In direct format
	Parity: Even
	Data logic: Direct
	Transfer format: LSB first
	• In inverse format
	Parity: Odd
	Data logic: Inverse
	Transfer format: MSB first
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is "0" (internal clock selected):
	$f_j/16(m+1)^{(1)}$ $f_j = f_1$, f_8 , $f_{2n}^{(2)}$ m: setting value of the UiBRG register 0016 to FF16
	Do not set the CKDIR bit to "1" (external clock selected)
Transmit/Receive Control	,
Other Setting Items	The UiIRS bit in the UiC1 register is set to "1" (transmission completed)
Transmit Start Condition	To start transmitting, the following requirements must be met:
	Set the TE bit in the UiC1 register to "1" (transmit enable)
	Set the TI bit in the UiC1 register to "0" (data being in the UiTB register)
Receive Start Condition	To start receiving, the following requirements must be met:
	Set the RE bit in the UiC1 register to "1" (receive enable)
	Detect the start bit
Interrupt Request	Transmit interrupt timing
Generation Timing	• The UilRS bit is set to "1" (transmission is completed):
	when data transmission from the UARTi transfer register is completed
	Receive interrupt timing
· · ·	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	• Overrun error ⁽¹⁾
	This error occurs when the eighth bit of the next data is received before reading the UiRB register
	• Framing error
	This error occurs when the number of the stop bit set is not detected
	• Parity error
	This error occurs when the number of "1" in parity bit and character bits differ from the number set.
	Error sum flag
	The SUM bit is set to "1" when an overrun error, framing error or parity error occurs.

- 1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 16.35 Registers To Be Used and Settings

Register	Bit	Function		
UiTB	0 to 7	Set transmit data		
UiRB	0 to 7	Received data can be read		
	OER, FER,	Error flags		
	PER, SUM			
UiBRG	0 to 7	Set bit rate		
UiMR	SMD2 to SMD0	Set to "1012"		
	CKDIR	Set to "0"		
	STPS	Set to "0"		
	PRY	Set to "1" for direct format or "0" for inverse format		
	PRYE	Set to "1"		
	IOPOL	Set to "0"		
UiC0	CLK1 to CLK0	Select count source for the UiBRG register		
	CRS	Disabled because CRD=1		
	TXEPT	Transfer register empty flag		
	CRD	Set to "1"		
	NCH	Set to "1"		
	CKPOL	Set to "0"		
	UFORM	Set to "0" for direct format or "1" for inverse format		
UiC1	TE	Set to "1" to enable data transmission		
	TI	Transfer buffer empty flag		
	RE	Set to "1" to enable data reception		
	RI	Reception complete flag		
	UilRS	Set to "1"		
	UiRRM	Set to "0"		
	UiLCH	Set to "0" for direct format or "1" for inverse format		
	UiERE	Set to "1"		
UiSMR	0 to 3	Set to "0016"		
UiSMR2	0 to 7	Set to "0016"		
UiSMR3	0 to 7	Set to "0016"		
UiSMR4	0 to 7	Set to "0016"		

i=0 to 4

Table 16.36 Pin Settings in SIM Mode (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P62	RxD0 input	PS0_2=0	_	PD6_2=0	
P63	TxD0 output	PS0_3=1	_	_	
P66	RxD1 input	PS0_6=0	_	PD6_6=0	
P67	TxD1 output	PS0_7=1	_	_	

Table 16.37 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	_
P71 ⁽¹⁾	RxD2 input	PS1_1=0	_	_	PD7_1=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.38 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	_
P96	TxD4 output	PS3_6=1	_	_
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.29 shows an example of a SIM interface operation. Figure 16.30 shows an example of a SIM interface connection. Connect TxDi to RxDi for a pull-up.

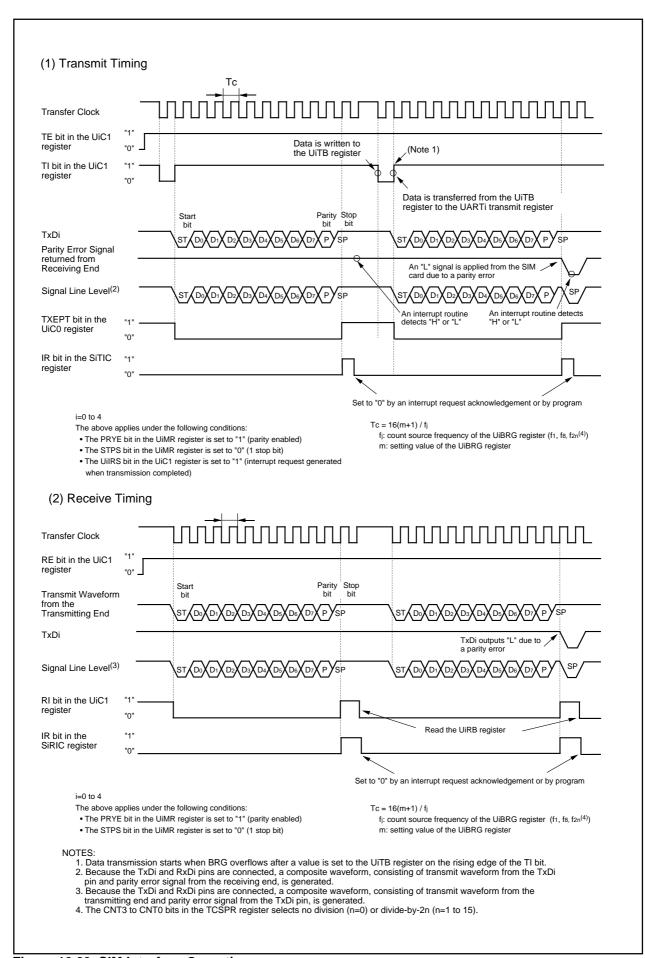


Figure 16.29 SIM Interface Operation

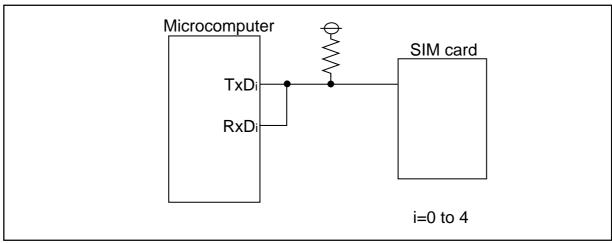


Figure 16.30 SIM Interface Connection

16.7.1 Parity Error Signal

16.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1", the parity error signal can be output. The parity error signal is output when a parity error is detected upon receiving data. TxDi outputs an "L" signal in the timing shown in Figure 16.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" and TxDi again outputs an "H" signal simultaneously.

16.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with RxDi is read by using a transmit complete interrupt routine.

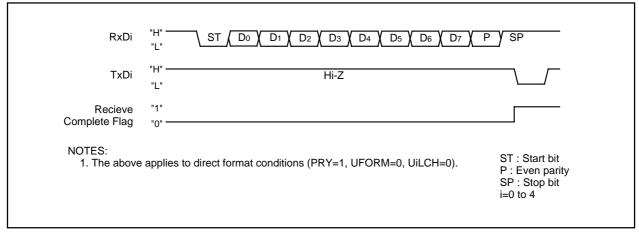


Figure 16.31 Parity Error Signal Output Timing (LSB First)

16.7.2 Format

16.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1", the PRY bit to "1", the UFORM bit in the UiC0 register to "0" and the UiLCH bit in the UiC1 register to "0". When data are transmitted, data set in UiTB register are transmitted with the even-numbered parity, starting from Do. When data are received, received data are stored in the UiRB register, starting from Do. The even-numbered parity determines whether a parity error occurs.

16.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0", the UFORM bit to "1" and the UiLCH bit to "1". When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

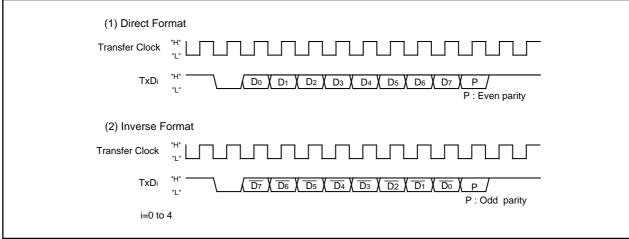


Figure 16.32 SIM Interface Format

17. A/D Converter

The A/D converter consists of two 10-bit successive approximation A/D converters, each with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D register corresponding to selected pins.

Table 17.1 lists specifications of the A/D converter. Figure 17.1 shows a block diagram of the A/D converter. Table 17.2 lists the differences between A/D0 and A/D1 conversions, which share the same conversion method. A/D0 and A/D1 can perform conversions simultaneously. Table 17.3 lists settings of the following pins; AN0 to AN7, AN00 to AN07, AN20 to AN27, AN150 to AN157, ANEX0, ANEX1 and ADTRG. Figures 17.2 to 17.7 show registers associated with the A/D converter.

NOTE .

In this section, the 144-pin package is given as the example.

The AN150 to AN157 pins are not included in the 100-pin package.

Table 17.1 A/D Converter Specifications

Item	Specification		
A/D Conversion Method	Successive approximation (with a capacitive coupling amplifier)		
Analog Input Voltage ⁽¹⁾	0V to AVcc (Vcc)		
Operating Clock, ØAD(2)	fAD, fAD/2, fAD/3, fAD/4		
Resolution	Select from 8 bits or 10 bits		
Operating Mode	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,		
	repeat sweep mode 1		
Analog Input Pins ⁽³⁾	34 pins		
	8 pins each for AN (ANo to AN7), ANO (AN00 to AN07), AN2 (AN20 to AN27),		
	AN15 (AN150 to AN157)		
	2 extended input pins (ANEX0 and ANEX1)		
A/D Conversion Start Condition	Software trigger		
	• The ADST bit in the ADiCON0 (i=0, 1) register is set to "1" (A/D conversion		
	started) by program		
	The PST bit in the AD0CON2 register is set to "1" (A/D0 and A/D1 start a		
	conversion simultaneously) by program		
	External trigger (re-trigger is enabled)		
	When a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by		
	program		
	Hardware trigger (re-trigger is enabled)		
	One of the following interrupt requests is generated after the ADST bit is set to		
	"1" by program:		
	• The timer B2 interrupt request of the three-phase motor control timer functions		
	(after the ICTB2 counter completes counting)		
	The intelligent I/O interrupt request		
	Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)		
Conversion Rate Per Pin	Without the sample and hold function		
	8-bit resolution : 49 ØAD cycles		
	10-bit resolution : 59 ØAD cycles		
	With the sample and hold function		
	8-bit resolution : 28 ØAD cycles		
NOTES	10-bit resolution : 33 ØAD cycles		

NOTES:

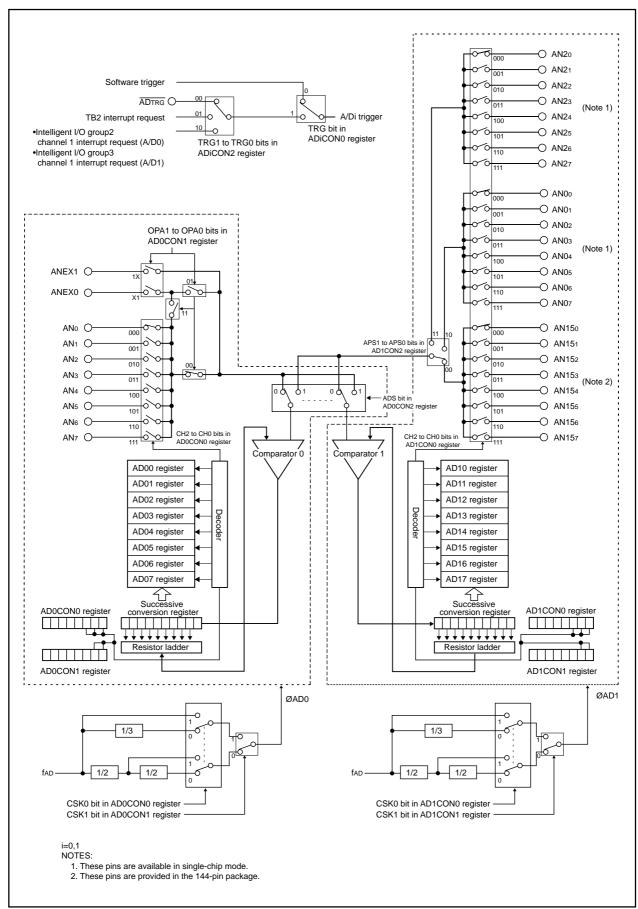
- 1. Analog input voltage is not affected by the sample and hold function status.
- 2. ØAD frequency must be under 16 MHz when VCC=5V.
 - ØAD frequency must be under 10 MHz when VCC=3.3V.
 - Without the sample and hold function, the ØAD frequency must be 250 kHz or more.
 - With the sample and hold function, the ØAD frequency must be 1 MHz or more.
- 3. AVCC = VREF = VCC, A/D input voltage (for AN₀ to AN7, AN0₀ to AN07, AN2₀ to AN27, AN15₀ to AN157, ANEX0 and ANEX1) ≤ VCC.

Table 19.2 Difference between A/D0 and A/D1

Item	A/D0	A/D1
Analog Input Pins ⁽¹⁾	AN (ANo to AN7)	Select from AN0 (AN00 to AN07),
		AN2 (AN20 to AN27) or AN15 (AN150 to AN157)
Extended Analog Input Pins	ANEX0, ANEX1	Not provided
External Op-Amp ⁽¹⁾	Enabled	Disabled
Intelligent I/O used as a Trigger	Channel 1 in group 2	Channel 1 in group 3

NOTES:

1. When the ADS bit in the AD0CON2 register is set to "0" (channel replacement disabled)



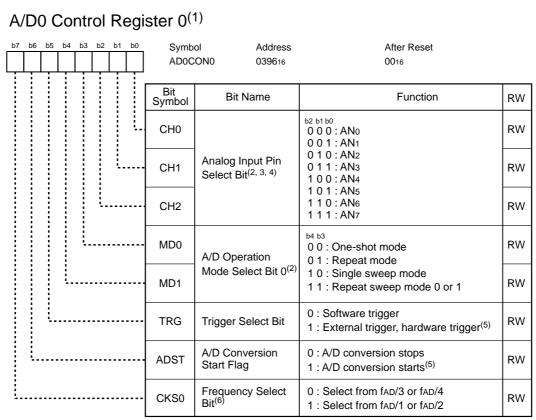
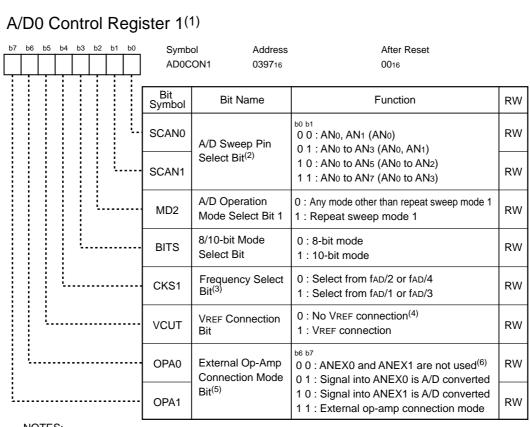

Figure 17.1 A/D Converter Block Diagram

Table 17.3 Pin Settings

Port	Function	Bit and Setting			
Name		PD10, PD0, PD2,	PS3 ⁽³⁾ , PS9	PSL3, IPS	PUR0, PUR3,
		PD15, PD9 ⁽³⁾ Registers	Registers	Registers	PUR4 Registers
P100	AN ₀	PD10_0 = 0	-	-	PU30 = 0
P101	AN1	PD10_1 = 0			
P102	AN2	PD10_2 = 0			
P103	AN ₃	PD10_3 = 0			
P104	AN4	PD10_4 = 0			PU31 = 0
P105	AN ₅	PD10_5 = 0			
P106	AN6	PD10_6 = 0			
P107	AN7	PD10_7 = 0			
P00	AN00 ⁽¹⁾	PD0_0 = 0	-	-	PU00 = 0
P01	AN01 ⁽¹⁾	PD0_1 = 0			
P02	AN02 ⁽¹⁾	PD0_2 = 0			
P03	AN03 ⁽¹⁾	PD0_3 = 0			
P04	AN04 ⁽¹⁾	PD0_4 = 0			PU01 = 0
P05	AN05 ⁽¹⁾	PD0_5 = 0			
P06	AN06 ⁽¹⁾	PD0_6 = 0			
P07	AN07 ⁽¹⁾	PD0_7 = 0			
P20	AN20 ⁽¹⁾	PD2_0 = 0	-	-	PU04 = 0
P21	AN21 ⁽¹⁾	PD2_1 = 0			
P22	AN22 ⁽¹⁾	PD2_2 = 0			
P23	AN23 ⁽¹⁾	PD2_3 = 0			
P24	AN24 ⁽¹⁾	PD2_4 = 0	-	-	PU05 = 0
P25	AN25 ⁽¹⁾	PD2_5 = 0			
P26	AN26 ⁽¹⁾	PD2_6 = 0			
P27	AN27 ⁽¹⁾	PD2_7 = 0			
P150	AN150 ⁽²⁾	PD15_0 = 0	PS9_0 = 0	IPS2 = 1	PU42 = 0
P151	AN151 ⁽²⁾	PD15_1 = 0	PS9_1 = 0		
P152	AN152 ⁽²⁾	PD15_2 = 0	-		
P153	AN15 3 ⁽²⁾	PD15_3 = 0	-		
P154	AN154 ⁽²⁾	PD15_4 = 0	PS9_4 = 0		PU43 = 0
P155	AN155 ⁽²⁾	PD15_5 = 0	PS9_5 = 0		
P156	AN156 ⁽²⁾	PD15_6 = 0	-		
P157	AN157 ⁽²⁾	PD15_7 = 0	-		
P95	ANEX0	PD9_5 = 0	PS3_5 = 0	PSL3_5 = 1	PU27 = 0
P96	ANEX1	PD9_6 = 0	PS3_6 = 0	PSL3_6 = 1	
P97	ADTRG	PD9_7 = 0	PS3_7 = 0	-	-

- 1. This pin is available in single-chip mode.
- 2. This pin is provided in the 144-pin package.
- 3. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



- 1. When the AD0CON0 register is rewritten during the A/D conversion, the conversion result is
- 2. Analog input pins must be set again after changing A/D operation mode.
- 3. This bit is disabled in single sweep mode, repeat sweep mode 0 and repeat sweep mode 1.
- 4. Set the PSC_7 bit in the PSC register to "1" (AN4 to AN7) to use the P10 pin as a analog input pin.
- 5. To set the TRG bit to "1", select the cause of trigger by setting the TRG1 and TRG0 bits in the AD0CON2 register. Then set the ADST bit to "1" after the TRG bit is set to "1".
- ØAD frequency must be under 10 MHz when Vcc=3.3V. Combination of the CKS0 and CKS1 bits selects \not AD.

CKS0	CKS1	ØAD	
0	0 0 fad divided		
0	1	fad divided by 3	
1	0	fad divided by 2	
1	1	fAD	

Figure 17.2 AD0CON0 Register

- 1. When the AD0CON1 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. This bit is disabled in one-shot mode and repeat mode. Pins in parentheses are those most commonly used in the A/D conversions when the MD2 bit is set to "1".
- 3. ØAD frequency must be under 16 MHz when Vcc=5V. ØAD frequency must be under 10 MHz
- 4. Do not set the VCUT bit to "0" during the A/D conversion. This is a reference voltage for the A/D0. It does not affect D/A conversion.
- 5. In single sweep mode and repeat sweep mode 0 or 1, the OPA1 and OPA0 bits cannot be set to "012"or "102".
- 6. When the OPA1 to OPA0 bits is set to "002", set the PSL3_5 bit in PSL3 register to "0" (other than ANEX0) and the PSL3_6 bit to "0" (other than ANEX1).

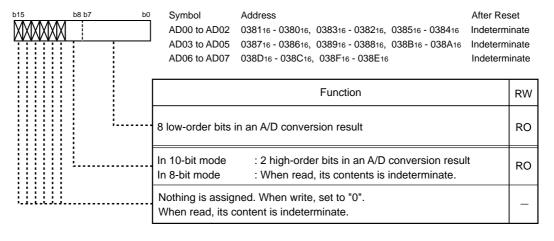
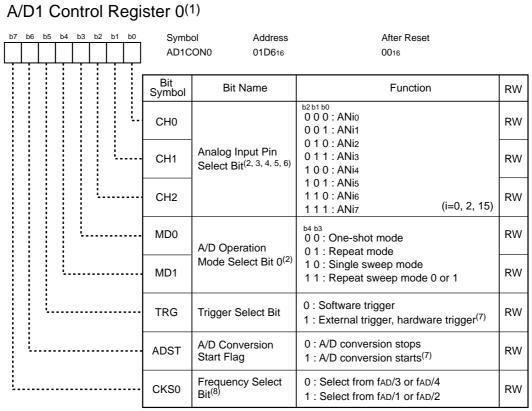
Figure 17.3 AD0CON1 Register

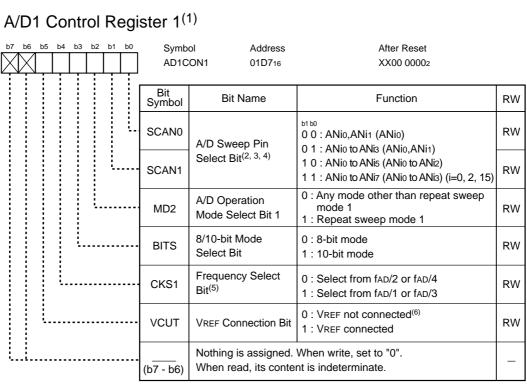
A/D0 Control Register 2⁽¹⁾ b7 b6 b5 b4 b3 Symbol Address After Reset 0 0 AD0CON2 X000 00002 0 039416 Bit Bit Name Function RW Symbol 0: Without the sample and hold function A/D Conversion RW SMP Method Select Bit 1: With the sample and hold function RW Reserved Bit Set to "0" (b3 - b1)A/D Channel Replace 0 : Disables channel replacement **ADS** RW 1 : Enables channel replacement⁽⁵⁾ Select Bit⁽²⁾ 0 0 : Selects ADTRG 0 1 : Selects a timer B2 interrupt TRG0 RW request of the three-phase motor **External Trigger** control timer functions (after Request Cause ICTB2 counter completes Select Bit counting) 1 0 : Selects the intelligent I/O group 2 RW TRG1 channel 1 interrupt 11: Do not set to this value When this bit is set to "1", A/D0 and Simultaneous PST WO A/D1 start conversions simultaneously. Start Bit(2, 3, 4) When read, its content is indeterminate.

NOTES:

- 1. When the AD0CON2 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. Do not set the APS1 and APS0 bits to "1" while either A/D0 or A/D1 is operating.
- 3. The PST bit is enabled when the TRG bit in the AD0CON0 register is set to "0" (software trigger). Do not set the PST bit to "1" when the TRG bit is set to "1" (external trigger).
- 4. Set both A/D0 and A/D1 to the same setting.
- 5. If the ADS bit is set to "1", do not select single sweep mode or repeat sweep mode as the A/D operation mode.

A/D0 Register i (i =0 to 7)


Figure 17.4 AD0CON2 Register, AD00 to AD07 Registers

- When the AD1CON0 register is rewritten during the A/D conversion, the conversion result is indeterminate
- 2. Set analog input pins again after changing A/D operation mode.
- 3. This bit is disabled in single sweep mode, repeat sweep mode 0 and repeat sweep mode 1.
- 4. The APS1 to APS0 bit in the AD1CON2 register select i=0, 2 or 15.
- 5. i=0 or 2 is available in single-chip mode only.
- 6. i=15 is available in the 144-pin package.
- 7. To set the TRG bit to "1", select the cause of trigger by setting the the TRG1 and TRG0 bits in the AD1CON2 register. Then set the ADST bit to "1" after the TRG bit is set to "1".
- Ø AD frequency must be under 16 MHz when Vcc=5V.
 Ø AD frequency must be under 10 MHz when Vcc=3.3V.
 Combination of the CKS0 and CKS1 bits selects Ø AD.

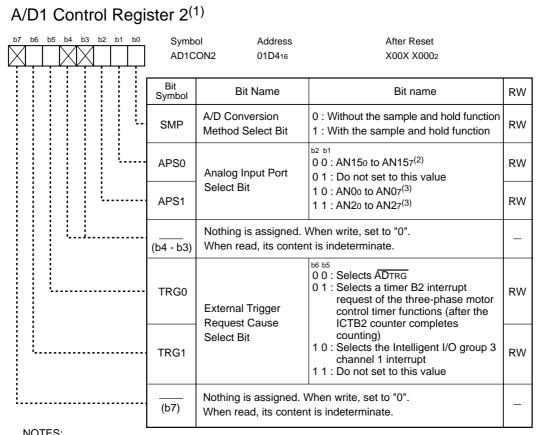

CKS0 CKS1		Ø AD	
0	0	fad divided by 4	
0	1	fad divided by 3	
1	0	fad divided by 2	
1	1	fAD	

Figure 17.5 AD1CON0 Register

- When the AD1CON1 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. This bit is disabled in one-shot mode and repeat mode. Pins in parentheses are those most commonly used for A/D conversions when the MD2 bit is set to "1" (repeat sweep mode 1).
- 3. The APS1 to APS0 bits in the AD1CON2 register select i=0, 2 or 15.
- 4. i=15 is available in the 144-pin package.
- 5. \varnothing AD frequency must be under 16 MHz when Vcc=5V. \varnothing AD frequency must be under 10 MHz when Vcc=3.3V. Combination of the CKS0 and CKS1 bits selects \varnothing AD (see the AD1CON0 register).
- Do not set the VCUT bit to "0" during the A/D conversion. This is a reference voltage for the A/D1. It does not affect the D/A conversion.

Figure 17.6 AD1CON1 Register

- 1. When the AD1CON2 register is rewritten during the A/D conversion, the conversion result is indeterminate.
- 2. AN150 to AN157 are provided in the 144-pin package.
- 3. AN00 to AN07, AN20 to AN27 are available in single-chip mode only.

A/D1 Register j (j=0 to 7)

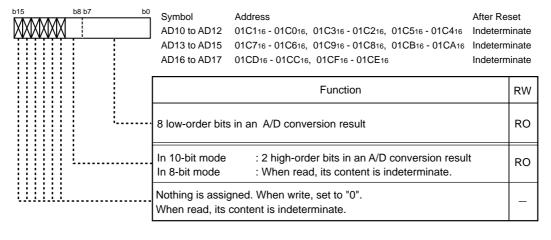


Figure 17.7 AD1CON2 Register, AD10 to AD17 Register

17.1 Mode Description

17.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 17.4 lists specifications of one-shot mode.

Table 17.4 One-shot Mode Specifications

Item	Specification
Function	Analog voltage, applied to a pin selected by the CH2 to CH0 bits in the ADiCON0
	register (i=0, 1), is converted to a digital code once.
Start Condition	When the TRG bit in the ADiCON0 register is set to "0" (software trigger),
	• The ADST bit in the ADiCON0 register is set to "1" (A/D conversion starts) by
	program
	The PST bit in the AD0CON2 register is set to "1" (A/D0 and A/D1 start a
	conversion simultaneously) by program
	When the TRG bit is set to "1" (external trigger, hardware trigger),
	• A falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	One of the following interrupt requests is generated after the ADST bit is set to
	"1" by program:
	- The timer B2 interrupt request of three-phase motor control timer functions
	(after the ICTB2 counter completes counting) is generated
	- The intelligent I/O interrupt request is generated
	Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)
Stop Condition	• A/D conversion is completed (the ADST bit is set to "0" when the internal trigger is
	selected)
	• The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	A/D conversion is completed
Analog Voltage Input Pins	Select one from AN ₀ to AN ₇ , ANEX ₀ , or ANEX ₁
	Select one from ANjo to ANj7 (j=0, 2, 15)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pin

17.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 17.5 lists specifications of repeat mode.

Table 17.5 Repeat Mode Specifications

Item	Specification	
Function	Analog voltage, applied to a pin selected by the CH2 to CH0 bits in the ADiCON0	
	register (i=0, 1), is converted to a digital code once.	
Start Condition	Same as one-shot mode	
Stop Condition	The ADST bit in the ADiCON0 register is set to "0" (A/D conversion stopped) by	
	program	
Interrupt Request Generation Timing	Not generated	
Analog Voltage Input Pins	Select one from ANo to AN7, ANEX0, or ANEX1	
	Select from ANjo to ANj7 (j=0, 2, 15)	
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins	

17.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 17.6 lists specifications of single sweep mode.

Table 17.6 Single Sweep Mode Specifications

Item	Specification	
Function	Analog voltage, applied to pins selected by the SCAN1 to SCAN0 bits in the	
	ADiCON0 register (i=0, 1), are converted one-by-one to a digital code	
Start Condition	Same as one-shot mode	
Stop Condition	• A/D conversion is completed (the ADST bit in the ADiCON0 register is set to "0"	
	when the internal trigger is selected)	
	• The ADST bit is set to "0" (A/D conversion stopped) by program	
Interrupt Request Generation Timing	Sweep operation is completed	
Analog Voltage Input Pins	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo to	
	AN7 (8 pins)	
	Select from ANjo (j=0, 2, 15) to ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6	
	pins), or ANjo to ANj7 (8 pins)	
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins	

17.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 17.7 lists specifications of repeat sweep mode 0.

Table 17.7 Repeat Sweep Mode 0 Specifications

Item	Specification	
Function	Analog voltage, applied to pins selected by the SCAN1 to SCAN0 bits in the	
	ADiCON0 register (i=0, 1), are repeatedly converted to a digital code	
Start Condition	Same as one-shot mode	
Stop Condition	The ADST bit in the ADiCON0 register is set to "0" (A/D conversion stopped) by program	
Interrupt Request Generation Timing	Not generated	
Analog Voltage Input Pins	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo to	
	AN7 (8 pins)	
	Select from ANjo (j=0, 2, 15) to ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6	
	pins), or ANjo to ANj7 (8 pins)	
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins	

17.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 17.8 lists specifications of repeat sweep mode 1.

Table 17.8 Repeat Sweep Mode 1 Specifications

Item	Specification
Function	Analog voltage selectively applied to 8 pins selected by the SCAN1 to SCAN0 bits
	in the ADiCON1 register (i=0,1) is repeatedly converted to a digital code.
	e.g., When ANjo is selected (j =none, 0, 2, 15), analog voltage is converted to a
	digital code in the following order:
	ANjo→ ANj1→ ANjo→ ANij2→ ANjo → ANj3 etc.
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the ADiCON1 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	Not generated
Analog Voltage Input Pins	ANjo to ANj7 (8 pins)
Prioritized Pins	Select from ANo (1 pin), ANo to AN1 (2 pins), ANo to AN2 (3 pins), or ANo to AN3 (4
	pins)
	Select from ANj0 (j=0, 2, 15) (1 pin), ANj0 to ANj1 (2 pins), AN0 to AN2 (3 pins),
	ANjo to ANj3 (4 pins)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins

17.2 Function

17.2.1 Resolution Select Function

The BITS bit in the ADiCON1 (i=0, 1) register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 0 to 9 in the ADij register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 0 to 7 in the ADij register.

17.2.2 Sample and Hold

When the SMP bit in the ADiCON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

17.2.3 Trigger Select Function

The TRG bit in the ADiCON0 register and the TRG1 to TRG0 bits in the ADiCON2 register determine the trigger to start the A/D conversion. Table 17.9 lists settings of the trigger select function.

Table 17.9 Trigger Select Function Settings

Bit and Setting		Trigger	
ADiCON0 Register	ADiCON2 Register		
TRG = 0	-	Software trigger	
		The A/Di starts the A/D conversion when the ADST bit in the	
		ADiCON0 register is set to "1"	
	-	Two-circuit simultaneous start	
		A/D0 and A/D1 start the A/D conversion simultaneously when the	
		PST bit in the AD0CON2 register is set to "1" by program (Refer to	
		17.2.4 Two-Circuit Simultaneous Start)	
TRG = 1 ⁽¹⁾	TRG1 to TRG0 = 002	External trigger ⁽²⁾	
TRG1 to TRG0 = 012		Falling edge of a signal applied to ADTRG	
		Hardware trigger ⁽²⁾	
		The timer B2 interrupt request of three-phase motor control timer	
		functions (after the ICTB2 counter completes counting)	
TRG1 to TRG0 = 102		Hardware trigger ⁽²⁾	
		The intelligent I/O interrupt request is generated	
		Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)	

i = 0.1

NOTES:

- 1. The A/Di starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.
- 2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

17.2.4 Two-Circuit Simultaneous Start (Software Trigger)

A/D0 and A/D1 start simultaneously when the PST bit in the AD0CON2 register is set to "1" (two-circuit simultaneous start).

Do not set the PST bit to "1" while either A/D0 or A/D1 is performing an A/D conversion, or if the TRG bit is set "1" (external trigger).

Do not set the ADST bit to "1" (A/D conversion started) when using the PST bit.

17.2.5 Pin Input Replacement Function

When the ADS bit in the AD0CON2 register is set to "1" (channel replacement enabled), channels of the A/D0 can be replaced with channels of the A/D1 and vice versa.

Voltage applied to the ANj (j = 0 to 7) pin is converted to digital code in the A/D1 and the conversion result is stored into the AD1j register. Voltage applied to the AN0j, AN2j or AN15j pin is converted to digital code in the A/D0 and the conversion results are stored into the AD0j register.

To set the ADS bit to "1", set the MD1 to MD0 bits in the AD0CON0 register to "002" (one-shot mode) or "012" (repeat mode). Single sweep, repeat sweep 0, and repeat sweep 1 modes cannot be used. Set the OPA1 to OPA0 bits in the AD0CON1 register to "002" (no ANEX0 and ANEX1 used). Set the same value to both AD0CON0 register and AD1CON0 register, and to both AD0CON1 register and AD1CON1 register.

17.2.6 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 to OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register.

17.2.7 External Operation Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.

When the OPA1 to OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding ADij register (i=0, 1; j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. Do not connect the ANEX0 pin to the ANEX1 pin directly.

Figure 17.8 shows an example of an external op-amp connection.

Table 17.10	Extended	Analog	Input	Pin	Settings
--------------------	----------	--------	-------	-----	----------

AD0CON1 Register		ANEX0 Function	ANEX1 Function	
OPA1 OPA0				
0	0	Not used	Not used	
0	1	P95 as an analog input	Not used	
1	0	Not used	P96 as an analog input	
1	1 1 Output to an external op-amp		Input from an external op-amp	

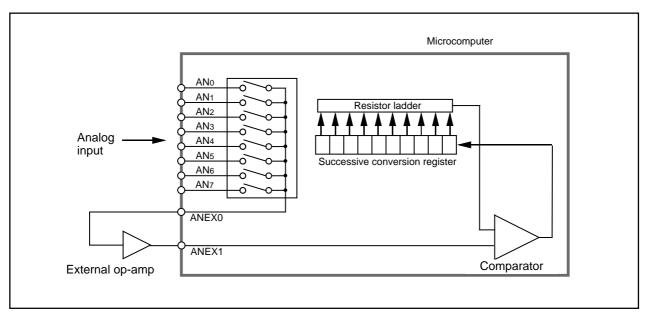


Figure 17.8 External Op-Amp Connection

17.2.8 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the ADiCON1 register (i=0, 1) isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the ADiCON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

17.2.9 Analog Input Pin and External Sensor Equivalent Circuit

Figure 17.9 shows an example of the analog input pin and external sensor equivalent circuit.

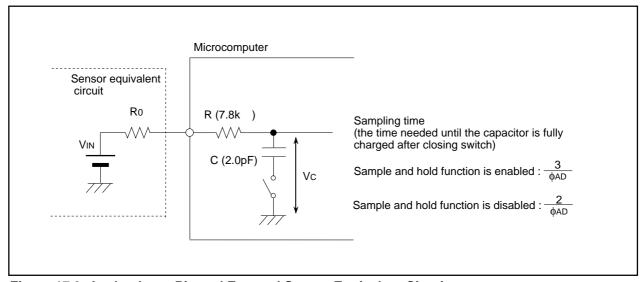


Figure 17.9 Analog Input Pin and External Sensor Equivalent Circuit

18. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result is output or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port.

Output analog voltage (V) is calculated from value n (n=decimal) set in the DAi register.

$$V = \frac{VREF \times n}{256}$$
 (n = 0 to 255)

VREF: reference voltage (not related to VCUT bit setting in the ADiCON1 register)

Table 18.1 lists specifications of the D/A converter. Table 18.2 lists pin settings of the DA0 and DA1 pins. Figure 18.1 shows a block diagram of the D/A converter. Figure 18.2 shows the D/A control register. Figure 18.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

Table 18.1 D/A Converter Specifications

Item	Specification	
D/A Conversion Method	R-2R	
Resolution	8 bits	
Analog Output Pin	2 channels	

Table 18.2 Pin Settings

	· · · · · · · · · · · · · · · · · · ·				
Port	Function	Bit and Setting			
		PD9 Register ⁽¹⁾	PS3 Register ⁽¹⁾	PSL3 Register	
P93	DA ₀ output	PD9_3=0	PS3_3=0	PSL3_3=1	
P94	DA1 output	PD9_4=0	PS3_4=0	PSL3_4=1	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

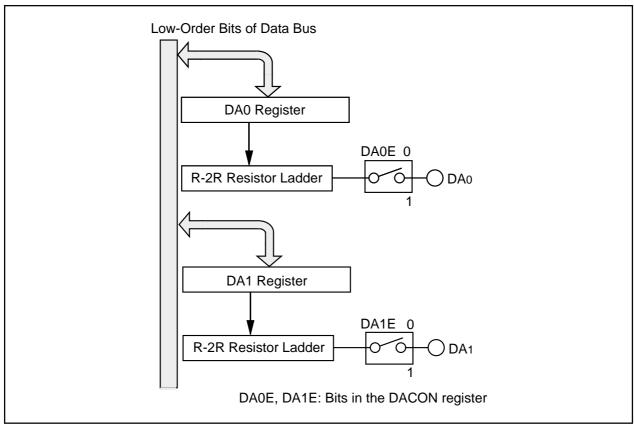


Figure 18.1 D/A Converter

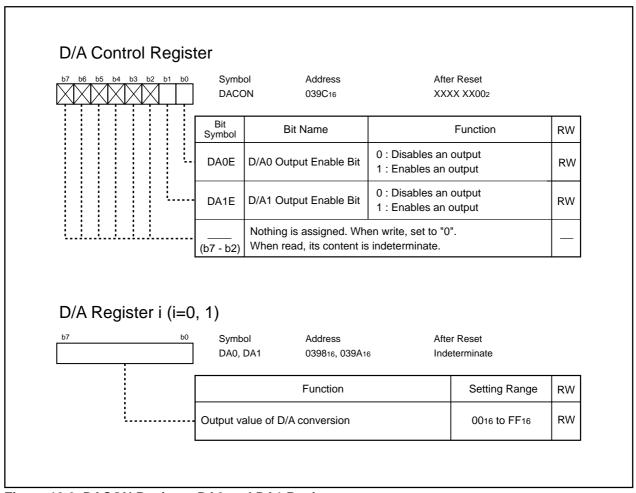


Figure 18.2 DACON Register, DA0 and DA1 Registers

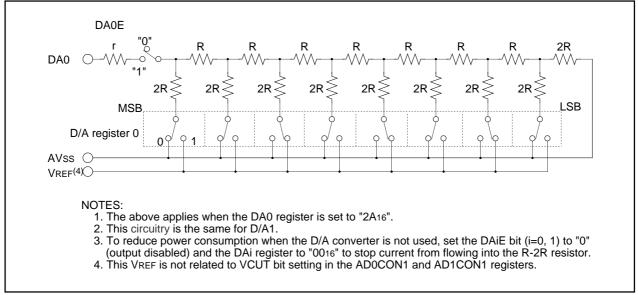


Figure 18.3 D/A Converter Equivalent Circuit

19. CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC_CCITT $(X^{16} + X^{12} + X^5 + 1)$ generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 19.1 shows a block diagram of a CRC circuit. Figure 19.2 shows registers related to CRC. Figure 19.3 shows an example of the CRC calculation.

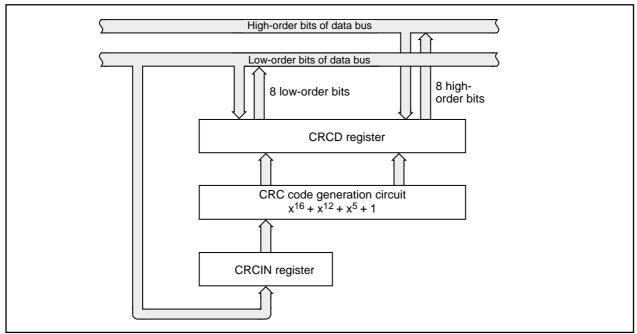


Figure 19.1 CRC Calculation Block Diagram

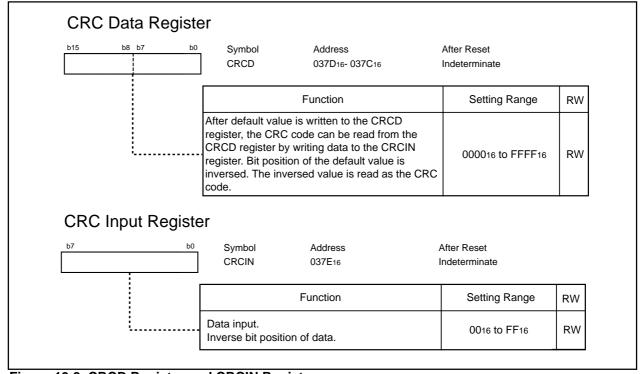


Figure 19.2 CRCD Register and CRCIN Register

CRC Calculation and Setup Procedure to Generate CRC Code for "80C416" ○ CRC Calculation for M32C value of the CRCIN register with inversed bit position CRC Code: a remainder of a division,generator polynomial Generator Polynomial: X¹⁶ + X¹² + X⁵ + 1 (1 0001 0000 0010 00012) O Setting Steps (1) Inverse a bit position of "80C416" per byte by program "8016" → "0116", "C416" → "2316" (2) Set "000016" (default value) CRCD register (3) Set "0116" **CRCIN** register Bit position of the CRC code for "8016" (918816) is inversed to "118916", which is stored into the CRCD register in 3rd cycle. CRCD register 118916 (4) Set "2316" **CRCIN** register Bit position of the CRC code for "80C416" (825016) is inversed to "0A4116", which is stored into the CRCD register in 3rd cycle. CRCD register 0A4116 O Details of CRC Calculation As shown in (3) above, bit position of "0116" (000000012) written to the CRCIN register is inversed and becomes "100000002" Add "1000 0000 0000 0000 0000 0000 00002", as "100000002" plus 16 digits, to "000016" as the default value of the CRCD register to perform the modulo-2 division. 1000 1000 Modulo-2 Arithmetic is 1 0001 0000 0010 0001 1000 0000 0000 0000 0000 0000 data calculated on the law below. 1000 1000 0001 0000 1 0 + 0 = 01000 0001 0000 1000 0 0 + 1 = 1Generator Polynomial 1000 1000 0001 0000 1 1 + 0 = 11001 0001 1000 1000 1 + 1 = 0- 1 = 1 CRC Code "0001 0001 1000 10012 (118916)", the remainder "1001 0001 1000 10002 (918816)" with inversed bit position, can be read from the CRCD register. When going on to (4) above, "2316 (001000112)" written in the CRCIN register is inversed and becomes "110001002" Add "1100 0100 0000 0000 0000 00002", as "110001002" plus 16 digits, to "1001 0001 1000 10002" as a remainder of (3) left in the CRCD register to perform the modulo-2 division. "0000 1010 0100 00012 (0A4116)", the remainder with inversed bit position, can be read from CRCD register.

Figure 19.3 CRC Calculation

20. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 20.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

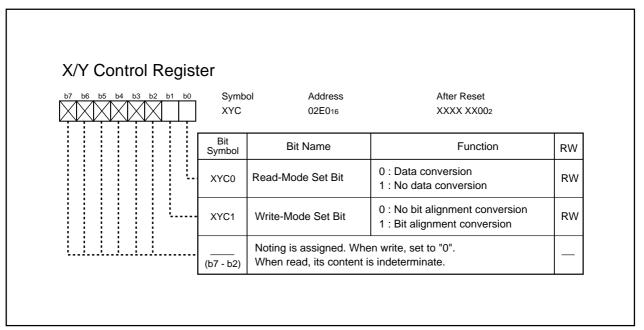


Figure 20.1 XYC Register

The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 20.2 shows the conversion table when the XYC0 bit is set to "0". Figure 20.3 shows an example of the X/Y conversion.

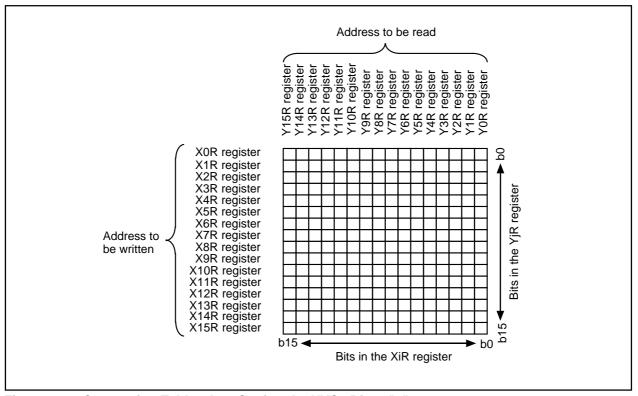


Figure 20.2 Conversion Table when Setting the XYC0 Bit to "0"

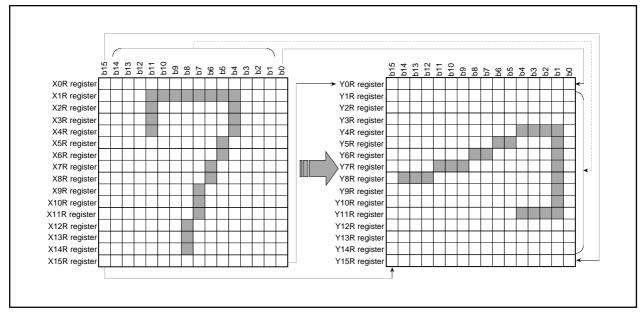


Figure 20.3 X/Y Conversion

By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 20.4 shows the conversion table when the XYC0 bit is set to "1."

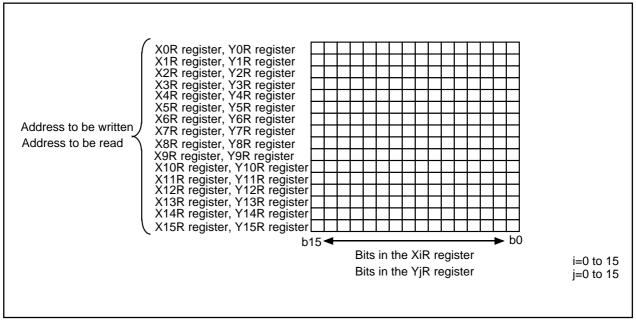


Figure 20.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 20.5 shows the conversion table when the XYC1 bit is set to "1".

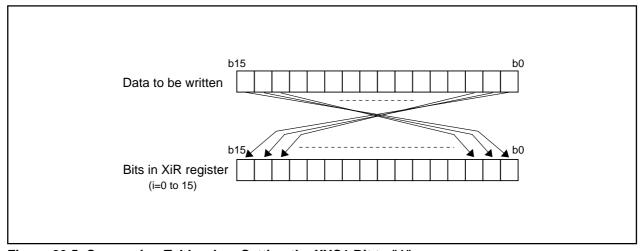


Figure 20.5 Conversion Table when Setting the XYC1 Bit to "1"

21. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generation, clock synchronous serial I/O, clock asynchronous serial I/O (UART), IEBus⁽¹⁾ communications, HDLC data processing and more.

The intelligent I/O consists of four groups. Each group has one 16-bit base timer for free-running operation, eight 16-bit registers for time measurement and waveform generation and two 8-bit shift registers (or one 16-bit shift register) for communications.

Table 21.1 lists functions and channels of the intelligent I/O.

NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

Table 21.1 Intelligent I/O Functions and Channels

Function		Group 0	Group 1	Group 2	Group 3	Group 0, 1 cascaded
Time Measurement ⁽¹⁾		8 channels (3 channels) ⁽²⁾	4 channels (2 channels)			8 channels (3 channels)
	Digital Filter	8 channels (3 channels)	4 channels (2 channels)	Not Available	Not Available	8 channels (3 channels)
	Trigger Input Prescaler	2 channels	2 channels			2 channels
	Trigger Input Gate	2 channels	2 channels			2 channels
W	aveform Generation	4 channels (2 channels)	8 channels (3 channels)	8 channels (3 channels)	8 channels (2 channels)	8 channels (3 channels)
	Single-phase Waveform Output	Available	Available	- Available	Available	Available
	Phase-delayed Waveform Output					
	SR Waveform Output					
	Bit Modulation PWM Mode	Not Available	Not Available			Not Available
	RTP Mode					
	Parallel RTP Mode					
Communication		8 bits fixed		Variable	8 or 16 bits	Not Available
	Clock Synchronous Serial I/O Mode	Available		Available	Available	Not
	UART Mode			Not		
	HDLC Data Processing Mode		Availab	Available	Not Available	Available
	IEBus Mode	Not Available		Available	, wallable	

NOTES:

- 1. Time measurement function and waveform generation function share pins
- 2. The number of channels available in the 100-pin package are indicated in parentethese ().

The time measurement function and waveform generation function can be selected for each channel.

The communication function is available by a combination of multiple channels.

est by matching the base timer with the G0PO0 registe Request from the group1 -Reset Divider by 2(n+1) Base timer interrupt request(3) DIV4 to DIV0 MOD2 to MOD0
OUTC00/ISTxD0 Edge select G0TM0, G0PO0 CTS1 to CTS0 MOD2 to MOD0
OUTC01/ISCLK0 G0TM1, G0PO1 G0TM2, G0PO2 Edge G0TM3, G0 registe Edge select OUTC04 (Note 1) G0TM5, G0PO Edge select OUTC05 (Note 1) register G0TM7, G0PO registe Ch0 to ch7 interrupt request signal Waveform generation match signal for group1 (For cascaded connection) Time measurement trigger for the group1 (For cascaded connection) → Transmit interrupt request (SIO0TR)⁽³⁾ Bit insert circuit G0TCR0 register Data Start bit Clock HDLC data transmit ► interrupt request (G0TOR)⁽³⁾ Transmit register Clock selecto Reception Receive buffer G0RB registe Bit insert check Receive interrupt request (SIO0RR)⁽³⁾ G0DR register Stop bit check Special communication interrupt request (SRT0R)⁽³⁾ (G0RIR)⁽³⁾ DIV4 to DIV0 bits, BCK1 to BCK0 bits : Bits in the G0BCR0 register These pins are not connected to external pins in the 100-pin package BTS: Bit in the G0BCR1 register BTS: Bit in the GUBCR1 register
BTOS: Bit in BTSR register
CTS1 to CTS0, DF1 to DF0, GT, PR: Bits in the G0TMCRj register (j = 0 to 7)
MOD2 to MOD0: Bits in the G0PCR; register
TXSL, RXSL: Bits in the G0EMR register
OPOL, IPOL: Bits in the G0CR register Each register enters a reset state after the G0BCR0 register supplies the clock.
3. See Figure 10.14.

Figures 21.1 to 21.4 show block diagram of the intelligent I/O groups 0 to 3.

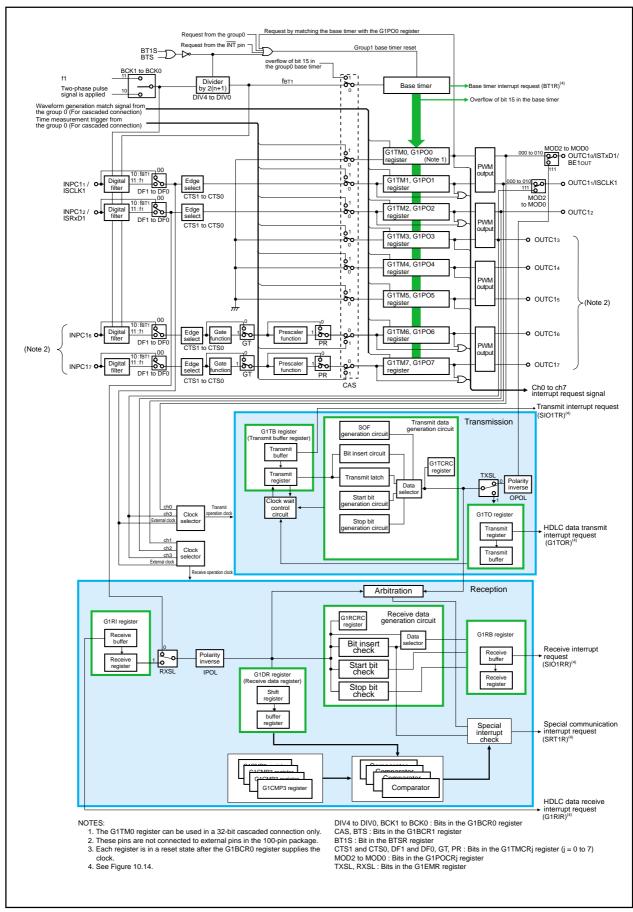


Figure 21.2 Intelligent I/O Group 1 Block Diagram

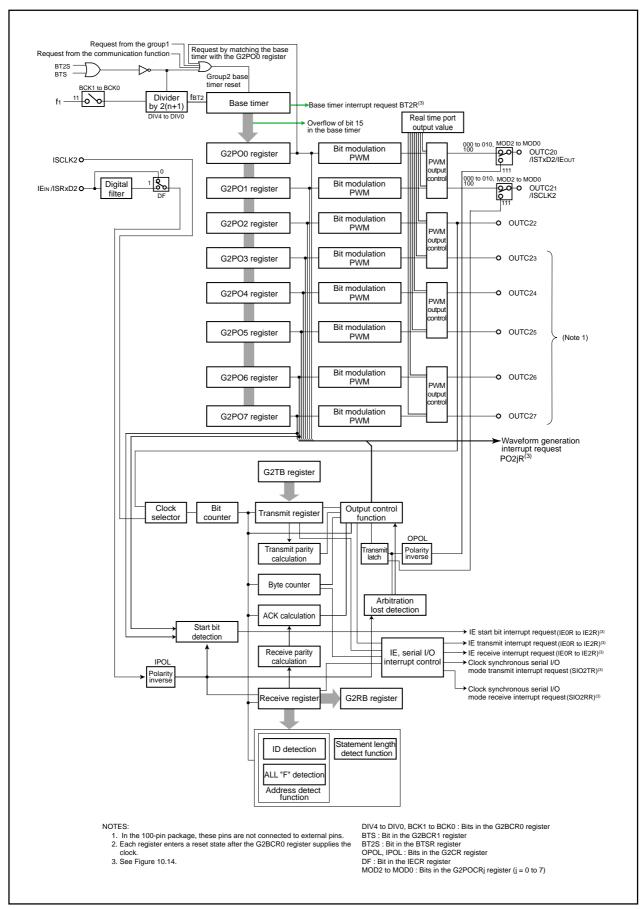


Figure 21.3 Intelligent I/O Group 2 Block Diagram

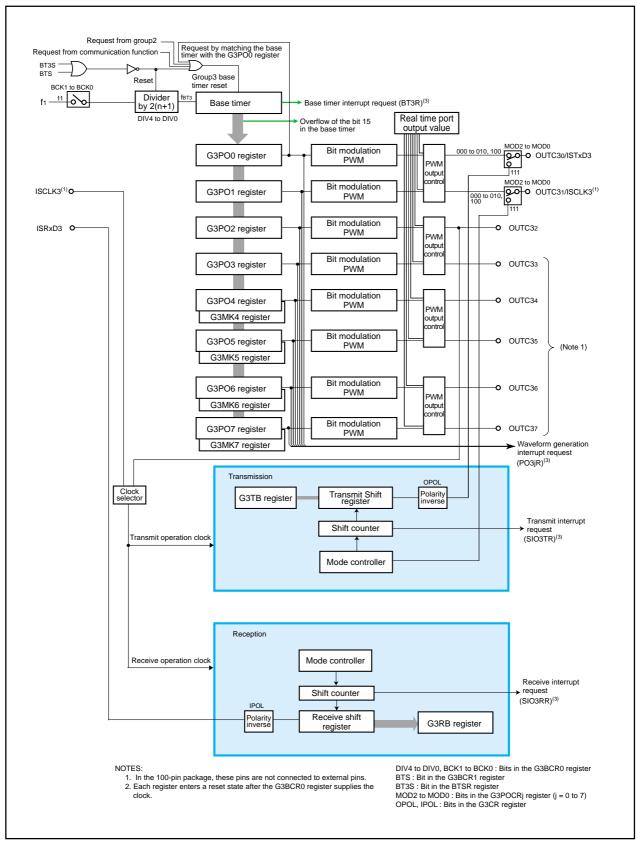
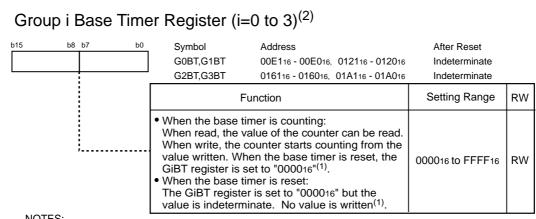
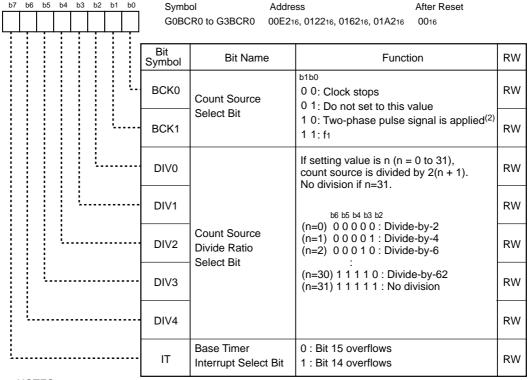
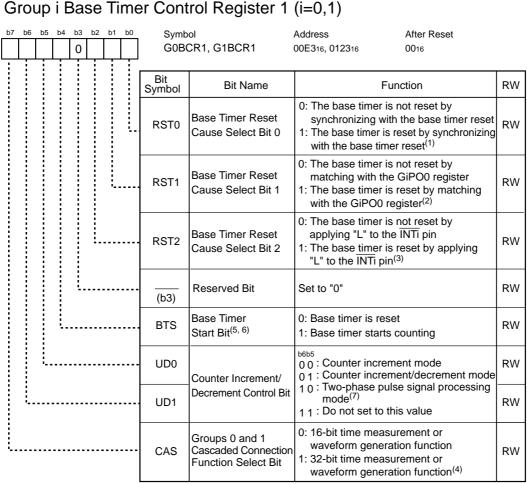



Figure 21.4 Intelligent I/O Group 3 Block Diagram


Figures 21.5 to 21.15 show registers associated with the intelligent I/O base timer, the time measurement function and waveform generation function. (For registers associated with the communication function, see Figures 21.32 to 21.38, Figures 21.42 to 21.45, Figures 21.47 to 21.49.)

NOTES:


- 1. Each base timer stops only when the BCK1 to BCK0 bits in the GiBCR0 register are set to "002" (clock stopped). The base timer counts when the BCK1 to BCK0 bits are set to a value other than "002". When the BTiS bit in the BTSR register and the BTS bit in the GiBCR1 register are set to "0", the base timer is reset continually, remaining set to "000016". This, in effect, places the base timer in a "no counting" state. When either BTiS bit or BTS bit is set to "1", this state is cleared and counting starts.
- 2. The GiBT register reflects the value of the base timer with a delay of one half fBTi cycle.

Group i Base Timer Control Register 0 (i=0 to 3)⁽¹⁾

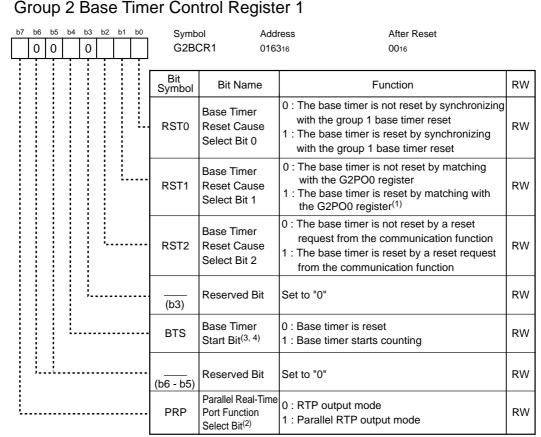

- 1. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement, waveform generation function), set the G0BCR0 register and G1BCR0 register to the same value.
- 2. This setting can be used only when the UD1 to UD0 bits in the GjBCR1 register (j=0, 1) of group 0 or 1 are set to "102" (two-phase signal processing mode). Do not set the BCK1 to BCK0 bits to "102" in other modes or in group 2 or 3.

Figure 21.5 G0BT to G3BT Register and G0BCR0 to G3BCR0 Register

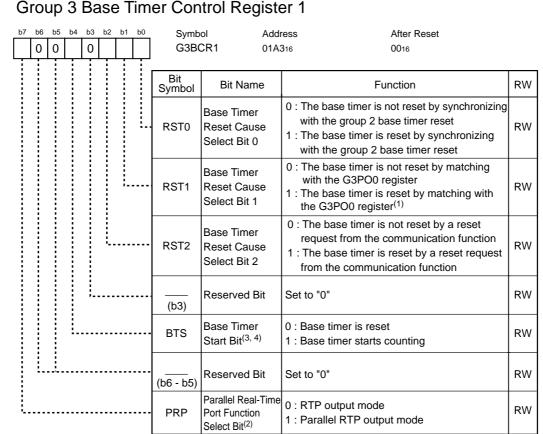

- 1. In group 0, the base timer is reset by synchronizing with the group 1 base timer reset. In group 1, the base timer is reset by synchronizing with the group 0 base timer reset.
- 2. The base timer is reset two fBTi clock cycles after the base timer matches the value set in the GiPO0 register. (See Figure 21.13 for details on the GiPO0 register.) When the RST1 bit is set to "1", the value of the GiPOj register (j=1 to7) for the waveform generation function and communication function must be set to a smaller value than that of the GiPO0 register.
- 3. In group 0, the base timer is reset when "L" is applied to the INT0 pin. In group 1, the base timer is reset when "L" is applied to the $\overline{\text{INT1}}$ pin.
- 4. When the CAS bit is set to "1" (32-bit time measurement, waveform generation function), set the G0BCR1 register to "8116" and the G1BCR1 register to "1000 0XX02".
- 5. When starting the group 0 or 1 base timer separately, set the BTS bit to "1" after the BTkS bit (k=0 to 1) in the BTSR register is set to "0".
- 6. When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0"
- 7. In two-phase pulse signal processing mode, the base timer is not reset, even when the RST1 bit is set to "1", if the counter is decremented two clock cycles after the base timer matches the value set in the GiPO0 register

Figure 21.6 G0BCR1 and G1BCR1 Registers

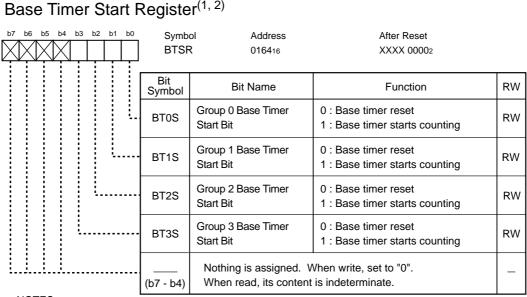

- 1. The base timer is reset two fBT2 clock cycles after the base timer matches the value set in the G2PO0 register. (See Figure 21.13 for details on the G2PO0 register.) When the RST1 bit is set to "1", the value of the G2POi register (i=1 to7), for the waveform generation function and communication function, must be set to a smaller value than that of the G2PO0 register.
- 2. The PRP bit is valid when the RTP bit in the G2POCRi register is set to "1" (not used)
- 3. When starting the group 2 base timer, set the BTS bit to "1" after the BT2S bit in the BTSR register is set to "0".
- 4. When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0".

Figure 21.7 G2BCR1 Register

- 1. The base timer is reset after two fBT3 clock cycles after the base timer matches the value set in the G3PO0 register. (See Figure 21.13 for details on the G3PO0 register.) When the RST1 bit is set to "1", the value of the G3POi register (i=1 to7), for the waveform generation function and communication function, must be set to a smaller value than that of the G2PO0 register.
- 2. The PRP bit is valid when the RTP bit in the G3POCRi register is set to "1" (not used)
- 3. When starting the group 3 base timer, set the BTS bit to "1" after the BT3S bit in the BTSR register is set to "0".
- When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0".

Figure 21.8 G3BCR1 Register

- 1. Set registers as follows before using the intelligent I/O:
 - (1) Set the G2BCR0 register to supply the clock to the group 2 base timer
 - (2) Set all BT0S to BT3S bits in the BTSR register to "0" (base timer reset)
 - (3) Set other registers associated with the intelligent I/O

The BTiS bit (i=0 to 3) allows the base timers in multiple groups to start counting simultaneously. When starting the base timers separately, set the BTiS bit to "0" before setting the BTS bit in the GiBCR1 register.

- Use the following procedure to start base timers in multiple groups simultaneously (including groups 1 and 2 cascaded connections). This procedure is not required when starting the base timers individually.
 - Set the BCK1 to BCK0 bits and DIV4 to DIV0 bits in the GiBCR0 register (i=0 to 3) of the groups to be started simultaneously, to the same value.
 - After the BCK1 to BCK0 bits or DIV4 to DIV0 bits are changed, use the following procedure to start the base timer twice.
 - (1) Set the BTiS bit in the BTSR register to "1" (base timer starts counting).
 - (2) Set the BTiS bit to "0" (base timer stops counting) after one $\ensuremath{\mathrm{fBTi}}$ clock cycle.
 - (3) After waiting at least one additional fBTI clock cycle, set the BTiS bit to "1" (base timer starts counting).

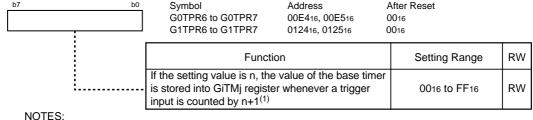
Figure 21.9 BTSR Register

RW

Group i Time Measurement Control Register j (i=0,1; j=0 to 7)⁽¹⁾ Symbol Address After Reset 00D816, 00D916, 00DA16, 00DB16 G0TMCR0 to G0TMCR3 0016 G0TMCR4 to G0TMCR7 00DC16, 00DD16, 00DE16, 00DF16 0016 G1TMCR0 to G1TMCR3 011816, 011916, 011A16, 011B16 011C16, 011D16, 011E16, 011F16 G1TMCR4 to G1TMCR7 0016 RW Bit Name Function Symbol b1 b0 CTS₀ RW 0 0: No time measurement Time Measurement 0 1: Rising edge Trigger Select Bit 1 0 : Falling edge CTS₁ RW 1 1: Both edges DF₀ RW 0 0: No digital filter Digital Filter Function 0 1: Do not set to this value Select Bit 1 0:fBTi DF1 RW 1 1:f1 Gate Function 0: Gate function is not used GT RW Select Bit(2, 4) 1: Gate function is used 0: Not cleared Gate Function Clear 1: The gate is cleared when the base RW GOC Select Bit(2, 3, 5) timer matches the GiPOk register Gate Function Clear The gate is cleared by setting the **GSC** RW Bit^(2, 3) GSC bit to "1"

1. If the CAS bit in the GiBCR1 register is set to "0" (16-bit time measurement function), the G1TMCR0 and G1TMCR3 to G1TMCR5 registers cannot be used. When write, set these registers to "0016". If the CAS bit is set to "1" (32-bit time measurement function), set the same values in the G0TMCRj and G1TMCRj registers.

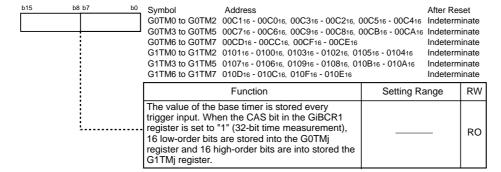
0: Not used


1: Used

Prescaler Function

Select Bit(2)

- These bits are in the GiTMCR6 and GiTMCR7 registers.Set all bits 4 to 7 in the GiTMCR0 to GiTMCR5 registers to "0".
- 3. These bits are enabled only when the GT bit is set to "1"
- 4. If the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), set the GT bit to "0". The gate function cannot be used.
- 5. The GOC bit is set to "0" after the gate function is cleared. See Figure 18.13 for details on the GiPOk register (k=4 when j=6; k=5 when j=7).


Group i Time Measurement Prescale Register j (i=0,1; j=6,7)

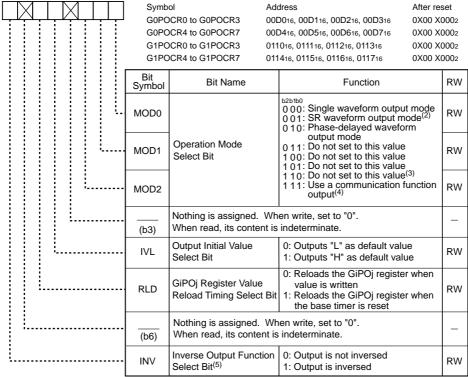
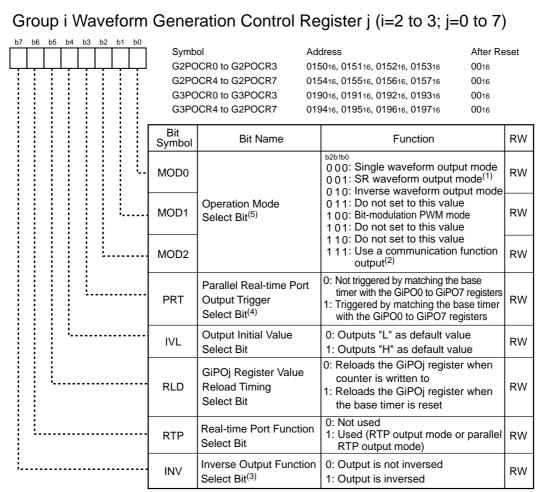

1. The first prescaler, after the PR bit in the GiTMCRj register is changed from "0" (prescaler function used) to "1" (prescaler function not used), may be divided by n rather than n+1. The subsequent prescaler is divided by n+1.

Figure 21.10 G0TMCR0 to G0TMCR7, G1TMCR0 to G1TMCR7, G0TPR6, G0TPR7, G1TPR6, and G1TPR7 Registers

Group i Time Measurement Register j (i=0,1; j=0 to 7)



Group i Waveform Generation Control Register j (i=0 to 1; j=0 to 7)⁽¹⁾

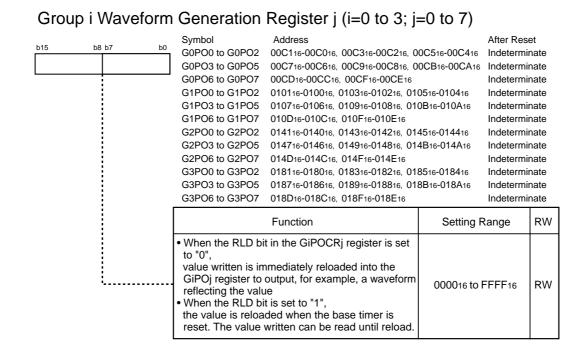
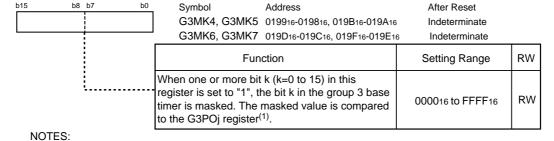

- 1. Groups 0 and 1 have 16-bit and 32-bit waveform generation functions.
 - If the CAS bit in the GiBCR1 register is set to "0" (16-bit waveform generation function), the G0POCR2 to G0POCR3 and G0POCR 6 to G0POCR7 registers cannot be used. When write, set these registers to "0016".
 - If the CAS bit is set to "1" (32-bit waveform generation function), set the same values in the G0POCRj and G1POCRj registers.
- This setting is valid only for even channels. In SR waveform output mode, values written to the corresponding odd channel (next channel after an even channel) are ignored. Even channels output waveforms. Odd channels output no waveform.
- 3. To receive data in UART mode of group 0 and 1, set the GiPOCR2 register to "0000 01102".
- 4. This setting is valid only for channels 0 and 1. To use ISTxDi, set the MOD2 to MOD0 bits in the GiPOCR0 register to "1112". To use ISCLKi for an output, set the MOD2 to MOD0 bits in the GiPOCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in the channels 0 and 1 and for the communication function.
- 5. The inverse output function is the final step in the waveform generation process. If the INV bit is set to "1", the output signal is "H" when the IVL bit is set to "0" and "L" when the IVL bit is set to "1".

Figure 21.11 G0TM0 to G0TM7, G1TM0 to G1TM7, Registers and G0POCR0 to G0POCR7, G1POCR0 to G1POCR7 Registers



- 1. This setting is valid only for even channels. In SR waveform output mode, values written to the corresponding odd channel (next channel after an even channel) are ignored. Even channels output waveforms. Odd channels output no waveforms.
- 2. This setting is valid only for channels 0 and 1 in the groups 2 and 3. To use ISTxD2 or IEOUT, set the MOD2 to MOD0 bits in the G2POCR0 register to "1112". To use ISCLK2 for an output, set the MOD2 to MOD0 bits in the G2POCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in the channels 0 and 1.
 - To use ISTxD3, set the MOD2 to MOD0 bits in the G3POCR0 register to "1112". To use ISCLK3 for an output, set the MOD2 to MOD0 bits in the G3POCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in the channels 0 and 1.
- 3. The inverse output function is the final step in the waveform generation process. If the INV bit is set to "1" (output inversed), the output signal is "H" when the IVL bit is set to "0" (outputs "L" as an initial value) and "L" when the IVL bit is set to "1" (outputs "H" as an initial value).
- 4. The PRT bit is valid when the RTP bit is set to "1" (real-time port function used) and the PRP bit in the GiBCR1 register is set to "1" (parallel RTP output mode).
- 5. When the RTP bit is set to "1", the value written to the MOD2 to MOD0 bits is ignored.

Figure 21.12 G2POCR0 to G2POCR7 and G3POCR0 to G3POCR7 Registers

Group 3 Waveform Generation Mask Register j (j=4 to 7)

1. This function is enabled in single-phase waveform output mode or phase-delayed waveform output mode. Set the G3MKi register to "000016" in other modes.

Figure 21.13 G0PO0 to G0PO7, G1PO0 to G1PO7, G2PO0 to G2PO7, G3PO0 to G3PO7 Registers and G3MK4 to G3MK7 Registers

Group i Function Select Register (i=0, 1) Symbol After Reset G0FS, G1FS 00E716, 012716 0016 RW Bit Name Function Symbol Channel 0 Time Measurement/ 0 : Selects the waveform generation RW FSC₀ Waveform Generation function Function Select Bit Selects the time measurement function Channel 1 Time Measurement/ FSC₁ Waveform Generation RW Function Select Bit Channel 2 Time Measurement FSC₂ Waveform Generation RW Function Select Bit Channel 3 Time Measurement FSC3 Waveform Generation RW Function Select Bit Channel 4 Time Measurement/ FSC4 RW Waveform Generation Function Select Bit Channel 5 Time Measurement FSC5 Waveform Generation RW Function Select Bit Channel 6 Time Measurement/ FSC6 RW Waveform Generation Function Select Bit Channel 7 Time Measurement FSC7 Waveform Generation RW Function Select Bit

1. No 16-bit waveform generation function is provided for channels 2, 3, 6 and 7 of the group 0. No 16-bit time measurement function is provided for channels 0, 3, 4 and 5 of the group 1. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement or waveform generation function), set the same values in the G0FS and G1FS registers.

Group i Function Enable Register (i=0 to 3)

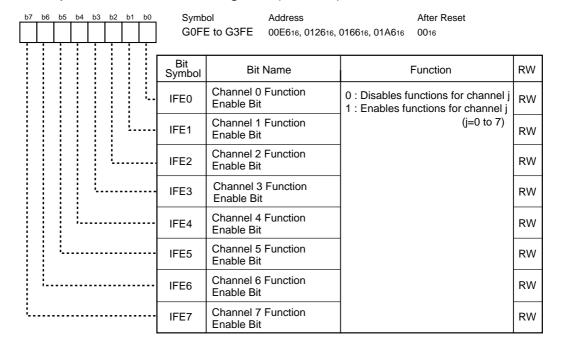


Figure 21.14 G0FS and G1FS Registers and G0FE to G3FE Registers

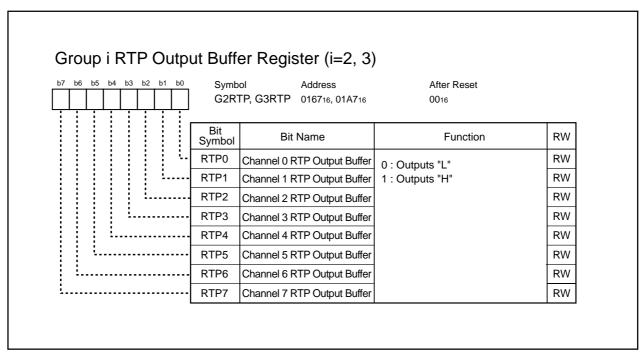


Figure 21.15 G2RTP AND G3RTP Registers

21.1 Base Timer

The base timer is a free-running counter that counts an internally generated count source.

Table 21.2 lists specifications of the base timer. Figures 21.5 to 21.9 show registers associated with the base timer. Figure 21.16 shows a block diagram of the base timer. Figure 21.17 shows an example of a cascaded connection. Figure 21.18 shows an example of the base timer in counter increment mode. Figure 21.19 shows an example of the base timer in counter increment/decrement mode. Figure 21.20 shows an example of two-phase pulse signal processing mode.

Table 21.2 Base Timer Specifications

Item	Specification
Count Source (fBTi) (i=0 to 3) Counting Operation	f1 divided by 2(n+1) (Group 0 to 3), two-phase pulse input divided by 2(n+1) (Group 0 and 1) n. determined by the DIV4 to DIV0 bits in the GiBCR0 register n=0 to 31; however no division when n=31 The base timer increments the counter The base timer increments/decrements the counter
	Two-phase pulse signal processing
Counter Start Condition	 When starting the base timer of each group separately, set the BTS bit in the GiBCR1 register to "1" (base timer starts counting) When starting the base timer of multiple groups simultaneously, set the BTS bit in the BTSR register to "1" (base timer starts counting)
Counter Stop Condition	Set the BTiS bit in the BTSR register to "0" (base timer reset) and the BTS bit in the GiBCR1 register to "0" (base timer reset)
Base Timer Reset Condition	Synchronized with the base timer reset in different groups: Group0: synchronized with group 1 base timer reset Group1: synchronized with group 0 base timer reset Group2: synchronized with group 1 base timer reset Group3: synchronized with group 2 base timer reset Matching values in the base timer and GiPO0 register "L" signal applied to the external interrupt pin Group 0: INTO pin Group 1: INTTO pin Group 1: INTTO pin Group 1: INTTO pin
Value when the Base Timer is Reset	"000016"
Interrupt Request	The BTiR bit in the interrupt request register is set to "1" (interrupt requested) when bit 14 or bit 15 in the base timer overflows (See Figure 10.14.)
Read from Base Timer	The GiBT register indicates counter value while the base timer is running
	• The GiBT register is indeterminate when the base timer is reset
Write to Base Timer	When a value is written while the base timer is running, the counter immediately starts counting from this value. No value can be written while the base timer is reset.
Selectable Function	Cascaded connection (Group 0 and 1)
	Group 1 base timer is incremented every time bit 15 in the group 0 base timer overflows (See Figure 21.17)
	 Counter increment/decrement mode (Group 0 and 1)
	The base timer starts when the BTS bit or the BTiS bit is set to "1". After incrementing to "FFFF16", the counter is then decremented back to "000016". If the RST1 bit in the GiBCR1 register is set to "1" (the base timer is reset by matching with the GiPO0 register), the counter decrements after the base timer matches the GiPO0 register. The base timer increments the counter again when the counter becomes "000016." (See Figure 21.19.)

Table 21.2 Base Timer Specifications (Continued)

Item	Specification
Selectable Function	Two-phase pulse processing mode (Group 0 and 1) Two-phase pulse signals from P76 and P77 pins in group 0, and P80 and P81 pins in group 1 are counted (See Figure 21.20)
	P76, P80
	The timer increments counter on all edge The timer decrements counter on all deges

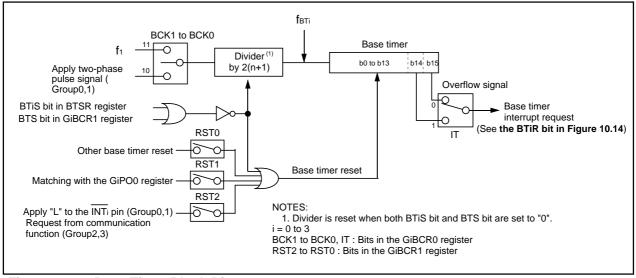


Figure 21.16 Base Timer Block Diagram

Table 21.3 Base Timer Associated Register Settings

(for Time Measurement Function, Waveform Generation Function, and Communication Function)

Register	Bit	Function
G2BCR0	-	Supplies operation clock to the BTSR register. Set to "0111 11112".
BTSR	-	Set to "0000 00002"
GiBCR0	BCK1 to BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Selects the base timer interrupt
GiBCR1	RST2 to RST1	Select factors for a base timer reset
	BTS	Used to start the base timer independently
	UD1 to UD0	Select how to count (Group 0 and 1)
	CAS	Selects cascaded connection (Group 0 and 1)
GiBT	-	Read or write base timer value

Set the following registers to set the RST1 bit to "1" (base timer reset by matching the base timer with the G1PO0 register).

GiPOCR0	MOD2 to MOD0	Set to "0002" (single-phase waveform output mode)
GiPO0	-	Set reset cycle
GiFS	FSC0	Set to "0" (waveform generation function)
GiFE	IFE0	Set to "1" (channel operation start)

i: Bit configurations and functions vary with each group

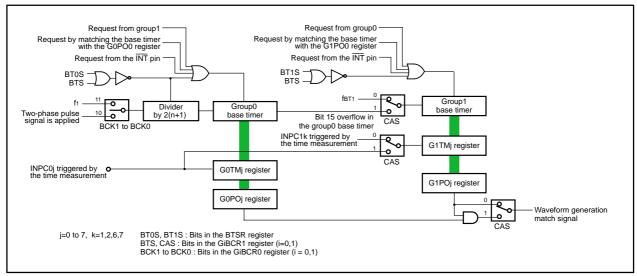


Figure 21.17 Cascaded Connection

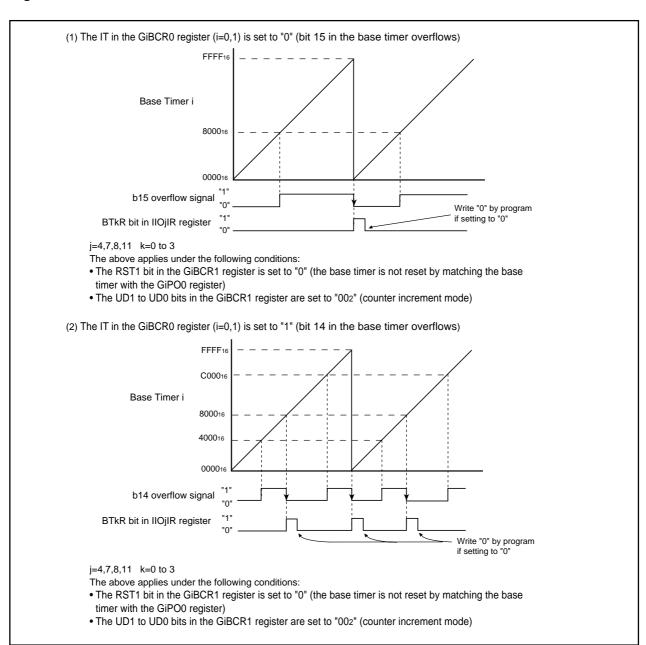


Figure 21.18 Counter Increment Mode (Group 0 and 1)

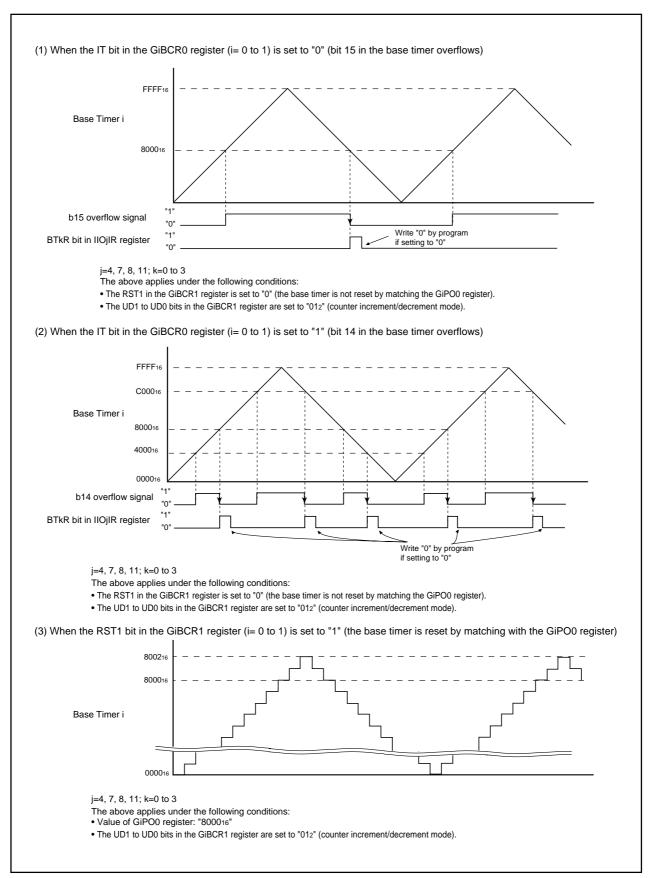


Figure 21.19 Counter Increment/ Decrement Mode (Group 0 and 1)

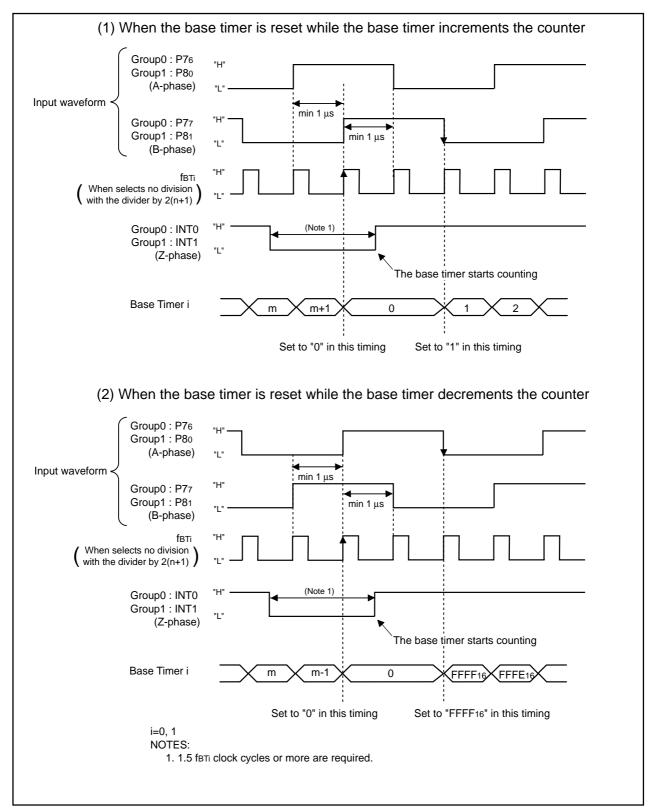


Figure 21.20 Base Timer Operation in Two-phase Pulse Signal Proccessing Mode (Group 0 and 1)

21.2 Time Measurement Function (Group 0 and 1)

When external trigger is applied, the value of the base timer is stored into the GiTMj register (i=0 to 1; j=0 to 7). Table 21.4 shows specifications of the time measurement function. Table 21.5 lists pin settings of the time measurement function. Table 21.6 lists settings of time measurement function associated registers. Figures 21.21 and 21.22 show operating examples of the time measurement function. Figure 21.23 shows an operating example of the prescaler function and gate function.

Table 21.4 Time Measurement Function Specifications

Item	Specification	
Measurement Channel	Group 0: Channels 0 to 7	
	Group 1: Channels 1, 2, 6, 7	
Trigger Input Polarity	Rising edge, falling edge or both edges of the INPCij pin ⁽¹⁾	
Measurement Start Condition	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)	
	when the FSCj bit (i=0 to1; j=0 to 7) in the GiFS register is set to "1" (time	
	measurement function selected)	
Measurement Stop Condition	The IFEj bit is set to "0" (channel j function disabled)	
Time Measurement Timing	 No prescaler: every time a trigger signal is applied Prescaler (for channel 6 and channel 7): 	
	every GiTPRk register (k=6, 7) +1 times a trigger signal is applied	
Interrupt Request Generation Timing	The TMijR bit in the interrupt request register (See Figure 10.14) is set to "1"	
	(interrupt requested) at time measurement timing	
INPCij Pin Function ⁽¹⁾	Trigger input pin	
Selectable Function	Digital filter function	
	The digital filter samples a trigger input signal level every f1 or fBTi cycles	
	and passes pulse signals, matching trigger input signal level, three times	
	Cascaded connection function	
	Group 0 and group 1 are connected to operate as a 32-bit base timer	
	Prescaler function (for channel 6 and channel 7)	
	Time measurement is executed every GiTPRk register value +1 times a	
	trigger signal is applied	
	Gate function (for channel 6 and channel 7)	
	After time measurement by the first trigger input, trigger input cannot be	
	received. However, trigger input can be received again by matching the	
	base timer with the GiPOp register, or by setting the GSC bit in the	
	GiTMCRK register to "1", when the GOC bit in the GiTMCRk register is set	
	to "1" (gate cleared by matching the base timer with the GiPOp register	
	(p=4 when k=6, p=5 when k=7))	
L		

NOTES:

1. INPC00 to INPC07, INPC11 to INPC12, INPC16 to INPC17 pins (INPC00 to INPC07 pins during cascaded connection)

Table 21.5 Pin Settings for Time Measurement Function

Pin ⁽²⁾	Bit and Setting		
	PS1, PS2, PS5, PS8, PS9	PD7, PD8, PD11, PD14, PD15	IPS Register
	Registers	Registers	
P74/INPC11	PS1_4 = 0	PD7_4 = 0	IPS1 = 0
P75/INPC12	PS1_5 = 0	PD7_5 = 0	
P76/INPC00	PS1_6 = 0	PD7_6 = 0	IPS0 = 0
P77/INPC01	PS1_7 = 0	PD7_7 = 0	
P80/INPC02	PS2_0 = 0	PD8_0 = 0	
P111/INPC11 ⁽¹⁾	PS5_1 = 0	PD11_1 = 0	IPS1 =1
P112/INPC12 ⁽¹⁾	PS5_2 = 0	PD11_2 = 0	
P142/INPC16 ⁽¹⁾	PS8_2 = 0	PD14_2 = 0	
P143/INPC17 ⁽¹⁾	PS8_3 = 0	PD14_3 = 0	
P150/INPC00 ⁽¹⁾	PS9_0 = 0	PD15_0 = 0	IPS0 = 1, IPS2 = 0
P151/INPC01 ⁽¹⁾	PS9_1 = 0	PD15_1 = 0	
P152/INPC02 ⁽¹⁾	_	PD15_2 = 0	
P153/INPC03 ⁽¹⁾		PD15_3 = 0	IPS2 = 0
P154/INPC04 ⁽¹⁾	PS9_4 = 0	PD15_4 = 0	
P155/INPC05 ⁽¹⁾	PS9_5 = 0	PD15_5 = 0	
P156/INPC06 ⁽¹⁾		PD15_6 = 0	
P157/INPC07 ⁽¹⁾	_	PD15_7 = 0	

NOTES:

- 1. This port is provided in the 144-pin package only.
- 2. Apply trigger to INPC0j pin (j=0 to 7) when the CAS bit in the GiBCR register is set to "1" (32-bit time measurement function). Trigger input to INPC1k pin (k=1, 2, 6, 7) is invalid.

Table 21.6 Time Measurement Function Associated Register Settings

Register	Bit	Function
GiTMCRj	CTS1 to CTS0	Select a time measurement trigger
	DF1 to DF0	Select the digital filter function
	GT, GOC, GSC	Select the gate function
	PR	Select the prescaler function
GiTPRk	-	Setting value of the prescaler
GiFS	FSCj	Set to "1" (time measurement function)
GiFE	IFEj	Set to "1" (channel j function enabled)

 $i = 0 \text{ to } 1; \quad j = 0 \text{ to } 7; \quad k = 6, 7$

Bit configurations and functions vary with channels and groups used.

Registers associated with the time measurement function must be set after setting registers associated with the base timer.

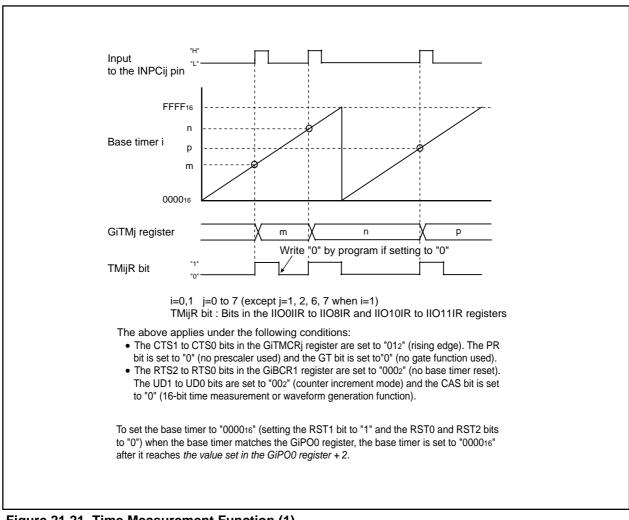


Figure 21.21 Time Measurement Function (1)

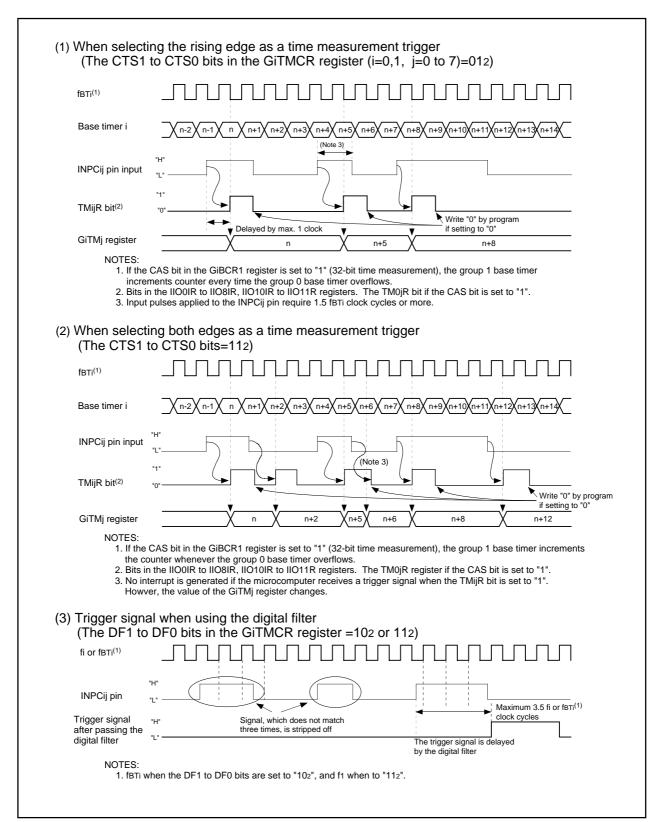


Figure 21.22 Time Measurement Function (2)

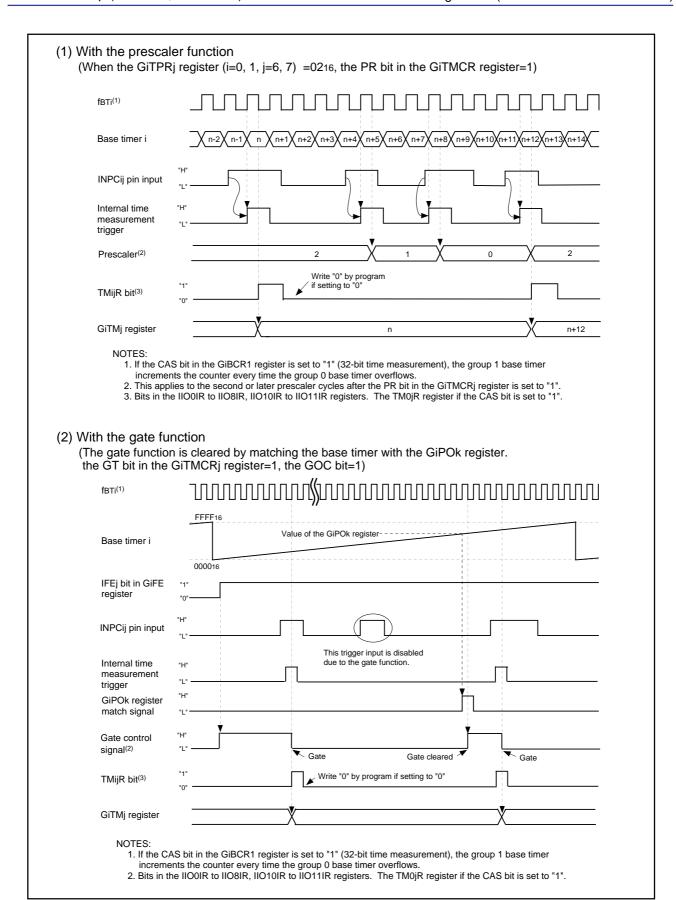


Figure 21.23 Prescaler Function and Gate Function

21.3 Waveform Generation Function

Waveforms are generated when the value of the base timer matches the GiPOj register (i=0 to 3; j=0 to 7). The waveform generation function has the following six modes:

- Single-phase waveform output mode (group 0 to 3)
- Phase-delayed waveform output mode (group 0 to 3)
- Set/Reset waveform output (SR waveform output) mode (group 0 to 3)
- Bit modulation PWM output mode (group 2 and 3)
- Real-time port output (RTP output) mode (group 2 and 3)
- Parallel real-time port output (parallel RTP output) mode (group 2 and 3)

Table 21.7 lists pin settings of the waveform generation function. Table 21.8 lists registers associated with the waveform generation function.

Table 21.7 Pin Settings for Waveform Generation Function (1/2)

Pin	Bit and Setting		
	PS0 to PS2, PS5 to PS9 Registers	PSL0, PSL1, PSL2, PSL3 Registers	PSC Register
P64/OUTC21	PS0_4 = 1	PSL0_4 = 1	-
P70/OUTC20	PS1_0 = 1	PSL1_0 = 0	PSC_0 = 1
P71/OUTC22	PS1_1 = 1	PSL1_1 = 0	PSC_1 = 1
P73/OUTC10 ⁽²⁾	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1
P74/OUTC11 ⁽²⁾	PS1_4 = 1	PSL1_4 = 0	PSC_4 = 1
P75/OUTC12 ⁽²⁾	PS1_5 = 1	PSL1_5 = 1	-
P76/OUTC00 ⁽²⁾	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0
P77/OUTC01 ⁽²⁾	PS1_7 = 1	-	-
P81/OUTC30	PS2_1 = 1	PSL2_1 = 1	-
P82/OUTC32	PS2_2 = 1	PSL2_2 = 0	-
P92/OUTC20	PS3_2 = 1	PSL3_2 = 1	-
P110/OUTC10 ^(1,2)	PS5_0 = 1	-	-
P111/OUTC11 ^(1,2)	PS5_1 = 1		
P112/OUTC12 ^(1,2)	PS5_2 = 1		
P113/OUTC13 ^(1,2)	PS5_3 = 1		
P120/OUTC30 ⁽¹⁾	PS6_0 = 1	-	-
P121/OUTC31 ⁽¹⁾	PS6_1 = 1		
P122/OUTC32 ⁽¹⁾	PS6_2 = 1		
P123/OUTC33 ⁽¹⁾	PS6_3 = 1		
P124/OUTC34 ⁽¹⁾	PS6_4 = 1		
P125/OUTC35 ⁽¹⁾	PS6_5 = 1		
P126/OUTC36 ⁽¹⁾	PS6_6 = 1		
P127/OUTC37 ⁽¹⁾	PS6_7 = 1		
P130/OUTC24 ⁽¹⁾	PS7_0 = 1	-	-
P131/OUTC25 ⁽¹⁾	PS7_1 = 1		

- 1. This port is provided in the 144-pin package only.
- 2. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), the OUTC1j pin (j=0 to 7) outputs a waveform and the OUTC0k pin (k=0, 1, 4, 5), set as above, outputs a 16-bit low-order waveform.

Table 21.7 Pin Settings for Waveform Generation Function (2/2)

Pin	Bit and Setting		
	PS0 to PS2, PS5 to PS9 Registers	PSL0, PSL1, PSL2, PSL3 Registers	PSC Register
P132/OUTC26 ⁽¹⁾	PS7_2 = 1	-	-
P133/OUTC23 ⁽¹⁾	PS7_3 = 1		
P134/OUTC20 ⁽¹⁾	PS7_4 = 1		
P135/OUTC22 ⁽¹⁾	PS7_5 = 1		
P136/OUTC21 ⁽¹⁾	PS7_6 = 1		
P137/OUTC27 ⁽¹⁾	PS7_7 = 1		
P140/OUTC14 ^(1,2)	PS8_0 = 1	-	-
P141/OUTC15 ^(1,2)	PS8_1 = 1		
P142/OUTC16 ^(1,2)	PS8_2 = 1		
P143/OUTC17 ^(1,2)	PS8_3 = 1		
P150/OUTC00 ^(1,2)	PS9_0 = 1	-	-
P151/OUTC01 ^(1,2)	PS9_1 = 1		
P154/OUTC04 ^(1,2)	PS9_4 = 1		
P155/OUTC05 ^(1,2)	PS9_5= 1		

NOTES:

- 1. This port is provided in the 144-pin package only.
- 2. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), the OUTC1j pin (j=0 to 7) outputs a waveform and the OUTC0k pin (k=0, 1, 4, 5), set as above, outputs a 16-bit low-order waveform.

Table 21.8 Waveform Generation Function Associated Register Settings

Register	Bit	Function
GiPOCRj	MOD2 to MOD0	Select waveform output mode
	PRT ⁽¹⁾	Set to "1" when using the parallel RTP output mode
	IVL	Select default value
	RLD	Select reload timing of GiPOj register value
	RTP ⁽¹⁾	Set to "1" when using the RTP output or the parallel RTP output mode
		MOD2 to MOD0 bits are invalid when the RTP bit is set to "1"
	INV	Select inversed output
G2BCR1	PRP	Set to "1" when using the parallel RTP output mode
G3BCR1		
GiPOj	-	Select output waveform inverse timing
G3MK4 to	-	Set masked values of the base timer and G3PO4 to G3PO7 registers
G3MK7		(group 3 only)
GiFS	FSCj	Set to "0" (waveform generation function) (group 0 and 1 only)
GiFE	IFEj	Set to "1" (enables channel j function)
G2RTP	RTP0 to	Set RTP output value in RTP output or parallel RTP output mode
G3RTP	RTP7	

 $i = 0 \text{ to } 3; \quad j = 0 \text{ to } 7$

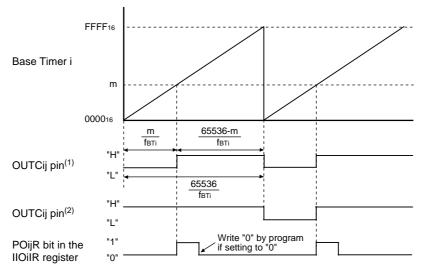
Bit configurations and functions vary with channels and groups used.

Set registers associated with the waveform generation function after setting registers associated with the base timer. NOTES:

1. This bit is in the G2POCRj and G3POCRj registers only.

21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3)

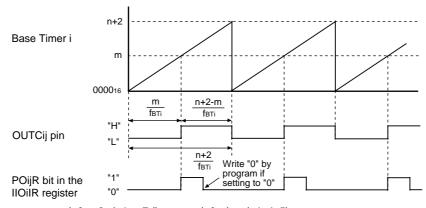
Output signal level of the OUTCij pin (i=0 to 3; j=0 to 7) becomes high ("H") when the value of the base timer matches that of the GiPOj register. The "H" signal switches to an "L" signal when the base timer reaches "000016". If the IVL bit in the GiPOCRj register is set to "1" (outputs "H" as default value), an "H" signal is output when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the waveform being output is inversed. See Figure 21.24 for details on single-phase waveform mode operation. Table 21.9 lists specifications of single-phase waveform mode.


Table 21.9 Single-phase Waveform Output Mode Specifications

Item	Specification	
Output Waveform ⁽³⁾	Free-running operation	
	(the RST2 to RST0 bits in the GiBCR1 (i=0 to 3) register are set to "0002")	
	Cycle : <u>65536</u> fBTi	
	"L" width : m	
	"H" width : <u>65536-т</u> fвті	
	m : setting value of the GiPOj register (j=0 to 7), 000016 to FFFF16	
	The base timer is reset by matching the base timer with the GiPO0 register	
	(the RST1 bit is set to "1", and the RST0 and the RST2 bit are set to "0")	
	Cycle : n+2 fBTi	
	"L" width : m fвті	
	"H" width : <u>n+2-m</u> fвті	
	m : setting value of the GiPOj register (j=1 to 7), 000016 to FFFF16	
	n : setting value of the GiPO0 register, 000116 to FFFD16	
	If m ≥ n+2, the output level is fixed to "L"	
Waveform Output Start Condition ⁽¹⁾	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)	
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)	
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested)	
	when the value of the base timer matches that of the GiPOj register. (See	
	Figure 10.14)	
OUTCij Pin ⁽²⁾	Pulse signal output pin	
Selectable Function	Default value set function : Set starting waveform output level	
	• Inversed output function : Waveform output level is inversed and output from	
	the OUTCij pin	
	Cascaded connection function: Connect group 0 and group 1 to operate as a	
	32-bit base timer	

- 1. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function
- 2. OUTC00, OUTC01, OUTC04, OUTC05, OUTC10 to OUTC17, OUTC20 to OUTC27, and OUTC30 to OUTC37 pins (OUTC10 to OUTC17 pins when using group 0 and group 1 cascaded connection)
- 3. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed

(1) Free-Running Operation (The RST2 to RST0 bits in the GiBCR1 register are set to "0002")


i=0 to 3; j=0 to 7 (however, i=0 when j=0, 1, 4, 5) m : Setting value of the GiPOj register (000016 to FFFF16) POjR bit: Bits in the IIO0IR to IIO11IR register

NOTES:

- Waveform output when the INV bit in the GiPOCRj register is set to "0" (not inversed) and the IVL bit is set to "0" (output "L" as default value).
- Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" (output "H" as default value).

The above applies applies under the following conditions:

- The RST2 to RST0 bits in the GiBCR1 register are set to "0002" (no base timer reset), the UD1 to UD0 bits to "002" (counter increment mode), and CAS bit to "0" (16-bit waveform generation function)
- (2) The Base Timer is Reset when the Base Timer Matches the GiPO0 Register (The RST1 bit is set to "1", and the RST0 and RST2 bits are set to "0")

i=0 to 3; j=1 to 7 (however, i=0 when j=1, 4, 5)

m : Setting value of the GiPOj register (000016 to FFFF16)

n : Setting value of the GiPO0 register (000116 to FFFD16)

POijR bit: Bits in the IIO0IR to IIO11IR register

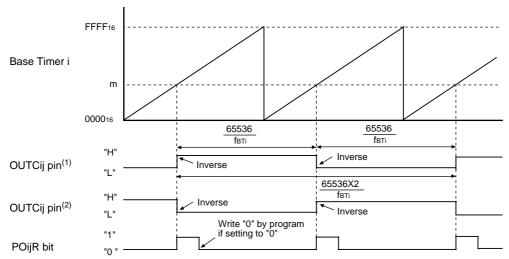
The above diagram applies under the following conditions:

- The IVL bit in the GiPOCRj register is set to "0" (outputs "L" as default value). The INV bit is set to "0" (not inverse).
- The UD1 to UD0 bits in the GiBCR1 register are set to "002" (counter increment mode), and the CAS bit to "0" (16-bit waveform generation function)
- m < n+2

Figure 21.24 Single-Phase Waveform Output Mode

21.3.2 Phase-Delayed Waveform Output Mode (Group 0 to 3)

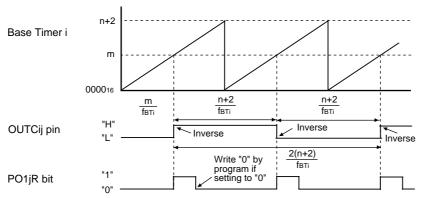
Output signal level of the OUTCij pin (i=0 to 3; j=0 to 7) is inversed every time the value of the base timer matches that of the GiPOj register. Table 21.10 lists specifications of phase-delayed waveform mode. Figure 21.25 shows an example of phase-delayed waveform mode operation.


Table 21.10 Phase-delayed Waveform Output Mode Specifications

Item	Specification	
Output Waveform	Free-running operation	
	(the RST2 to RST0 bits in the GiBCR1 register (i=0 to 3) are set to "0002")	
	Cycle : <u>65536 x 2</u> fBTi	
	"H" and "L" width : <u>65536</u> f _{BTi}	
	Setting value of the GiPOj (j=0 to 7) register is 000016 to FFFF16	
	• The base timer is reset by matching the base timer with the GiPO0 register	
	(the RST1 bit is set to "1", and the RST0 and RST2 bit are set to "0")	
	Cycle : $\frac{2(n+2)}{f_{BTi}}$	
	"H" and "L" width : <u>n+2</u> fвті	
	n : setting value of the GiPO0 register, 000116 to FFFD16	
	Setting value of the GiPOj (j=1 to 7) register is 000016 to FFFF16	
	If GiPOj register ≥ n+2, the output level is not inversed	
Waveform Output Start Condition ⁽¹⁾	The IFEj bit (j=0 to 7) in the GiFE register is set to "1" (channel j function enabled)	
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)	
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested)	
	when the value of the base timer matches that of the GiPOj register. (See	
	Figure 10.14)	
OUTC1j Pin	Pulse signal output pin	
Selectable Function	Default value set function : Set starting waveform output level	
	• Inversed output function : Waveform output level is inversed and output from the OUTCij pin	
	Cascaded connection function: Connect group 0 and group 1 to operate as a	
	32-bit base timer	

- 1. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function
- 2. OUTC00, OUTC01, OUTC04, OUTC05, OUTC10 to OUTC17, OUTC20 to OUTC27, and OUTC30 to OUTC37 pins (OUTC10 to OUTC17 pins when using group 0 and group 1 cascaded connection)

(1) Free-Running Operation (The RST2 to RST0 bits in the GiBCR1 register are set to "0002")


i=0 to 3; j=0 to 7 (however, i=0 when j= 0, 1, 4, 5) m: Setting value of the GiPOj register (000016 to FFFF16) POijR bit: Bits in the IIO0IR to IIO11IR registers

NOTES:

- 1. Waveform output when the INV bit in the GiPOCRj register is set to "0" (not inversed) and the IVL bit is set to "0" (output "L" as initial value).
- 2. Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" (output "H" as initial value).

The above diagram applies under the following condition:

- The RST2 to RST0 bits in the GiBCR1 register are set to "0002" (no base timer reset), the UD1 to UD0 bits to "002" (counter increment mode), and the CAS bit to "0" (16-bit waveform generation function).
- (2) The Base Timer is Reset when the Base Timer Matches the GiPO0 Register (The RST1 bit is set to "1", and the RST0 and RST2 bits are set to "0")

i=0 to 3; j=0 to 7 (however, i=0 when j=1, 4, 5)

m : Setting value of the GiPOj register (000016 to FFFF16)

n : Setting value of the GiPO0 register (000116 to FFFD16)

POijR bit: Bits in the IIO0IR to IIO11IR registers

The above diagram applies under the following conditions:

- The IVL bit in the GiPOCRj register is set to "0" (outputs "L" as initial value). The INV bit is set to "0" (not inversed).
- The UD1 to UD0 bits in the G1BCR1 register are set to "002" (counter increment mode) and the CAS bit to "0" (16-bit waveform generation function).
- m < n+2

Figure 21.25 Phase-delayed Waveform Output Mode

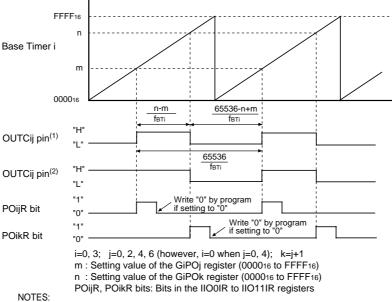
21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode (Group 0 to 3)

Output signal level of the OUTCij pin (i=0 to 3; j=0, 2, 4, 6) becomes "H" when the value of the base timer matches that of the GiPOj register. The "H" signal switches to an "L" signal when the value of the base timer matches that of the GiPOk register (k=j+1) or when the base timer is set to "000016". If the IVL bit in the GiPOCRj register (j=0 to 7) is set to "1" (outputs "H" as initial value), an "H" signal is output when waveform output starts. If the INV bit is set to "1" (output is inversed), the level of the waveform being output is inversed. Table 21.11 lists specifications of SR waveform mode. Figure 21.26 shows an example of a SR waveform mode operation.

Table 21.11 SR Waveform Output Mode Specifications (1/2)

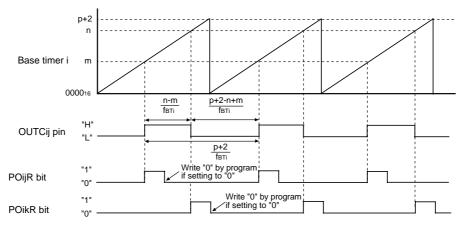
Item	Specification
Output Waveform ⁽²⁾	Free-running operation
	(the RST2 to RST0 bits in the GiBCR1 register are set to "0002")
	(1) m < n
	"H" width : $\frac{n-m}{fBTi}$
	"L" width : $\frac{m^{(3)}}{fBTi}$ + $\frac{65536 - n^{(4)}}{fBTi}$
	(2) m ≥ n
	"H" width : 65536 - m fвті
	"L" width : m fBTi
	m : setting value of the GiPOj register (j=0, 2, 4, 6)
	n : setting value of the GiPOk register (k=j+1)
	m, n=000016 to FFFF16
	• The base timer is reset by matching the base timer with the GiPO0 register ⁽¹⁾
	(the RST1 bit is set to "1", and the RST0 and RST2 bits are set to "0")
	(1) m < n < p+2
	"H" width :
	"H" width : $\frac{fBTi}{fBTi}$ "L" width : $\frac{m^{(3)}}{fBTi}$ + $\frac{p+2-n^{(4)}}{fBTi}$
	(2) m < p+2 ≤ n
	"H" width : $\frac{p+2-n}{fBTi}$
	"L" width : m
	(3) If $m \ge p+2$, the output level is fixed to "L"
	m : setting value of the GiPOj register (j=2, 4, 6)
	n : setting value of the GiPOk register (k=j+1)
	p : setting value of the GiPO0 register
	m, n=000016 to FFFF16 p=000116 to FFFD16

- 1. When the GiPO0 register resets the base timer, the channel 0 and 1 SR waveform generation functions are not available.
- 2. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.
- 3. Waveform from base timer reset until when output level becomes "H".
- 4. Waveform from when output level becomes "L" until base timer reset.


Table 21.11 SR Waveform Output Mode Specifications (2/2)

Item	Specification
Waveform Output Start Condition ⁽⁵⁾	The IFEq bit (q=0 to 7) in the GiFE register is set to "1" (channel q function enabled)
Waveform Output Stop Condition	The IFEq bit is set to "0" (channel q function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the GiPOj register. The POikR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the GiPOk register. (See Figure 10.14)
OUTCij Pin ⁽⁶⁾	Pulse signal output pin
Selectable Function	 Default value set function: Set starting waveform output level Inversed output function: Waveform output level is inversed and output from the OUTCij pin Cascaded connection function: Connect group 0 and group 1 to operate as a 32-bit base timer

- 5. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function
- OUTC00, OUTC04, OUTC10, OUTC12, OUTC14, OUTC16, OUTC20, OUTC22, OUTC24, OUTC26, OUTC30, OUTC32, OUTC34, and OUTC36 pins
 (OUTC10, OUTC12, OUTC14, and OUTC16 pins when using group 0 and group 1 cascaded connection)


- the IVL bit is set to "0" (output "L" as default value). 2. Waveform output when the INV bit is set to "0" (not inversed) and the IVL bit is set to "1" (output "H" as default value).

1. Waveform output when the INV bit in the GiPOCRj register is set to "0" (not inversed) and

The diagram above applies under the following condition:

- The RST2 to RST0 bits in the GiBCR1 register are set to "0002" (no base timer reset), the UD1 to UD0 bits to "002" (counter increment mode), and the CAS bit to "0" (16-bit waveform generation function).
- m < n

(2) The Base Timer is Reset when the Base Timer Matches the GiPO0 Register (The RST1 bit is set to "1", and the RST0 and RST2 bits are set to "0")

i=0 to 3; j=2, 4, 6 (however, i=0 when j=4); k=j+1

- m : Setting value of the GiPOj register (000016 to FFFF16)
- n: Setting value of the GiPOk register (000016 to FFFF16)
- p: Setting value of the GiPO0 register (000116 to FFFD16)
- POijR, POikR bits: Bits in the IIO0IR to IIO11IR registers

The diagram above applies under the following conditions:

- The IVL bit in the GiPOCRk register is set to "0" (outputs "0" as default value). The INV bit is set
- The UD1 to UD0 bits in the GiBCR1 register are set to "002" (counter increment mode) and the CAS bit to "0" (16-bit waveform generation function).
- m < n < p+2

Figure 21.26 SR Waveform Output Mode

21.3.4 Bit Modulation PWM Output Mode (Group 2 and 3)

In bit modulation PWM output mode, PWM output has a 16-bit resolution. Pulses are output in repetitive cycles, each cycle consisting of span t repeated 1024 times. Span t, itself, has a cycle of $\frac{64}{\text{fBTi}}$. The six high-order bits in the GiPOj register (i=2 to 3; j=0 to 7) determine the "L" base width. The 10 low-order bits determine the number of span t, within a cycle, in which "L" width is extended by the minimum resolution bit width (1 clock cycle). If the INV bit is set to "1" (output is inversed), the level of the waveform being output is inversed.

Table 21.12 lists specifications of bit modulation PWM output mode. Table 21.13 lists the number of modulated span and minimum resolution bit width altered span t. Figure 21.27 shows an example of bit modulation PWM mode operation.

Table 21.12 Bit Modulation PWM Output Mode Specifications

Item	Specification				
Output Waveform ^(1,2)	PWM-repeated cycle T: 65536 / fBTi (= 64 / K1024) Cycle of span t: 64 / fBTi				
Waveform Output Start Condition	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)				
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)				
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when the value of the six low-order bits of the base timer matches those set in the six high-order bits of the GiPOj register (see Figure 10.14).				
OUTCij Pin	Pulse signal output pin				
Selectable Function	 Default value set function : Set starting waveform output level Inversed output function : Waveform output level is inversed and output from the OUTCij pin 				

- 1. Set the RST2 to RST0 bits in the GiBCR1 register to "0002" when using the bit modulation PWM mode.
- 2. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.

Table 21.13. Number of Modulated Spans and Minimum Resolution Bit Width Extended Span t

Number of Modulated Spans	Minimum Resolution Bit Width Extended Span t
00 0000 00002	none
00 0000 00012	t512
00 0000 00102	t256, t768
00 0000 01002	t128, t384, t640, t896
00 0000 10002	t64, t192, t320, t448, t576, t704, t832, t960
i	:
10 0000 00002	t1, t3, t5, t7, ••• t1019, t1021, t1023

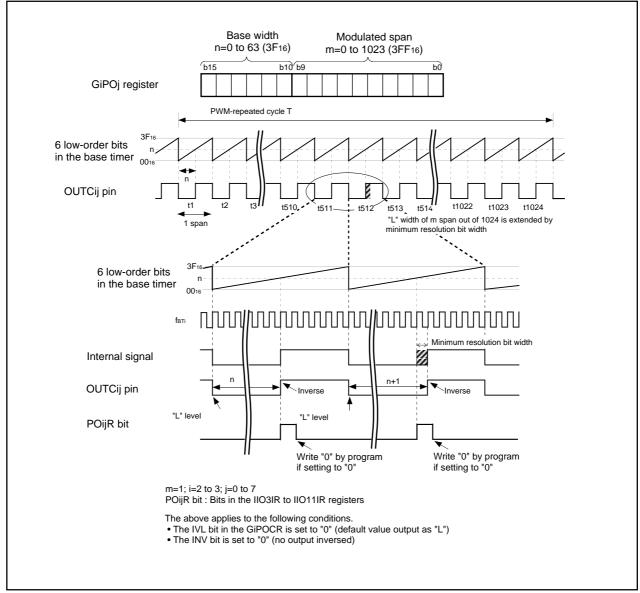


Figure 21.27 Bit Modulation PWM Mode

21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3)

The OUTCij pin outputs the value set in the GiRTP register in one-byte units by matching the value of the base timer with that of the GiPOj register (i=2 to 3, j=0 to 7). Table 21.14 lists specifications of RTP output mode. Figure 21.28 shows a block diagram of the RTP output function. Figure 21.29 shows an example of RTP output mode operation.

Table 21.14 RTP Output Mode Specifications

Item	Specification
Waveform Output Start Condition	The IFEj bit in the GiFE register (i=2 to 3, j=0 to 7) is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when the value of the base timer matches that of the GiPOj register (000016 to FFFF16 ⁽¹⁾). (See Figure 10.14.)
OUTCij Pin	RTP output pin
Selectable Function	Default value set function: Set starting waveform output level Inversed output function: Waveform output level is inversed and output from the OUTCij pin

NOTES:

1. Set the GiPO0 register to 000116 to FFFD16 when setting the base timer to "000016" (the RST1 bit in the GiBCR1 register is set to "1", and the RST0 and RST2 bits are set to "0") while the values in the base timer and the GiPO0 register match

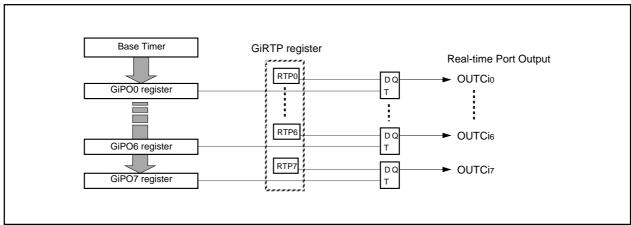
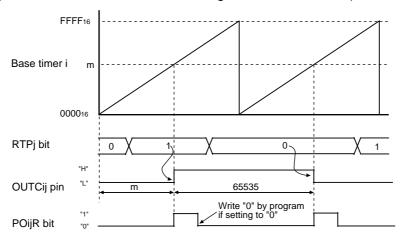
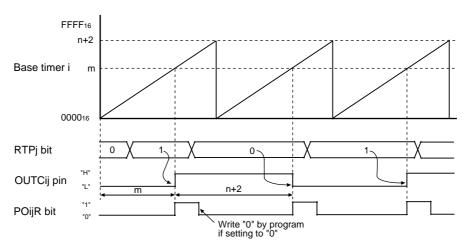



Figure 21.28 Real-time Port Output Function Block Diagram

i=2 to 3, j=0 to 7


m : Setting value of the GiPOj register (000016 to FFFF16)

POijR bit: Bits in the IIO3IR to IIO11IR registers

The above applies to the following conditions.

- The IVL bit in the GiPOCRj register is set to "0" (output "L" as an initial value). The INV bit is set to "0" (no output inversed).
- RST2 to RST0 bits in the GiBCR1 register are set to "0002" (no base timer reset).

(2) The base timer is reset when the base timer matches the GiPO0 register (The RST1 bit is set to "1" and both RST0 and RST2 bits are set to "0")

i=2 to 3, j=1 to 7

m : Setting value of the GiPOj register (000016 to FFFF16)

n: Setting value of the GiPO0 register (000116 to FFFD16)

POijR bit: Bits in the IIO0IR to IIO11IR registers

The above applies to the following condition.

- The IVL bit in the GiPOCRj register is set to "0" (output "L" as an initial value). The INV bit is set to "0" (no output inversed).
- m < n+2

Figure 21.29 Real-time Port Output Mode

21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3)

The OUTCij pin outputs the value set by the GiRTP register in one-byte units when the value of the base timer matches that of the GiPOj register (i=2 to 3, j=0 to 7). Table 21.15 lists specifications of the parallel RTP output mode. Figure 21.30 shows a block diagram of the parallel RTP output function. Figure 21.31 shows an example of the parallel RTP output mode operation. (See Figure 21.7 for the G2BCR1 register and Figure 21.8 for the G3BCR1 register.)

Table 21.15 Parallel RTP Output Mode Specifications

Item	Specification
Waveform Output Start Condition	The IFEj bit in the GiFE register (i=2 to 3, j=0 to 7) is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when value of the base timer matches that of the GiPOj register (000016 to FFFF16 ⁽¹⁾). (See Figure 10.14.)
OUTCij Pin	RTP output
Selectable Function	Default value set function: Set starting waveform output level Inverse output function: Waveform output level is inversed and output from the OUTCij pin

NOTES:

1. Set the GiPO0 register to 000116 to FFFD16 when setting the base timer to "000016" (the RST1 bit in the GiBCR1 register is set to "1", and the RST0 and RST2 bits are set to "0") while the values in the base timer and the GiPO0 register match

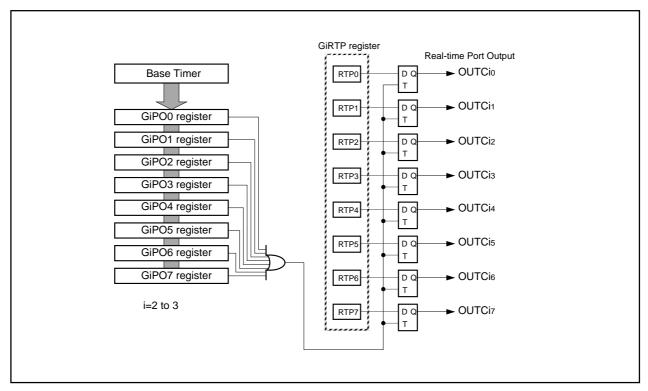


Figure 21.30 Parallel RTP Output Function Block Diagram

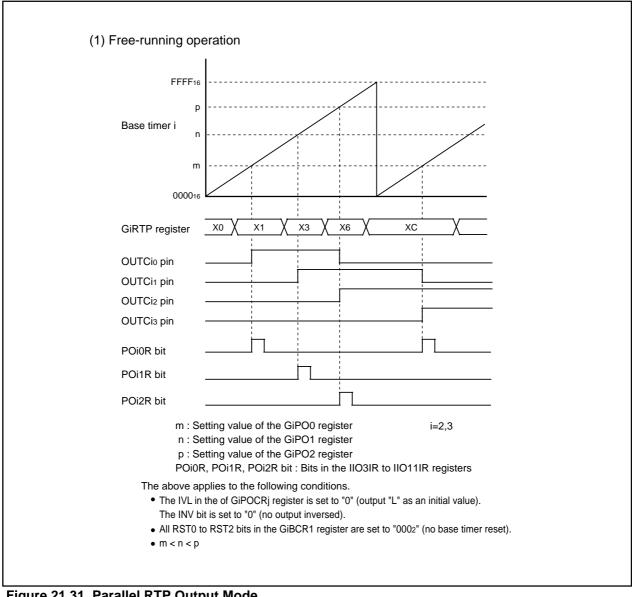


Figure 21.31 Parallel RTP Output Mode

21.4 Communication Unit 0 and 1 Communication Function

The communication function is available when two 8-bit shift registers are used with either timer measurement function or waveform generation function.

In the intelligent I/O groups 0 and 1, 8-bit clock synchronous serial I/O, 8-bit clock asynchronous serial I/O (UART) and HDLC data processing are available.

Figures 21.32 to 21.38 show registers associated with the communication function.

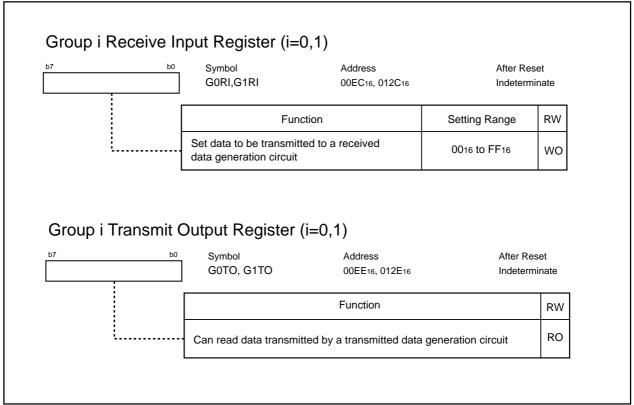


Figure 21.32 G0RI to G1RI Registers and G0TO to G1TO Registers

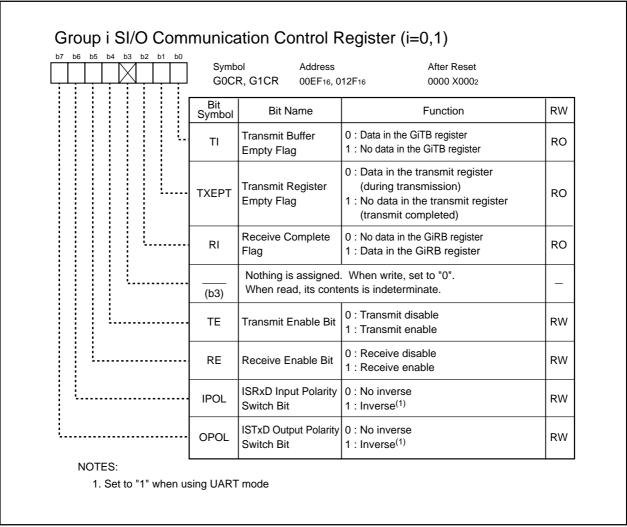


Figure 21.33 G0CR to G1CR Registers

Group i SI/O Receive Buffer Register (i=0,1) After Reset G0RB, G1RB 00E916-00E816, 012916-012816 XX00 XXXX XXXX XXX2 Bit Name **Function** RW Symbol Received data RW (b7 - b0) Nothing is assigned. (b11 - b8) When read, its content is indeterminate. 0: No overrun error OER Overrun Error Flag RO 1: Overrun error found 0: No framing error Framing Error Flag RO FER 1 : Framing error found Nothing is assigned. When read, its content is indeterminate. (b15 - b14) Group i SI/O Communication Mode Register (i=0,1) After Reset Symbol Address 0 0 G0MR,G1MR 00ED16, 012D16 0016 Bit Name RW **Function** Symbol b1 b0 0 0: UART mode GMD0 RW Communication Mode 0 1: Clock synchronous serial I/O Select Bit GMD1 1 0: Special communication mode⁽¹⁾ RW 1 1: HDLC data processing mode Internal/External Clock 0 : Internal clock **CKDIR** RW Select Bit 1: External clock Stop Bit Length 0:1 stop bit STPS RW Select Bit 1:2 stop bits RW Reserved Bit Set to "0" (b5 - b4) 0: LSB first **Transfer Direction UFORM** RW 1: MSB first Select Bit 0: No data in the transmit Transmit Interrupt buffer (TI=1) **IRS** RW Cause Select Bit 1 : Transmission is completed (TXEPT=1) NOTES: 1. Do not set except when using in motor vehicles

Figure 21.34 G0RB to G1RB Registers and G0MR to G1MR Registers

Group i SI/O Expansion Mode Register (i=0,1)⁽¹⁾ Symbol Address After Reset 00FC16, 013C16 G0EMR.G1EMR 0016 Bit Symbol Bit Name **Function** RW Synchronous Mode 0: No re-synchronous mode used **SMODE** RW Select Bit 1: Re-synchronous mode **CRC Default Value** 0 : Set to "000016" **CRCV** RW Select Bit 1: Set to "FFFF16" 0: Not reset **ACRC CRC** Reset Select Bit RW 1 : Reset⁽²⁾ 0: Not used Bit Stuffing Error **BSINT** RW Interrupt Select Bit 1: Used 0: ISRxDi pin Receive Source **RXSL** RW Switch Bit 1: GiRI register **Transmit Source** 0: ISTxDi pin **TXSL** RW Switch Bit 1: GiTO register b7 b6 CRC0 $0 \ 0 : X^8 + X^4 + X + 1$ RW **CRC** Generation 1 : Do not set to this value Polynomial Select Bit $0: X^{16}+X^{15}+X^2+1$ CRC1 RW 1 1: $X^{16}+X^{12}+X^{5}+1$

NOTES:

- 1. The GiEMR register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode.
- 2. The CRC is reset when a data in the GiCMP3 register matches a received data.

Group i SI/O Expansion Transmit Control Register (i=0,1)⁽¹⁾

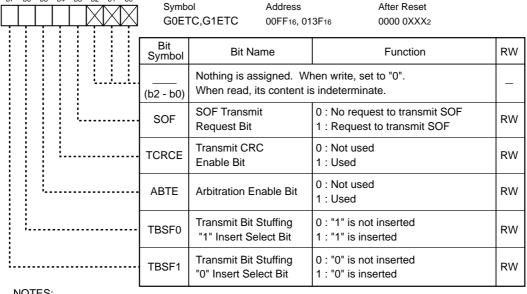
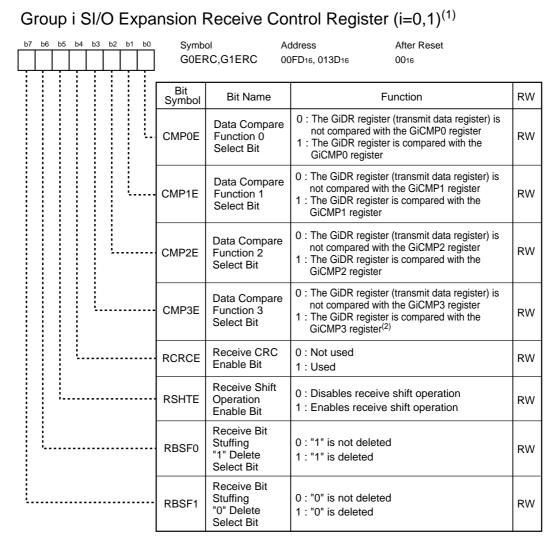



Figure 21.35 G0EMR to G1EMR Registers and G0ETC to G1ETC Registers

The GiETC register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode.

- 1. The GiERC register is used in special communication mode or HDLC data processing mode. Set to "0010 00002" in clock synchronous serial I/O mode. Do not use in UART mode.
- 2. When the ACRC bit in the GiEMR register is set to "1" (CRC reset function used), set the CMP3E bit to "1".

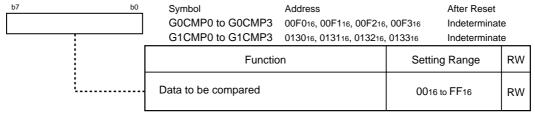

Figure 21.36 G0ERC to G1ERC Registers

Group i SI/O Special Communication Interrupt Detect Register (i=0,1)^(1,2) Symbol Address After Reset G0IRF,G1IRF 00FE16, 013E16 0000 00XX2 Bit Symbol RW Bit Name **Function** Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b1 - b0) Bit Stuffing Error 0: Not detected **BSERR** RW **Detect Flag** 1: Detected Arbitration Lost 0: Not detected ABT RW **Detect Flag** 1: Detected 0: The GiDR register (receive data register) Interrupt Cause does not match the GiCMP0 register IRF0 Determination Flag 0⁽²⁾ RW 1: The GiDR register matches the GiCMP0 register 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP1 register Determination IRF1 RW 1 : The GiDR register matches the GiCMP1 Flag 1⁽²⁾ register 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP2 register IRF2 RW Determination 1 : The GiDR register matches the GiCMP2 Flag 2⁽²⁾ 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP3 register RW IRF3 Determination 1 : The GiDR register matches the GiCMP3 Flag 3⁽²⁾

NOTES:

- 1. The GiETC register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode.
- 2. The SRTiR bit in the IIO4IR register is set to "1" if the BSERR bit, ABT bit or the IRF0 to IRF3 bits is set to "0".

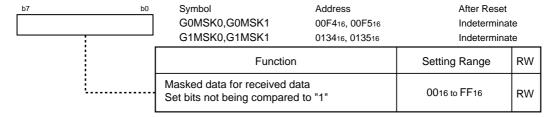
Group i Transmit Buffer (Receive Data) Register (i=0,1)⁽¹⁾

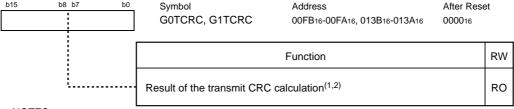


NOTES:

1. The GiTB register and the GiDR register share addresses.

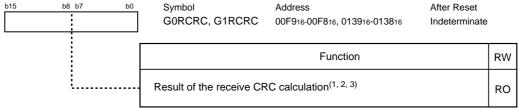
Figure 21.37 G0IRF to G1IRF Registers and G0TB to G1TB Registers


Group i Data Compare Register j (i=0,1; j=0 to 3)


NOTES:

1. Set the GiMSK0 register to use the GiCMP0 register. Set the GiMSK1 register to use the GiCMP1 register.

Group i Data Mask Register j (i=0,1; j=0,1)


Group i Transmit CRC Code Register (i=0,1)

NOTES:

- 1. Calculation results are reset by setting the TE bit in the GiCR register to "0" (transmit disabled). Default value is determined by setting the CRCV bit in the GiEMR register.
- 2. Transmit CRC calculation is performed with every bit of transmit data transmitted while the TCRCE bit in the GiETC register is set to "1" (used).

Group i Receive CRC Code Register (i=0,1)

- 1. The calculation result is reset by setting the RCRCE bit in the GiERC register to "0" (not used). If the the ACRC bit in the GiCMPj register is set to "1" (reset), the result is reset by matching the data in the GiCMPj register with the received data.
- 2. The result is reset to the default value selected by the CRCV bit in the GiEMR register before reception starts.
- 3. Receive CRC calculation occurs with every bit of transmit data transmitted while the RCRCE bit in the GiERC register is set to "1" (used).

Figure 21.38 G0CMP0 to G0CMP3 Registers, G1CMP0 to G1CMP3 Registers, G0MSK0 to G0MSK1 Registers, G1MSK0 to G1MSK1 Registers, G0TCRC to G1TCRC Registers, and **G0RCRC to G1RCRC Registers**

21.4.1 Clock Synchronous Serial I/O Mode (Groups 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. When the internal clock is selected as the transfer clock, the channel 0 and channel 3 waveform generation functions generate the internal clock. ISTxDi (i=0, 1), ISCLKi, and ISRxDi share pins with INPCio to INPCio and OUTCio to OUTCio.

Table 21.16 lists specifications of clock synchronous serial I/O mode. Table 21.17 lists registers to be used and their settings. Tables 21.18 to 21.21 list pin settings. Figure 21.39 shows an example of a transmit and receive operation.

Table 21.16 Clock Synchronous Serial I/O Mode Specifications (Groups 0 and 1)

Item	Specification						
Transfer Data Format	Transfer data: 8 bits long						
Transfer Clock ^(1, 2)	When the CKDIR bit in the GiMR register (i=0, 1) is set to "0" (internal clock): $\frac{fBT}{2(n+2)}$ n: setting value of the GiPO0 register, 000016 to FFFF16 • The GiPO0 register determines the bit rate and the transfer clock is generated in phase-delayed waveform output mode by the channel 3 waveform generation function.						
	When the CKDIR bit is set to "1" (external clock) : input from the ISCLKi pin						
Transmit Start Condition	Set registers associated with the waveform generation function, the GiMR register and the						
	GiERC register. Then set as written below after at least one transfer clock cycle:						
	Set the TE bit in the GiCR register to "1" (transmit enable)						
	Set the TI bit in the GiCR register to "0" (data in the GiTB register)						
Receive Start Condition	Set registers associated with the waveform generation function, the GiMR register and						
	GiERC register. Then set as written below after at least one transfer clock cycle:						
	Set the RE bit in the GiCR register to "1" (receive enable)						
	Set the TE bit to "1" (transmit enable)						
	Set the TI bit to "0" (data in the GiTB register)						
Interrupt Request	While transmitting, one of the following conditions can be selected to set the SIOiTR						
	bit to "1" (see Figure 10.14):						
	 The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and data is transferred to the transmit register from the GiTB register 						
	 The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed 						
	While receiving, the following condition can be selected to set the SIOiRR bit to "1" (see Figure 10.14):						
	Data is transferred from the receive register to the GiRB register						
Error Detection	Overrun error ⁽³⁾						
	This error occurs when the 8th bit of the next data is received before reading the GiRB register						
Selectable Function	LSB first/MSB first						
	Select either bit 0 or bit 7 to transmit/receive data						
	ISTxDi and ISRxDi I/O polarity inverse						
	ISTxDi pin output level and ISRxDi pin input level are inversed						

NOTES:

- 1. The transfer clock must be fBTi divided by six or more.
- 2. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 3. When an overrun error occurs, the GiRB register is indeterminate.

When the OPOL bit in the GiCR register is set to "0" (no ISTxDi output polarity inversed), the ISTxDi pin outputs an "H" signal after selecting operation mode until transfer starts. When the OPOL bit is set to "1", the ISTxDi pin outputs an "L" signal.

Table 21.17 Registers to be Used and Settings

Register	Bit	Function			
GiBCR0	BCK1 to BCK0	Set to "112"			
	DIV4 to DIV0	Select divide ratio of count source			
	IT	Set to "0"			
GiBCR1	7 to 0	Set to "0001 00102"			
GiPOCR0	7 to 0	Set to "0000 01112"			
GiPOCR1	7 to 0	Set to "0000 01112"			
GiPOCR3	7 to 0	Set to "0000 00102" (1)			
GiPO0	15 to 0	Set the bit rate			
		2x(setting value + 2) = transfer clock frequency ⁽¹⁾			
GiPO3	15 to 0	Set to a value smaller than the GiPO0 register ⁽¹⁾			
GiFS	FSC3,1,0	Set to "0"			
GiFE	IFE3,1,0	Set to "1"			
GiERC	7 to 0	Set to "0010 00002"			
GiMR GMD1 to GMD0		Set to "012"			
	CKDIR	Select the internal clock or external clock			
STPS		Set to "0"			
	UFORM	Select either LSB first or MSB first			
	IRS	Select how the transmit interrupt is generated			
GiCR	TI	Transmit buffer empty flag			
	TXEPT	Transmit register empty flag			
	RI	Receive complete flag			
	TE	Set to "1" to enable transmission and reception			
	RE	Set to "1" to enable reception			
	IPOL	Select ISRxD input polarity (usually set to "0")			
	OPOL	Select ISTxD output polarity (usually set to "0")			
GiTB	7 to 0	Write data to be transmitted			
GiRB	15 to 0	Received data and error flag are stored			

i = 0 to 1

NOTES:

1. The CKDIR bit in the GiMR register is set to "0" (internal clock)

Table 21.18 Pin Settings (1)

Port	Function		Bit and Setting				Register ⁽¹⁾
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P74	ISCLK1 input	PS1_4 = 0	-	-	PD7_4 = 0	IPS1 = 0	-
	ISCLK1 output	PS1_4 = 1	PSL1_4 = 0	PSC_4 = 1	-	-	G1POCR1
P75	ISRxD1 input	PS1_5 = 0	-	-	PD7_5 = 0	IPS1 = 0	-
P76	ISTxD0 output	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0	-	-	G0POCR0
P77	ISCLK0 input	PS1_7 = 0	-	-	PD7_7 = 0	IPS0 = 0	-
	ISCLK0 output	PS1_7 = 1	-	-	-	-	G0POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.19 Pin Settings (2)

Port	Function	Bit and Setting			Register
Name		PS2 Register			
P80	ISRxD0 input	PS2_0 = 0	PD8_0 = 0	IPS0 = 0	-

Table 21. 20 Pin Settings (3)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS5 Register PD11 Register IPS Register			
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P111	ISCLK1 input	PS5_1 = 0	PD11_1 = 0	IPS1 = 1	-
	ISCLK1 output	PS5_1 = 1	-	-	G1POCR1
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21. 21 Pin Settings (4)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS9 Register PD15 Register IPS Register			
P150	ISTxD0 output	PS9_0 = 1	-	-	G0POCR0
P151	ISCLK0 input	PS9_1 = 0	PD15_2 = 0	IPS0 = 1	-
	ISCLK0 output	PS9_1 = 1	-	-	G0POCR1
P152	ISRxD0 input	PS9_2 = 0	PD15_2 = 0	IPS0 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

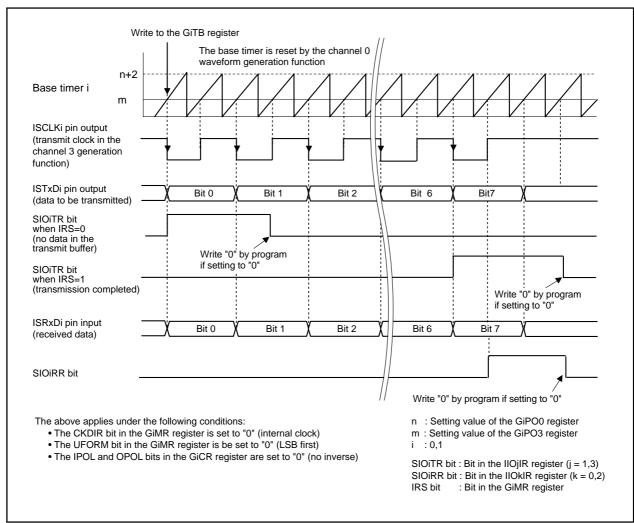


Figure 21.39 Transmit and Receive Operation

21.4.2 Clock Asynchronous Serial I/O Mode (UART) (Groups 0 and 1)

In clock asynchronous serial I/O mode (UART), data is transmitted at a desired bit rate and in a desired transfer data format. Table 21.22 lists specifications of UART mode groups 0 and 1. Table 21.23 lists registers to be used and their settings. Tables 21.24 to 21.27 list pin settings. Figure 21.40 shows an example of transmit operation. Figure 21.41 shows an example of receive operation.

Table 21.22 UART Mode Specifications

Item	Specification
Transfer Data Format	Character Bit (transfer data): 8 bits long
	• Start bit : 1 bit long
	• Stop bit : select length from 1 bit or 2 bits
Transfer Clock ^(1, 2)	When the CKDIR bit in the GiMR register (i=0, 1) is set to "0" (internal clock) : $\frac{fBTi}{2(n+2)}$
	n : setting value of the GiPO0 register, 000016 to FFFF16.
	The GiPO0 register determines the bit rate.
	Transmit clock is generated in phase-delayed waveform output mode of the channel 3 waveform generation function.
	Receive clock is generated with the channel 2 time measurement function.
Transmit Start Condition	Set the registers associated with the waveform generation function, the GiMR register and
	GiERC register. Then, set as written below after at least one transfer clock cycle.
	Set the TE bit in the GiCR register to "1" (transmit enable)
	Set the TI bit in the GiCR register to "0" (data in the GiTB register)
Receive Start Condition	Set the registers associated with the waveform generation function, the GiMR register and
	GiERC register. Then, set as written below after at least one transfer clock cycle.
	Set the RE bit in the GiCR register to "1" (receive enable)
	Detect the start bit
Interrupt Request	While transmitting, one of the following conditions can be selected to set the SIOiTR
	bit to "1" (see Figure 10.14):
	- The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and
	data is transferred to the transmit register from the GiTB register.
	 The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed
	While receiving, the following condition can be selected to set the SIOiRR bit to "1"
	(see Figure 10.14):
	Data is transferred from the receive register to the GiRB register (data reception is
	completed)
Error detection	Overrun error ⁽³⁾
	This error occurs when the final stop bit of the next data is received before reading
	the GiRB register
	• Framing Error
	This error occurs when the number of the stop bits set is not detected
Selectable function	Stop bit length
	The length of the stop bit is selected from 1 bit or 2 bits
	• LSB first/MSB first
	Select either bit 0 or bit 7 to transmit/receive data
NOTEO:	

- 1. The transfer clock must be fBTi divided by six or more.
- 2. Set the GiPOCR2 register and the GiTMCR2 register.
- 3. When an overrun error occurs, the GiRB register is indeterminate.

Table 21.23 Registers to be Used and Settings

Register	Bit	Function
GiBCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
GiBCR1	7 to 0	Set to "0001 00102"
GiPOCR0	7 to 0	Set to "0000 01112"
GiPOCR2	7 to 0	Set to "0000 01102"
GiPOCR3	7 to 0	Set to "0000 00102"
GiTMCR2	7 to 0	Set to "0000 00102"
GiPO0	15 to 0	Set bit rate
		fвті
		2 x (setting value + 2) = transfer clock frequency
GiPO3	15 to 0	Set to a value smaller than the GiPO0 register
GiFS	FSC3 to FSC0	Set to "01002"
GiFE	IFE3 to IFE0	Set to "11012"
GiMR	GMD1 to GMD0	Set to "002"
	CKDIR	Set to "0"
	STPS	Select stop bit length
	UFORM	Select LBS first or MSB first
	IRS	Select how the receive interrupt is generated
GiCR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Set to "1" to enable transmission
	RE	Set to "1" to enable reception
	IPOL	Set to "1"
	OPOL	Set to "1"
GiTB	7 to 0	Write data to be transmitted
GiRB	15 to 0	Received data and error flag are stored

i = 0 to 1

Table 21.24 Pin Settings in UART Mode (1)

Port	Function		Bit and Setting				
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P75	ISRxD1 input	PS1_5 = 0	-	-	PD7_5 = 0	IPS1 = 0	-
P76	ISTxD0 output	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0	-	-	G0POCR0

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.25 Pin Settings (2)

Port	Function		Bit and Setting				
Name		PS2 Register	PSL2 Register	PD8 Register	IPS Register		
P80	ISRxD0 input	PS2_0 = 0	-	PD8_0 = 0	IPS0 = 0	-	

Table 21.26 Pin Settings (3)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.27 Pin Settings (4)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS9 Register	PD15 Register	IPS Register	
P150	ISTxD0 output	PS9_0 = 1	-	-	G0POCR0
P152	ISRxD0 input	-	PD15_2 = 0	IPS0 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

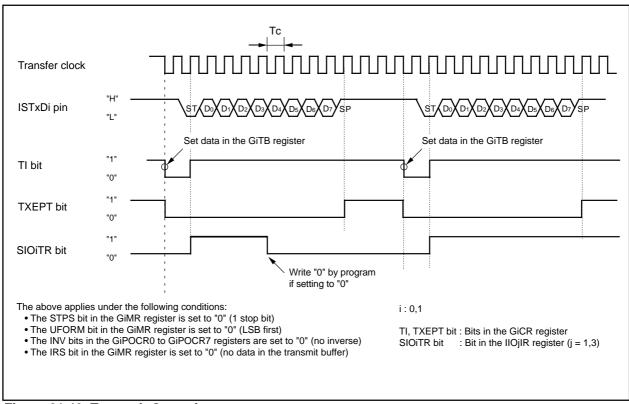


Figure 21.40 Transmit Operation

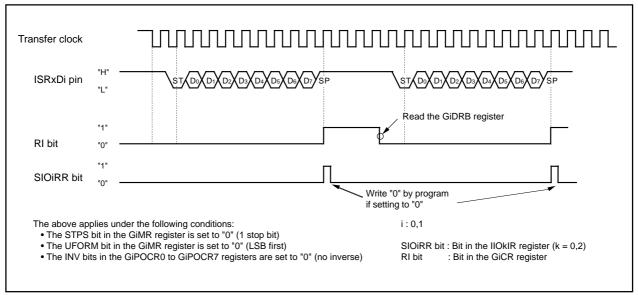


Figure 21.41 Receive Operation

21.4.3 HDLC Data Processing Mode (Group 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. The channel 0 and 1 are used to generate the transfer clock. No pins are used.

To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of there being no data in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 21.28 list specifications of the HDLC data processing mode. Table 21.29 lists registers to be used and their settings.

Table 21.28 HDLC Processing Mode Specifications

Item	Specification
Input Data Format	8-bit data fixed, bit alignment is optional
Output Data Format	8-bit data fixed
Transfer Clock	When the CKDIR bit in the GiMR register (i=0, 1) is set to "0" (internal clock): fBTi n: setting value of the GiPO0 register 000016 to FFFF16
	The GiPO0 register determines bit rate.
	The transfer clock is generated in phase-delayed waveform output mode of the
	channel 1 waveform generation function.
	When the RSHTE bit in the GiERC register is set to "1" (reception shift operation
	enabled), the transfer clock is generated in the receiver
I/O Method	While transmitting,
	value set in the GiTB register is converted in HDLC data processing mode and transferred to the GiTO register
	While receiving,
	value set in the GiRI register is converted in HDLC data processing mode and
	transferred to the GiRB register. The value in the GiRI register is also transferred to
	the GiDR register (received data register).
Bit Stuffing	While transmitting, "0" following five consecutive "1" is inserted.
	While receiving, "0" following five consecutive "1" is deleted.
Flag Detection	Write the flag data "7E16" to the GiCMP3 register to use the special communication
	interrupt (the SRTiR bit in the IIO4IR register)
Abort Detection	Write the masked data "0116" to the GiMSKk(k=0, 1) register
CRC	The CRC1 to CRC0 bits are set to "112" $(X^{16}+X^{12}+X^5+1)$
	The CRCV bit is set to "1" (set to "FFFF16")
	While transmitting, CRC calculation result is stored into the GiTCRC register.
	The TCRCE bit in the GiETC register is set to "1" (transmit CRC used).
	The CRC calculation result is reset when the TE bit in the GiCR register is set to "0" (transmit disabled) ⁽¹⁾ .
	While receiving, CRC calculation result is stored into the GiRCRC register.
	The RCRCE bit in the GiERC register is set to "1" (receive CRC used).
	The CRC calculation result is reset by comparing the flag data "7E16" and matching
	the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR register is set to "1" (CRC reset) ⁽²⁾

Table 21.28 HDLC Processing Mode Specifications (Continued)

Item	Specification
Data Processing	The following conditions are required to start transmit data processing:
Start Conditions	The TE bit in the GiCR register is set to "1" (transmit enable)
	Data is written to the GiTB register
	The following conditions are required to start receive data processing:
	• The RE bit in the GiCR register is set to "1" (receive enable)
	Data is written to the GiRI register
Interrupt Request ⁽³⁾	During transmit data processing,
	(1) One of the following conditions can be selected to set the GiTOR bit in the interrupt
	request register to "1" (interrupt request) (see Figure 10.14)
	 When the IRS bit in the GiMR register is set to "0" (no data in the GiTB register)
	and data is transferred from the GiTB register to the transmit register (transmit start)
	 When the IRS bit is set to "1" (transmission completed) and data transfer from
	the transmit register to the GiTO register is completed
	(2) When data, which is already converted to HDLC data, is transferred from the
	receive register of the GiTO register to the transmit buffer, the GiTOR bit is set
	to "1"
	During received data processing,
	(1) When data is transferred from the GiRI register to the GiRB register (reception
	completed), the GiRIR bit is set to "1" (See Figure 10.14)
	(2) When received data is transferred from the receive buffer of the GiRI register to
	the receive register, the GiRIR bit is set to "1"
	(3) When the GiTB register is compared to the GiCMPj register (j=0 to 3), the SRTiR
	bit is set to "1"

NOTES:

- 1. Set the CRCV bit and ACRC bit in the GiEMR register to "1".
- 2. The CRC calculation circuit is reset after the GiRCRC register stores CRC data.
- 3. See Figure 10.14 for details on the GiTOR bit, GiRIR bit and SRTiR bit.

Table 21.29 Registers to be Used and Settings

Register	Bit	Function
GiBCR0	BCK1 to BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Select the base timer interrupt
GiBCR1	7 to 0	Set to "0001 00102"
GiPOCR0	7 to 0	Set to "0000 00002"
GiPOCR1	7 to 0	Set to "0000 00002"
GiPO0	15 to 0	Set bit rate
GiPO1	15 to 0	Set the timing of the rising edge of the transfer clock.
		Timing of the falling edge (high-level signal ("H") width of the transfer clock) is
		fixed.
		Setting value of GiPO1 ≤ Setting value of GiPO0 .
GiFS	FSC1 to FSC0	Set to "002"
GiFE	IFE1 to IFE0	Set to "112"
GiMR	GMD1 to GMD0	Set to "112"
	CKDIR	Set to "0"
	UFORM	Set to "0"
	IRS	Select how the transmit interrupt is generated
GiEMR	7 to 0	Set to "1111 01102"
GiCR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Transmit enable bit
	RE	Receive enable bit
GiETC	SOF	Set to "0"
	TCRCE	Select whether the transmit CRC is used or not
	ABTE	Set to "0"
	TBSF0, TBSF1	Transmit bit stuffing
GiERC		Select whether received data is compared or not
	CMP3E	Set to "1"
	RCRCE	Select whether receive CRC is used or not
	RSHTE	Set to "1" to use it in the receiver
	RBSF0, RBSF1	Receive bit stuffing
GilRF	BSERR, ABT	Set to "0"
	IRF3 to IRF0	Select how an interrupt is generated
GiCMP0,	7 to 0	Write "FE16" to abort processing
GiCMP1		
GiCMP2	7 to 0	Data to be compared
GiCMP3	7 to 0	Write "7E16"
GiMSK0,	7 to 0	Write "0116" to abort processing
GiMSK1	15.	
GiTCRC	15 to 0	Transmit CRC calculation result can be read
GiRCRC	15 to 0	Receive CRC calculation result can be read
GiTO	7 to 0	Data, which is output from a transmit data generation circuit, can be read
GiRI	7 to 0	Set data input to a receive data generation circuit
GiRB	7 to 0	Received data is stored
GiTB	7 to 0	For transmission : write data to be transmitted
		For reception : received data for comparison is stored

i = 0,1

21.5 Group 2 Communication Function

The communication function is available when two 8-bit shift registers are used with the waveform generation function.

In the intelligent I/O group 2, the variable clock synchronous serial I/O or IEBus⁽¹⁾ communication function is available. Figures 21.42 to 21.45 show registers associated with the communication function.

1. IEBus is a trademark of NEC Electronics Corporation.

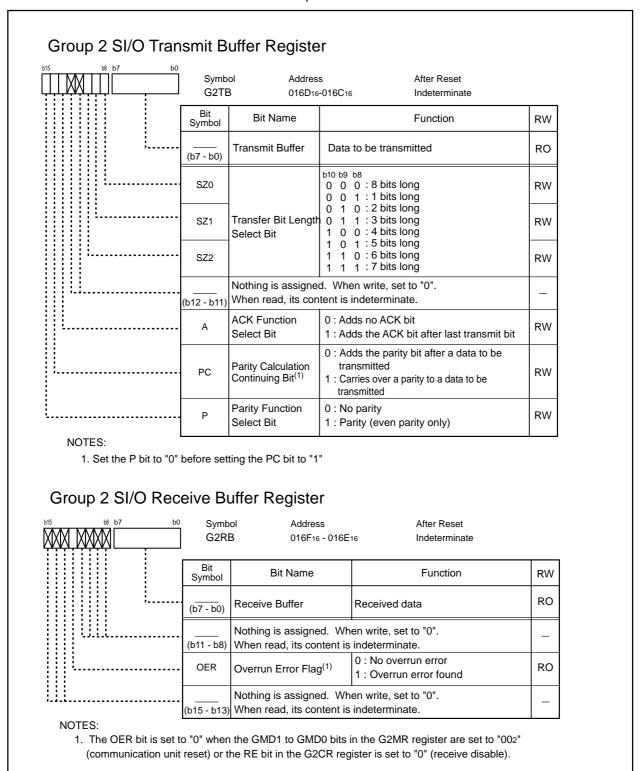


Figure 21.42 G2TB and G2RB Register

RW

RW

Group 2 SI/O Communication Mode Register Symbol Address After Reset G2MR 00XX X0002 016A₁₆ Bit Bit Name Function RW Symbol 0 0 : Communication unit is reset (The OER bit is set to "0")⁽¹⁾ GMD0 RW Communication Mode : Clock synchronous serial I/O mode⁽²⁾ 0.1 Select Bit : IE mode⁽²⁾ GMD1 RW 11: Do not set to this value Internal/External Clock 0: Internal clock **CKDIR** RW Select Bit 1: External clock Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b5 - b3)

NOTES:

 Run the base timer clock for one or more cycles after the GMD1 to GMD0 bits are set to "002" (communication unit reset).

Transfer Format

Transmit Interrupt

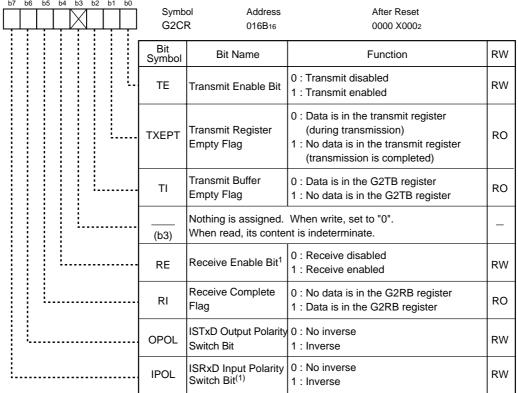
Cause Select Bit

Select Bit

Set the GMD1 to GMD0 bits to "012" (clock synchronous serial I/O mode) or "102" (IE mode) while the base timer clock is stopped.

0: LSB first

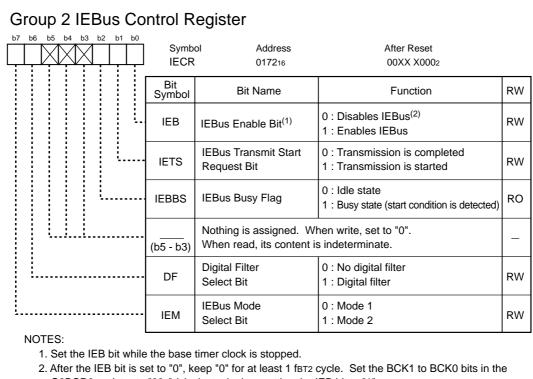
1: MSB first


0: No data is in the transmit buffer

1: Transmission is completed

Group 2 SI/O Communication Control Register

UFORM


IRS

NOTES:

 The group 2 base timer may be reset when rewriting the RE or IPOL bit. To avoid resetting, set the RST2 bit in the G2BCR1 register to "0" (no base timer reset by a reset request from the communication function).

Figure 21.43 G2MR and G2CR Register

G2BCR0 register to "002" (clock stop) when setting the IEB bit to "1".

Group 2 IEBus Address Register

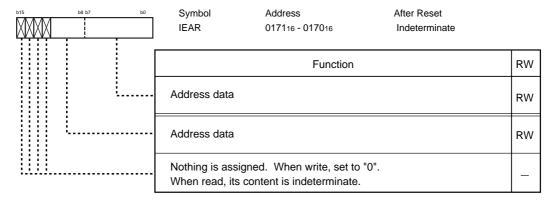
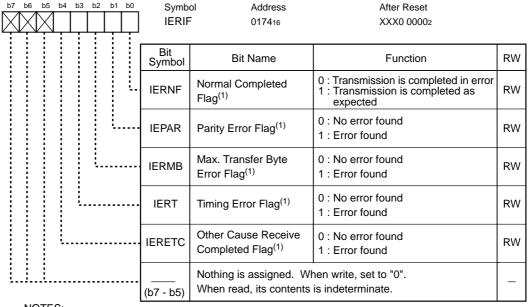



Figure 21.44 IECR and IEAR Registers

Group 2 IEBus Transmit Interrupt Cause Determination Register Symbol Address After Reset **IETIF** 017316 XXX0 00002 Bit RW Bit Name Function Symbol 0: Transmission is completed in error Normal Complete **IETNF** RW Transmission is completed as Flag⁽¹⁾ expected 0: No error found **IEACK** ACK Error Flag⁽¹⁾ RW 1: Error found Maximum Transfer Byte 0: No error found **IFTMB** RW Error $Flag^{(1)}$ 1: Error found 0: No error found **IETT** Timing Error Flag⁽¹⁾ RW 1: Error found 0: No error found **IEABL** Arbitration Lost Flag⁽¹⁾ RW 1: Error found Nothing is assigned. When write, set to "0". When read, its contents is indeterminate. (b7 - b5)

NOTES:

Group 2 IEBus Receive Interrupt Cause Determination Register

NOTES:

Figure 21.45 IETIF and IERIF Registers

^{1.} This bit can be set to "0" by program, but cannot be set to "1". Set to "0" by setting the IEB bit in the IECR register to "0" (IEBus disabled to use).

^{1.} This bit can be set to "0" by program, but not to "1". Set to "0" by setting the IEB bit in the IECR register to "0" (IEBus disabled to use).

21.5.1 Variable Clock Synchronous Serial I/O Mode (Group 2)

In variable clock synchronous serial I/O mode, data is transmitted and received using the transfer clock. The length of data transferred is selected from 1 to 8 bits. Table 21.30 lists specifications of the group 2 variable clock synchronous serial I/O mode. Table 21.31 lists registers to be used and their settings. Tables 21.32 to 21.35 lists pin settings. Figure 21.46 shows an example of a transmit and receive operation.

Table 21.30 Variable Clock Synchronous Serial I/O Mode Specifications (Group 2)

Item	Specification
Transfer Data Format	Transfer data length: 1 to 8 bits
Transfer Clock ⁽¹⁾	• When the CKDIR bit in the G2MR register is set to "0" (internal clock) : $\frac{fBT2}{2(n+2)}$
	n : setting value of the G2PO0 register 000016 to FFFF16
	The G2PO0 register determines bit rate and the transfer clock is generated in
	phase-delayed waveform output mode of the channel 2 waveform generation function.
l	When the CKDIR bit is set to "1" (external clock) : input from the ISCLK2 pin ⁽²⁾
Transmit Start Condition	To start transmitting, the following conditions are required:
	- Set the TE bit in the G2CR register to "1" (transmit enable)
	- Write data to the G2TB register
Receive Start Condition	To start receiving, the following conditions are required:
	- Set the RE bit in the G2CR register to "1" (receive enable)
	- Set the TE bit in the G2CR register to "1" (transmit enable)
	- Write data to the G2TB register
Interrupt Request	While transmitting, one of the following conditions can be selected to set the
	SIO2TR bit in the IIO6IR register to "1" (see Figure 10.14):
	- The IRS bit in the G2MR register is set to "0" (no data in the G2TB register):
	when data is transferred from the G2TB register to the transmit register.
	- The IRS bit is set to "1" (reception completed):
	when data transfer from the transmit register is completed
	While receiving, the following condition can be selected to set the SIO2RR bit in the
	IIO5IR register to "1" (interrupt request) (see Figure 10.14):
	when data is transferred from the receive register to the G2RB register (data recep-
	tion is completed)
Error Detection	Overrun error ⁽³⁾
	This error occurs when receiving the j bit (j=1 to 8) of the next data (transfer data
	length: j bits) before reading the G2RB register
Selectable Function	LSB first/MSB first
	Select either bit 0 or bit 7 to transmit/receive data
	ISTxD2 and ISRxD2 I/O polarity inverse
	ISTxD2 pin output level and ISRxD2 pin input level are inversed
	Data transfer bit length
	Select from 1 to 8 bits

NOTES:

- 1. The transfer clock must be fBT2 divided by six or more when both transfer clock and transfer data are transmitted. Under conditions other than this, the transfer clock must be fBT2 divided by 20 or more.
- 2. Transfer clocks must be fBT2 divided by 20 or more.
- 3. When an overrun error occurs, the G2RB register is indeterminate.

Table 21.31 Register to be Used and Settings

Register	Bit	Function
G2BCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G2BCR1	7 to 0	Set to "0001 00102"
G2POCR0	7 to 0	Set to "0000 01112"
G2POCR1	7 to 0	Set to "0000 01112"
G2BCR2	7 to 0	Set to "0000 00102"
G2PO0	15 to 0	Set bit rate
		fBT2 2 v (setting value ± 2) = transfer clock frequency
		Z X (Setting value + Z)
G2PO2	15 to 0	Set to a value smaller than the G2PO0 register
G2FE	IFE2 to IFE0	Set to "1112"
G2MR	GMD1 to GMD0	Set to "012"
	CKDIR	Select internal or external clock
	UFORM	Select either LSB first or MSB first
	IRS	Select how the transmit interrupt is generated
G2CR	TE	When transmission is enabled, set to "1"
	TXEPT	Transmit register empty flag
	TI	Transmit buffer empty flag
	RE	When reception is enabled, set to "1"
	RI	Receive complete flag
	OPOL	ISTxD2 output polarity inverse (usually set to "0")
	IPOL	ISRxD2 input polarity inverse (usually set to "0")
G2TB	15 to 0	Write transfer bit length and transmit data
G2RB	15 to 0	Received data and error flag are stored

Table 21.32 Pin Settings (1)

Port	Function		Bit and Setting				
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P70 ⁽¹⁾	ISTxD2 output	PS1_0 = 1	PSL1_0 = 0	PSC_0 = 1	-	-	G2POCR0
P71	ISRxD2 input	PS1_1 = 0	-	-	PD7_1 = 0	IPS5 to 4 = 002	-

NOTES:

- 1. P70 is a port for the N-channel open drain output.
- 2. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function is used).

Table 21.33 Pin Settings (2)

Port	Function		Bit and Setting			
Name		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	IPS Register	
P91	ISRxD2 input	PS3_1=0	-	PD9_1=0	IPS5 to 4=012	-
P92	ISTxD2 output	PS3_2=1	PSL3_2=1	-	-	G2POCR0

NOTES:

- 1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.
- 2. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.34 Pin Settings (3)

Port	Function		Bit and Setting			
Name		PS0 Register	PSL0 Register	PD6 Register	IPS Register	
P64	ISCLK2 input	PS0_4 = 0	-	PD6_4 = 0	IPS6 = 0	-
	ISCLK2 output	PS0_4 = 1	PSL0_4 = 1	-	-	G2POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.35 Pin Settings (4)

		<u> </u>			
Port	Function		Bit and Setting		Register ⁽¹⁾
Name		PS7 Register	PD13 Register	IPS Register	
P134	ISTxD2 output	PS7_4 = 1	-	-	G2POCR0
P135	ISRxD2 input	PS7_5 = 0	PD13_5 = 0	IPS5 to 4 = 102	-
P136	ISCLK2 input	PS7_6 = 0	PD13_6 = 0	IPS6 = 1	-
	ISCLK2 output	PS7_6 = 1	-	-	G2POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

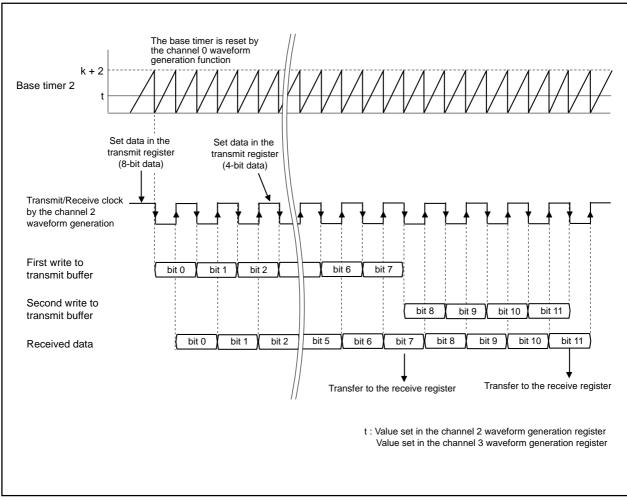


Figure 21.46 Transmit and Receive Operation

21.5.2 IEBus Mode (Group 2)

Table 21.36 lists specifications of IEBus mode. Table 21.37 lists registers to be used and settings. Tables 21.38 to 21.40 lists pin settings.

Table 21.36 IEBus Mode Specifications

Item	Specification
Transfer Data Format	Transfer data length: 1 to 8 bits
Transfer Clock	• When the CKDIR bit in the G2MR register is set to "0" (internal clock) :
	n : setting value of the G2PO0 register, 000016 to FFFF16.
	The G2PO0 register determines bit rate and the transfer clock is generated
	in phase-delayed waveform output mode of the channel 2 waveform generation function.
	The G2PO2 register = $(n+2)/2^{(1)}$
	$ullet$ When the CKDIR bit is set to "1" (external clock) : input from the ISCLK2 $pin^{(2)}$
Transmit Start Condition	To start transmitting, the following conditions are required :
	Set the TE bit in the G2CR register to "1" (transmit enable)
	Write data to G2TB register
Receive Start Condition	To start receiving, the following requirements must be met:
	Set the RE bit in the G2CR register to "1" (receive enable)
	Set the TE bit in the G2CR register to "1" (transmit enable)
	Write data to the G2TB register
Interrupt Request	• While transmitting, the following conditions can be selected to set the SIO2TR bit in
	the IIO6IR register to "1" (see Figure 10.14):
	- The IRS bit in the G2MR register is set to "0" (no data in the G2TB register):
	when data is transferred to the transmit register from the G2TB register (transmis-
	sion started)
	- The IRS bit is set to "1" (transmission completed):
	when data transfer from the transmit register to the G2TO register is completed
	While receiving, the following condition can be selected to set the SIO2RR bit in the
	IIO5IR register to "1" (see Figure 10.14):
	when data is transferred from receive register to the G2RB register (data reception
	is completed)
Error Detection	Overrun error ⁽³⁾
	This error occurs when receiving the j bit (j=1 to 8) of the next data (transfer data
	length: j bits) before reading the G2RB register
Selectable Function	LSB first/MSB first select
	Select either bit 0 or bit 7 to transmit/receive data
	ISTxD2 and ISRxD2 I/O polarity inverse
	ISTxD2 pin output and ISRxD2 pin input levels are inversed
	Data transfer bit length
	Select from 1 to 8 bits

NOTES:

- 1. The transfer clock must be fBT2 divided by six or more when both transfer clock and transfer data are transmitted. Under conditions other than this, the transfer clock must be fBT2 divided by 20 or more.
- 2. Transfer clock must be input fBT2 divided by 20 or more.
- 3. When an overrun error occurs, the G2RB register is indeterminate.

Table 21.37 Registers to be Used and Settings

Register	Bit	Function
G2BCR0	BCK1 to BCK0	Set to "112"
-	DIV4 to DIV0	Select divide ratio of count source
-	IT	Set to "0"
G2BCR1	7 to 0	Set to "000100102"
G2POCR0	MOD2 to MOD0	Set to "1112"
to G2POCR7	PRT	Set to "0"
-	IVL	Set to "0"
-	RLD	Set to "0"
-	RTP	Set to "0"
-	INV	Set to "0"
G2PO0 to	15 to 0	Set compared data for waveform generation
G2PO7		
G2FE	7 to 0	Set bit of corresponding channel to "1"
G2MR	GMD1 to GMD0	Select serial I/O mode
-	CKDIR	Select internal clock or external clock
-	UFORM	Select either LSB first or MSB first
-	IRS	Select how the transmit interrupt is generated
G2CR	TI	Transmit buffer empty flag
-	TXEPT	Transmit register empty flag
-	RI	Receive complete flag
-	TE	When transmission is enabled, set to "1"
-	RE	When reception is enabled, set to "1"
-	IPOL	ISRxD2 input polarity inverse (usually set to "0")
-	OPOL	ISTxD2 output polarity inverse (usually set to "0")
IECR	IEB	Set to "1"
-	IETS	When transmission starts, set to "1"
-	IEBBS	Select IEBus busy flag
-	DF	Select whether the digital filter is available or not
•	IEM	Select mode
IEAR	11 to 0	Set address data
IETIF	IETNF	Normal complete flag when transmitting
•	IEACK	ACK error flag when transmitting
•	IETMB	Maximum transfer byte error flag when transmitting
•	IETT	Timing error flag when transmitting
•	IEABL	Arbitration lost flag when transmitting
IERIF	IERNF	Normal complete flag when receiving
	IEPAR	Parity error flag when receiving
	IERMB	Maximum transfer byte error flag when receiving
	IERT	Timing error flag when receiving
	IERETC	Other cause receive completed flag when receiving
G2RB	7 to 0	Received data and error flag are stored
-	OER	Overrun error flag
G2TB	7 to 0	Write transfer bit length and data to be transmitted

Table 21.38 Pin Settings (1)

Port	Function		Bit and Setting			Register ⁽²⁾	
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P70 ⁽¹⁾	IEo∪⊤ output	PS1_0 = 1	$PSL1_0 = 0$	PSC_0 = 1	-	-	G2POCR0
P71	IEIN input	PS1_1 = 0	-	-	PD7_1 = 0	IPS5 to 4 = 002	-

NOTES:

- 1. P70 is a port for the N-channel open drain output.
- 2. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".

Table 21.39 Pin Settings (2)

	Port	Function	Bit and Setting			Register ⁽¹⁾	
	Name		PS3 Register ⁽²⁾	PSL3 Register	PD9 Register ⁽²⁾	IPS Register	
l	P91	IEIN input	PS3_1 = 0	-	-	IPS5 to 4 = 012	-
l	P92	IEo∪⊤ output	PS3_2 = 1	PSL3_2 = 1	PD9_2 = 0	-	G2POCR0

NOTES:

- 1. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".
- 2. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Table 21.40 Pin Settings (3)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS7 Register	PSL7 Register	IPS Register	
P134	IEo∪⊤ output	PS7_4 = 1	-	-	G2POCR0
P135	IEIN input	PS7_5 = 0	PD13_5 = 0	IPS5 to 4 = 102	-

NOTES:

1. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".

21.6 Group 3 Communication Function

The communication function is available when two 16-bit shift registers are used with the waveform generation function.

In the intelligent I/O group 3, 8-bit or 16-bit synchronous communication function is available. Figures 21.47 to 21.49 show registers associated with the communication function.

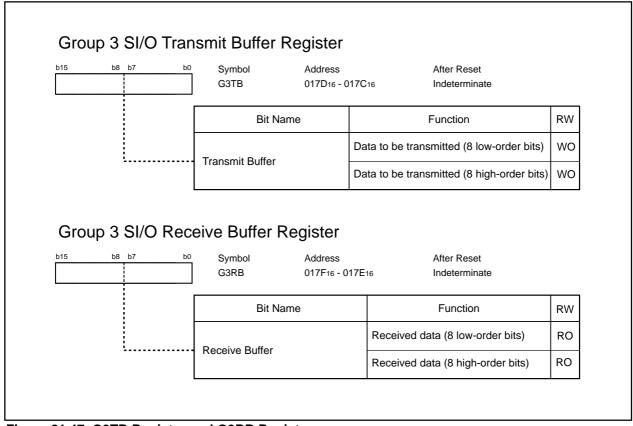


Figure 21.47 G3TB Register and G3RB Register

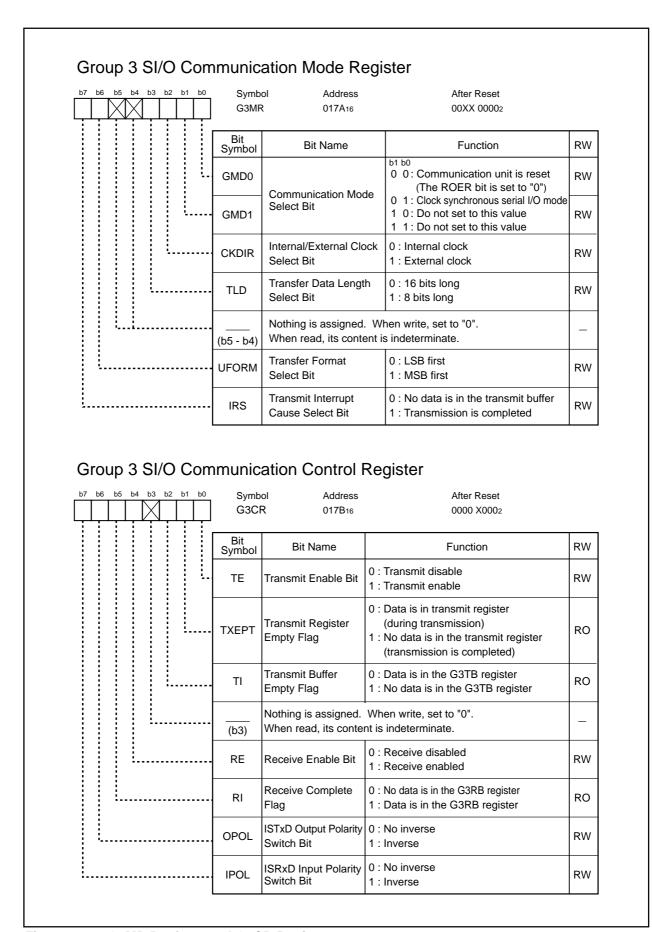


Figure 21.48 G3MR Register and G3CR Register

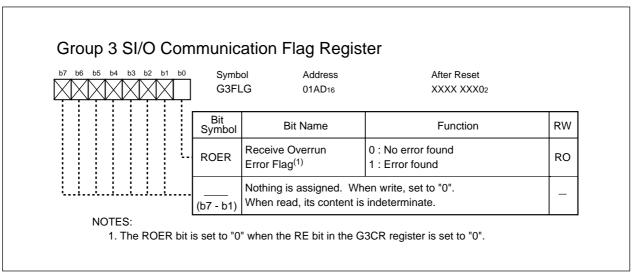


Figure 21.49 G3FLG Register

21.6.1 8-bit or 16-bit Clock Synchronous Serial I/O Mode (Group 3)

In 8-bit or 16-bit clock synchronous serial I/O mode, data is transmitted and received using the transfer clock. When the internal clock is selected as the transfer clock, the channel 0 and channel 2 waveform generation functions generate the transfer clock. ISTxD3, ISCLK3 and ISRxD3 share pins with OUTC30 to OUTC32 and are available in the 144-pin package only.

Table 21.41 lists specifications of clock synchronous serial I/O mode. Table 21.42 lists registers to be used and their settings. Tables 21.43 and 21.44 list pin settings. Figure 21.50 and 21.51 shows an example of transmit and receive operation.

Table 21.41 Clock Synchronous Serial I/O Mode (Group 3)

Item	Specification
Transfer Data Format	Transfer data: 8 bits or 16 bits long
Transfer Clock ⁽¹⁾	When the CKDIR bit in the G3MR register is set to "0" (internal clock): n: setting value of the G3PO0 register, 000116 to FFFD16 The G3PO0 register determines the bit rate and the transfer clock is generated in phase-delayed waveform output mode of the channel 2 waveform generation function. When the CKDIR bit is set to "1" (external clock): input from the ISCLK3 pin
Transmit Start Condition ⁽²⁾	Set registers associated with the waveform generation function and the G3MR register. Then, set as written below after waiting at least one transfer clock cycle. • Set the TE bit in the G3CR register to "1" (transmit enable) • Set the TI bit in the G3CR register to "0" (data in the G3TB register)
Receive Start Condition	Set registers associated with the waveform generation function and the G3MR register. Then, set as written below after waiting at least one transfer clock cycle. • Set the RE bit in the G3CR register to "1" (receive enable) • Set theTE bit to "1" (transmit enable) • Set the TI bit to "0" (data in the G3TB register)
Interrupt Request	 While transmitting, one of the following conditions can be selected to set the SIO3TR bit in the IIO10IR register to "1" (see Figure 10.14): When the IRS bit in the G3MR register is set to "0" (no data in the transmit buffer), one transfer clock cycle after data transmission starts When the IRS bit is set to "1" (reception completed), 15 transfer clock cycles after data transmission starts in 16-bit clock synchronous serial I/O mode (set the DLS bit in the G3MR register to "0"), or 7 transfer clock cycles after data transmission starts in 8-bit clock clock synchronous serial I/O mode (set the DLS bit to "1"). While receiving, the following condition can be selected to set the SIO3RR bit in the IIO9IR register to "1" (see Figure 10.14): 15.5 transfer clock cycles after data transmission starts in 16-bit clock synchronous serial I/O mode, or 7.5 transfer clock cycles after data transmission starts in 8-bit clock synchronous serial I/O mode
Error Detection	Overrun error ⁽³⁾ This error occurs in 16-bit clock synchronous serial I/O mode when the 15th bit of the next data is received before reading the G3RB register. This error occurs in 8-bit clock synchronous serial I/O mode when the 7th bit of the next data is received before reading the G3RB register.
Selectable Function	 LSB first/MSB first Select either bit 0 or bit 7 to transmit/receive data ISTxD3 and ISRxD3 I/O polarity inverse ISTxD3 pin output level and ISRxD3 pin input level are inversed

- 1. The transfer clock must be fBT3 divided by six or more.
- 2. Transmit interrupt request is generated when the TE bit is set to "1". Set the interrupt-associated registers after setting the TE bit.
- 3. When an overrun error occurs, the G3RB register is indeterminate.

Table 21.42 Registers to be Used and Settings

Register	Bit	Function
G3BCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G3BCR1	7 to 0	Set to "0001 00102"
G3POCR0	7 to 0	Set to "0000 01112"
G3POCR1	7 to 0	Set to "0000 01112"
G3POCR2	7 to 0	Set to "0000 00102"
G3PO0	15 to 0	Set bit rate fbt3 2 x (setting value + 2) = transfer clock frequency
G3PO2	15 to 0	Set to a value smaller than the G3PO0 register
G3FE	7 to 0	Set to "0000 01112"
G3MR	GMD1 to GMD0	Set to "012"
	CKDIR	Select the internal clock or external clock
	TLD	Select transfer data length
	UFORM	Select either LSB first or MSB first
	IRS	Select how the transmit interrupt is generated
G3CR	TE	Set to "1" to enable transmission
	TXEPT	Transmit register empty flag
	TI	Transmit buffer empty flag
	RE	Set to "1" to enable reception
	RI	Receive complete flag
	OPOL	ISTxD3 output polarity inverse (usually set to "0")
	IPOL	ISRxD3 input polarity inverse
G3TB	15 to 0	Write transmit data
G3RB	15 to 0	Received data is stored

Table 21.43 Pin Setting in Clock Synchronous Serial I/O Mode (Group 3)

Port	Function		Bit and Setting			
Name		PS2 Register	PSL2 Register	PD8 Register	IPS Register	
P81	ISTxD3 output	PS2_1 = 1	PSL2_1 = 1	-	-	G3POCR0
P82	ISRxD3 input	PS2_2 = 0	-	PD8_2 = 0	IPS7 = 0	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.44 Pin Setting (Continued)

Port	Function		Bit and Setting		Register ⁽¹⁾
Name		PS6 Register	PD12 Register	IPS Register	
P120	ISTxD3 output	PS6_0 =1	-	-	G3POCR0
P121	ISCLK3 input	PS6_1 = 0	PD12_1 = 0	-	-
	ISCLK3 output	PS6_1 = 1	-	-	G3POCR1
P122	ISRxD3 input	PS6_2 = 0	PD12_2 = 0	IPS7 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

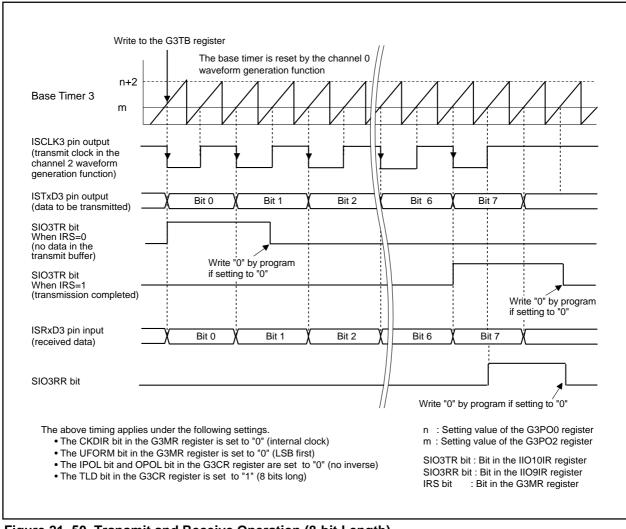


Figure 21. 50 Transmit and Receive Operation (8-bit Length)

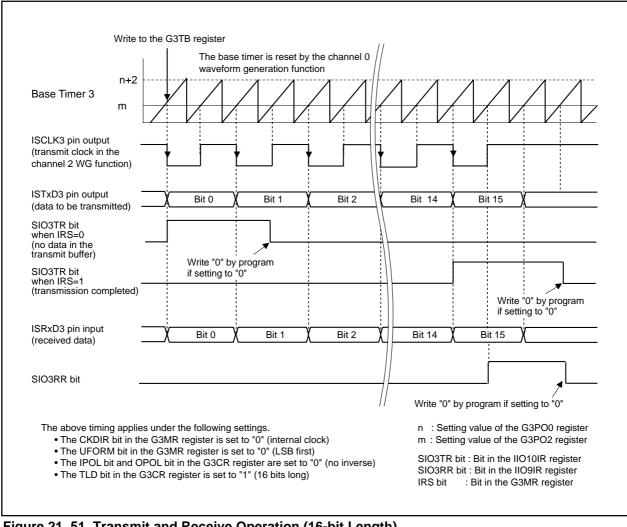


Figure 21. 51 Transmit and Receive Operation (16-bit Length)

22. CAN Module

The CAN (Controller Area Network) module incorporated in the M32C/83 group is a Full CAN module, compatible with CAN Specification 2.0 Part B. Table 22.1 lists specifications of the CAN module.

Table 22.1 CAN Module Specifications

Item	Specification
Protocol	CAN Specification 2.0 Part B
Message Slots	16 slots
Polarity	Dominant: "L"
	Recessive: "H"
Acceptance Filter	Global mask: 1 mask (for message slots 0 to 13)
	Local mask: 2 masks (for message slots 14 and 15 respectively)
Baud Rate	Baud rate = 1 Max. 1 Mbps
	Tq clock cycle = $\frac{BRP + 1}{f_1}$
	Tq per bit = SS + PTS +PBS1+PBS2
	Tq: Time quantum
	BRP: Setting value in the C0BRP and C1BRP registers, 1-255
	SS: Synchronization Segment; 1 Tq
	PTS: Propagation Time Segment; 1 to 8 Tq
	PBS1: Phase Buffer Segment 1; 2 to 8 Tq
	PBS2: Phase Buffer Segment 2; 2 to 8 Tq
Remote Frame Automatic	Message slot that receives the remote frame transmits the data frame
Answering Function	automatically
Time Stamp Function	Time stamp function with a 16-bit counter. Count source can be selected
	from the CAN bus bit clock divided by 1, 2, 3 or 4.
BasicCAN Mode	BasicCAN function can be used with the CANi message slots 14 and 15.
Transmit Abort Function	Transmit request is aborted
Loopback Function	Frame transmitted by the CAN module is received by the same CAN module
Forcible Error Active	The CAN module is forced into an error active state
Clear Function	

NOTES:

1. Use an oscillator with maximum 1.58% oscillation tolerance.

Figure 22.1 shows a block diagram of the CAN module. Figure 22.2 shows CANi message slot buffer (the message slot buffer) (i=0,1) and CANi message slot (the message slot) j (j=0 to 15). Table 22.2 lists pin settings of the CAN module.

The message slot cannot be accessed directly from the CPU. Allocate the message slot j to be used to the message slot buffer 0 or 1. The message slot j is accessed via the message slot buffer address. The CiSBS register selects the message slot j to be allocated. Figure 22.2 shows the 16-byte message slot buffer and message slot.

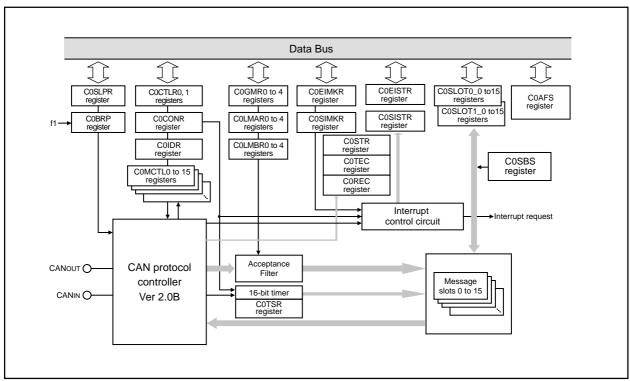


Figure 22.1 CAN Module Block Diagram

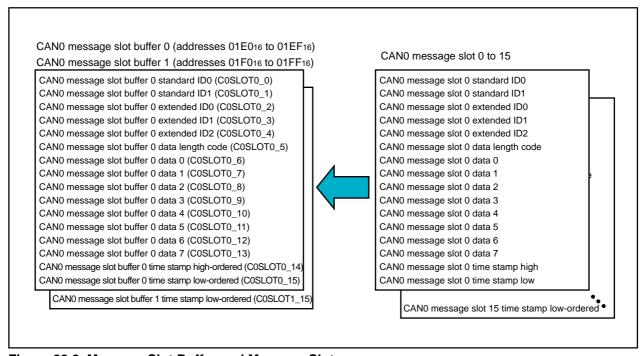


Figure 22.2 Message Slot Buffer and Message Slot

Table 22.2 Pin Settings

Port	Function	Bit and Setting							
		PS1, PS2	PSL1, PSL2	PSC Registers	IPS Registers	PD7, PD8			
		Registers	Registers			Registers			
P76	CANout	PS1_6=1	PSL1_6=0	PSC_6=1	_	_			
P77	CANIN	PS1_7=0	_	_	IPS3=0	PD7_7=0			
P82	CANOUT	PS2_2=1	PSL2_2=1	_	_	_			
P83	CANIN	_	_	_	IPS3=1	PD8_3=0			

22.1 CAN-Associated Registers

Figures 22.3 to 22.26 show registers associated with CAN. To access the associated registers, set the MCD4 to MCD0 bits in the MCD register to "100102" (no division of CPU clock), the PM13 bit in the PM1 register to "1" (2 wait states), and the CM07 bit in the CM0 register to "0" (XIN-XOUT selected).

22.1.1 CAN0 Control Register 0 (C0CTLR0 Register)

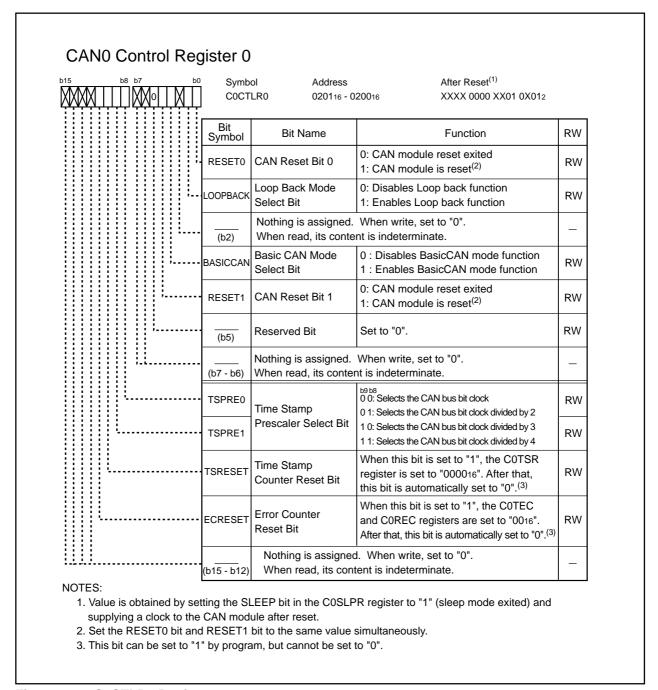


Figure 22.3 C0CTLR0 Register

22.1.1.1 RESET0 Bit and RESET1 Bit

When both RESET0 and RESET1 bits are set to "1", the CAN module is immediately reset regardless of ongoing CAN communication.

After the RESET0 and RESET1 bits are set to "1" and the CAN module reset is completed, the COTSR register is set to "000016". The COTEC and COREC registers are set to "0016" and the STATE_ERRPAS and STATE_BUSOFF bits in the COSTR register are set to "0" as well.

When both RESET0 and RESET1 bits are changed "1" to "0", the C0TSR register starts counting. CAN communication is available after 11 continuous recessive bits are detected.

NOTES:

- 1. Set the same value in both RESET0 and RESET1 bits simultaneously.
- 2. Set CAN configuration upon confirming that the STATE_RESET bit in the COSTR register is set to "1" (CAN module reset completed) after setting the RESET0 and RESET1 bits to "1".
- 3. The CANOUT pin outputs an "H" signal as soon as the RESET0 and RESET1 bits are set to "1". CAN bus error may occur when the RESET0 and RESET1 bits are set to "1" while the CAN frame is transmitting.
- 4. For CAN communication, set the PS1, PS2, PSL1, PSL2, PSC, and IPS registers when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.2 LOOPBACK Bit

When the LOOPBACK bit is set to "1" (loopback function enabled) and the receive message slot has a matched ID and frame format with a transmitted frame, the transmitted frame is stored to the receive message slot.

NOTES:

- 1. No ACK for the transmitted frame is returned.
- 2. Change the LOOPBACK bit only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.3 BASICCAN Bit

When the BASICCAN bit is set to "1", the message slots 14 and 15 enter BasicCAN mode.

In BasicCAN mode, the message slots 14 and 15 are used as dual-structured buffers. The message slot 14 and 15 alternately store a received frame having matched ID detected by acceptance filtering. The ID in the message slot 14 and the C0LMAR0 to C0LMAR4 registers are used for acceptance filtering when the message slot 14 is active (the next received frame is to be stored in the message slot 14). The ID in the message slot 15 and the C0LMBR0 to C0LMBR4 registers are used when the message slot 15 is active. Both data frame and remote frame can be received.

When entering BasicCAN mode, set the same ID in two message slots and set the same values in the C0LMAR0 to C0LMAR4 registers and in the C0LMBR0 to C0LMBR4 registers.

Follow the procedure below to enter BasicCAN mode.

- (1) Set the BASICCAN bit to "1".
- (2) Set IDs in the message slots 14 and 15. Set the C0LMAR0 to C0LMAR4 registers and C0LMBR0 to C0LMBR4 registers. (Set to the same values.)
- (3) Set the IDE14 and 15 bits in the C0IDR register to select a frame format (standard or extended) for the message slots 14 and 15. (Set to the same format.)
- (4) Set the REMACTIVE bit in the COMCTL14 and COMCTL15 registers in the message slots 14 and 15 to "0" (data frame received) and the RECREQ bit to "1" (request to receive).

NOTES:

- 1. Change the BASICCAN bit only when the STATE_RESET bit is set to "1" (CAN module reset completed).
- 2. The message slot 14 is the first slot to become active after the RESET0 and RESET1 bits are set to "0".
- 3. The message slots 0 to 13 are not affected by entering BasicCAN mode.

22.1.1.4 TSPRE1, TSPRE0 Bits

The TSPRE1 and TSPRE0 bits determine which count source is used for the time stamp counter. NOTES:

1. Change the TSPRE1 to TSPRE0 bits only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.5 TSRESET Bit

When the TSRESET bit is set to "1" (counter reset), the COTSR register is set to "000016". The TSRESET bit is automatically set to "0" after the COTSR register is set to "000016".

22.1.1.6 ECRESET Bit

When the ECRESET bit is set to "1", the COTEC and COREC registers are set to "0016". The CAN module forcibly goes into an error active state.

The ECRESET bit is automatically set to "0" after the CAN module enters an error active state. NOTES:

1. In an error active state, the CAN module is ready to communicate when 11 continuous recessive bits are detected on the CAN bus.

CAN0 Control Register 1 Address After Reset⁽¹⁾ Symbol 0 C0CTLR1 024116 XX00 00XX2 0 0 Bit Bit Name RW **Function** Symbol Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b1 - b0)Set to "0" Reserved Bit RW (b2) 0 : Selects the message slot control RW CAN0 Bank Switch Bit BANKSEI register 1 : Selects the masked register Reserved Bit Set to "0" RW (b5 - b4) Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b6) NOTES: 1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

22.1.2 CAN0 Control Register 1 (C0CTLR1 Register)

Figure 22.4 C0CTLR1 Register

22.1.2.1 BANKSEL Bit

The BANKSEL bit in the COCTLR1 register selects the registers allocated to addresses 022016 to 023F16.

The C0MCTL0 to C0MCTL15 registers can be accessed by setting the BANKSEL bit to "0". The C0GMR0 to C0GMR4 registers, C0LMAR0 to C0LMAR4 registers and C0LMBR0 to C0LMBR4 registers can be accessed by setting the BANKSEL bit to "1".

22.1.3 CAN0 Sleep Control Register (C0SLPR Register)

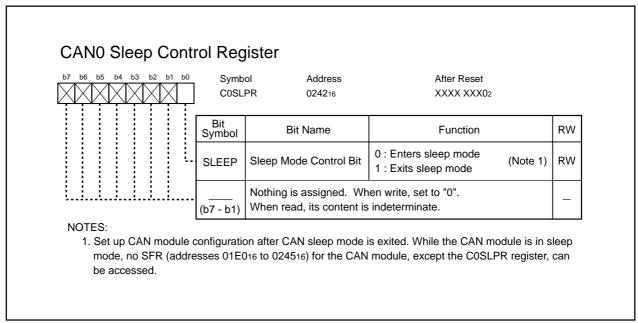


Figure 22.5 COSLPR Register

22.1.3.1 SLEEP Bit

When the SLEEP bit is set to "0", the clock supplied to the CAN module stops running and enters

When the SLEEP bit is set to "1", the clock supplied to the CAN module starts running and exits sleep mode.

NOTES:

1. Enter sleep mode after the STATE_RESET bit in the COSTR register is set to "1" (CAN module reset completed).

CAN0 Status Register Symbol After reset(1) Address C0STR 020316 - 020216 X000 0X01 0000 00002 RW Bit Name Function Symbol b3 b2 b1 b0 MBOX0 RO 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 MBOX1 RO 0 0 1 1: Message slot 3 Active Slot **Determination Bit** RO MBOX2 1 1 0 1: Message slot 13 1 1 0: Message slot 14 MBOX3 RO 1 1 1: Message slot 15 Transmit Complete 0: Transmission is not completed **TRMSUCC** RO State Flag 1: Transmission is completed Receive Complete 0: Reception is not completed RECSUCC RO State Flag 1: Reception is completed 0: Not transmitting RO **TRMSTATE** Transmit State Flag 1: During transmission 0: Not receiving RO RECSTATE Receive State Flag 1: During reception 0: CAN module is operating STATE RESET CAN Reset State Flag RO 1: CAN module reset is completed 0: Mode except Loop back mode Loop Back State Flag RO STATE LOOPBACK 1: Loop back mode Nothing is assigned. When write, set to "0". (b10) When read, its content is indeterminate. 0: Mode except BasicCAN mode STATE BASICCAN BasicCAN State Flag RO 1: BasicCAN mode 0: No error occurs STATE_BUSERROR CAN Bus Error State Flag RO 1: Error occurs 0: No error passive state STATE_ERRPAS Error Passive State Flag RO 1: Error passive state 0: No bus-off state STATE_BUSOFF Bus-off State Flag RO 1: Bus-off state Nothing is assigned. When write, set to "0". (b15) When read, its content is indeterminate. NOTES: 1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

22.1.4 CANO Status Register (COSTR Register)

Figure 22.6 COSTR Register

22.1.4.1 MBOX3 to MBOX0 Bits

The MBOX3 to MBOX0 bits store relevant slot numbers when the CAN module has completed transmitting data or storing received data.

22.1.4.2 TRMSUCC Bit

The TRMSUCC bit is set to "1" when the CAN module has transmitted data as expected.

The TRMSUCC bit is set to "0" when the CAN module has received data as expected.

22.1.4.3 RECSUCC Bit

The RECSUCC bit is set to "1" when the CAN module has received data as expected. (Whether received message has been stored in the message slot or not is irrelevant.) If the received message is transmitted in loopback mode, the TRMSUCC bit is set to "1" and the RECSUCC bit is set to "0". The RECSUCC bit is set to "0" when the CAN module has transmitted data as expected.

22.1.4.4 TRMSTATE Bit

The TRMSTATE bit is set to "1" when the CAN module is performing as a transmit node.

The TRMSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a receive node.

22.1.4.5 RECSTATE Bit

The RECSTATE bit is set to "1" when the CAN module is performing as a receive node.

The RECSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a transmit node.

22.1.4.6 STATE RESET Bit

After both RESET0 and RESET1 bits are set to "1" (CAN module reset), the STATE RESET bit is set to "1" as soon as the CAN module is reset.

The STATE_RESET bit is set to "0" when the RESET0 and RESET1 bits are set to "0".

22.1.4.7 STATE LOOPBACK Bit

The STATE_ LOOPBACK bit is set to "1" when the CAN module is in loopback mode.

The STATE_LOOPBACK bit is set to "1" when the LOOPBACK bit in the COCTLR0 register is set to "1" (loop back function enabled).

The STATE_LOOPBACK bit is set to "0" when the LOOPBACK bit is set to "0" (loop back function disabled).

22.1.4.8 STATE BASICCAN Bit

The STATE BASICCAN bit is set to "1" when the CAN module is in BasicCAN mode.

Refer to 22.1.1.3 BASICCAN Bit for BasicCAN mode.

The STATE BASICCAN bit is set to "0" when the BASICCAN bit is set to "0" (BasicCAN mode function disabled).

The STATE_BASICCAN bit is set to "1" when the BASICCAN bit is set to "1" (BasicCAN mode function enabled), the REMACTIVE bits in the C0MCTL14 and C0MCTL15 registers in the message slot 14 and 15 are set to "0" (data frame received) and the RECREQ bit is set to "1" (request to receive the frame).

22.1.4.9 STATE BUSERROR Bit

The STATE_BUSERROR bit is set to "1" when an CAN communication error is detected.

The STATE_BUSERROR bit is set to "0" when the CAN module has transmitted or received data as expected. Whether a received message has been stored into the message slot or not is irrelevant. NOTES:

1. When the STATE_BUSERROR bit is set to "1", the STATE_BUSERROR bit remains unchanged even if both RESET 0 and RESET1 bits are set to "1" (CAN module reset).

22.1.4.10 STATE ERRPAS Bit

The STATE ERRPAS bit is set to "1" when the value of the COTEC or COREC register exceeds 127 and places the CAN module in an error-passive state.

The STATE ERRPAS bit is set to "0" when the CAN module in an error passive state is placed in another error state.

The STATE_ERRPAS bit is set to "0" when both RESET0 and RESET1 bits are set to "1" (CAN module is reset).

22.1.4.11 STATE BUSOFF Bit

The STATE_BUSOFF bit is set to "1" when the value of the C0TEC register exceeds 255 and the CAN module in a bus-off state.

The STATE_BUSOFF bit is set to "0" when the CAN module in a bus-off state is placed in an erroractive state.

The STATE_BUSOFF bit is set to "0" when both RESET0 and RESET1 bits are set to "1" (CAN module reset).

22.1.5 CAN0 Extended ID Register (C0IDR Register)

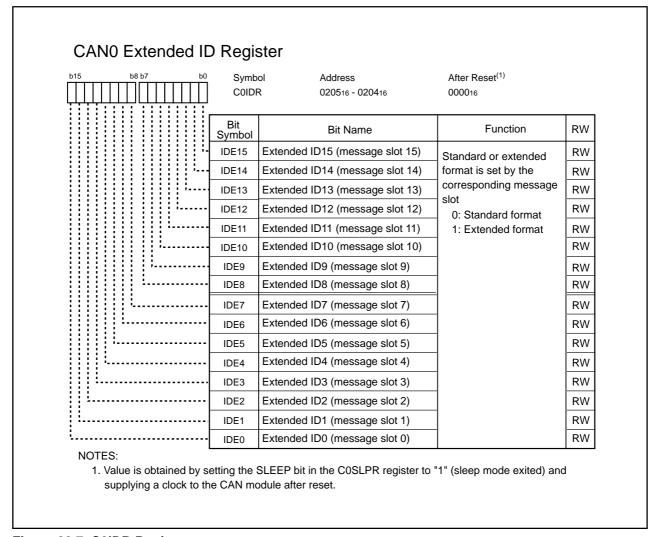


Figure 22.7 C0IDR Register

Bits in the COIDR register determine the frame format in the message slot corresponding to each bit.

The standard format is selected when the bit is set to "0".

The extended format is selected when the bit is to set "1".

NOTES:

1. Set each bit in the C0IDR register when neither transmit request nor receive request from the message slot is generated.

22.1.6 CAN0 Configuration Register (C0CONR Register)

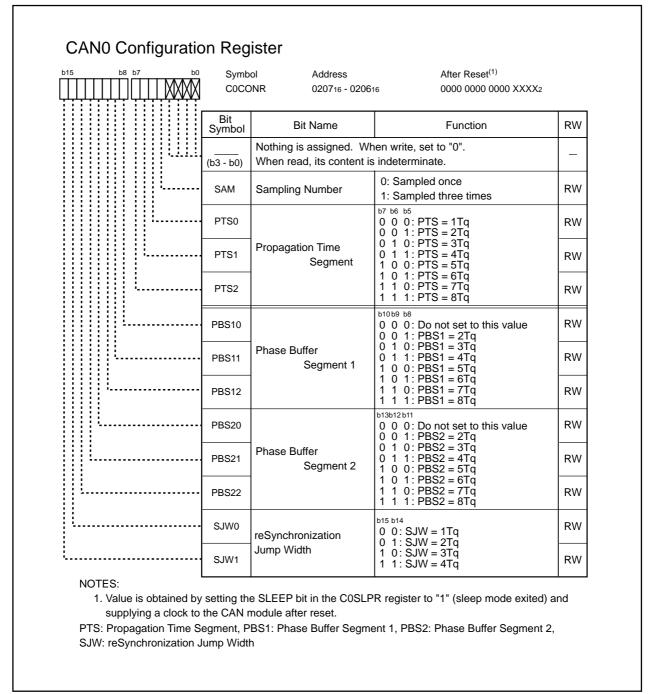


Figure 22.8 C0CONR Register

22.1.6.1 SAM Bit

The SAM bit determines the number of sample points to be taken per bit.

When the SAM bit is set to "0", only one sample is taken per bit at the end of the Phase Buffer Segment 1 (PBS1) to determine the value of the bit.

When the SAM bit is set to "1", three samples per bit are taken; one time quantum and two time quanta before the end of PBS1, and at the end of PBS1. The sample result value which is detected more than twice becomes the value of the bit sampled.

22.1.6.2 PTS2 to PTS0 Bits

The PTS2 to PTS0 bits determine PTS width.

22.1.6.3 PBS12 to PBS10 Bits

The PBS12 to PBS10 bits determine PBS1 width. Set the PBS12 to 10 bits to "0012" or more.

22.1.6.4 PBS22 to PBS20 Bits

The PBS22 to PBS20 bits determine PBS2 width. Set the PBS22 to PBS20 bits to "0012" or more.

22.1.6.5 SJW1 to SJW0 Bits

The SJW1 to SJW0 bits determine SJW width. Set the SJW1 to SJW0 bits to a value equal to or less than that of the PBS12 to PBS10 bits and PBS22 to PBS20 bits.

Table 22.3 Bit Timing when CPU Clock = 30 MHz

Baud Rate	BRP	Tq Clock Cycles (ns)	Tq Per Bit	PTS+PBS1	PBS2	Sample Point
1Mbps	1	66.7	15	12	2	87%
	1	66.7	15	11	3	80%
	1	66.7	15	10	4	73%
	2	100	10	7	2	80%
	2	100	10	6	3	70%
	2	100	10	5	4	60%
500Kbps	2	100	20	16	3	85%
	2	100	20	15	4	80%
	2	100	20	14	5	75%
	3	133.3	15	12	2	87%
	3	133.3	15	11	3	80%
	3	133.3	15	10	4	73%
	4	166.7	12	9	2	83%
	4	166.7	12	8	3	75%
	4	166.7	12	7	4	67%
	5	200	10	7	2	80%
	5	200	10	6	3	70%
	5	200	10	5	4	60%

22.1.7 CAN0 Time Stamp Register (C0TSR Register)

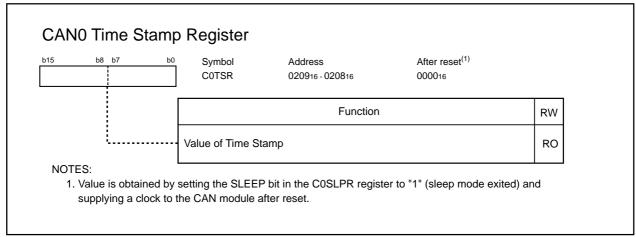


Figure 22.9 C0TSR Register

The C0TSR register is a 16-bit counter. The TSPRE0 and TSPRE1 bits in the C0CTLR0 register select the CAN bus bit clock divided by 1, 2, 3 or 4 as the count source for the COTSR register.

When data transmission or reception is completed, the value of the C0TSR register is automatically stored into the message slot.

The C0TSR register starts a counter increment when the RESET0 and RESET1 bits in the C0CTLR0 register are set to "0".

The COTSR register is set to "000016":

- at the next count timing after the COTSR register is set to "FFFF16";
- when the RESET0 and RESET1 bits are set to "1" (CAN module reset) by program, or
- when the TSRESET bit is set to "1" (C0TSR register reset) by program.

In loopback mode, when either data frame receive message slot or remote frame receive message slot is available to store the message, the value of the COTSR register is also stored into the message slot when data reception is completed. The value of the C0TSR register is not stored when data transmission is completed.

22.1.8 CANO Transmit Error Count Register (COTEC Register)

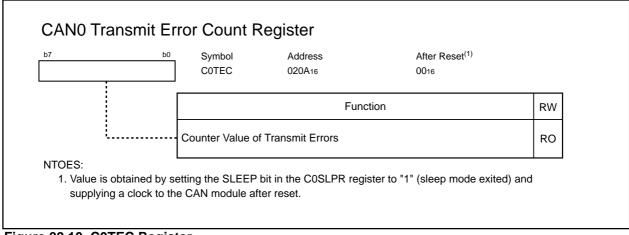


Figure 22.10 C0TEC Register

In an error active or an error passive state, the count value of a transmission error is stored into the C0TEC register. The counter is decremented when the CAN module has transmitted data as expected or is incremented when an transmit error occurs.

In a bus-off state, an indeterminate value is stored into the C0TEC register. The C0TEC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.9 CANO Receive Error Count Register (COREC Register)

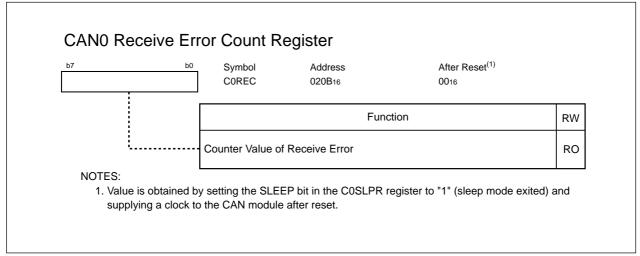


Figure 22.11 COREC Register

In an error active or an error passive state, a count value of the reception error is stored into the COREC register. The counter is decremented when the CAN module has received data as expected or is incremented when a receive error occurs.

The COREC register is set to 127 when the COREC register is 128 (error passive state) or more and the CAN module has received as expected.

In a bus-off state, an indeterminate value is stored into the C0REC register. The C0REC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.10 CAN0 Baud Rate Prescaler (C0BRP Register)

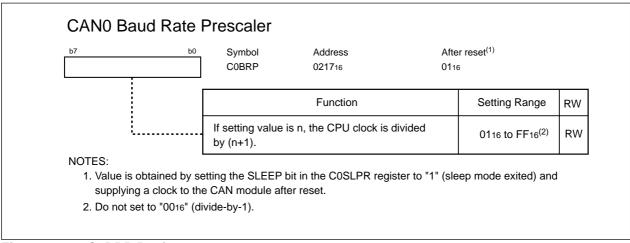


Figure 22.12 C0BRP Register

The C0BRP register determines the Tq clock cycle of the CAN bit timing. The baud rate is obtained from Tq clock cycle x Tq per bit.

SS: Synchronization Segment; 1 Tq

PBS1: Phase Buffer Segment 1; 2 to 8 Tq

BRP: Setting value of the C0BRP register; 1-255

PTS: Propagation Time Segment; 1 to 8 Tq PBS2: Phase Buffer Segment 2; 2 to 8 Tq

22.1.11 CANO Slot Interrupt Status Register (COSISTR Register)

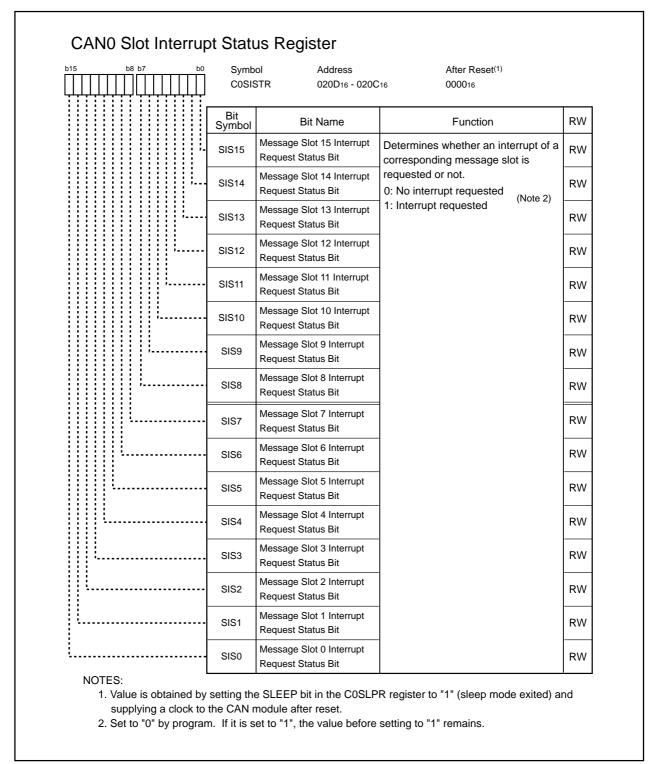


Figure 22.13 C0SISTR Register

When using the CAN interrupt, the C0SISTR register indicates which message slot is requesting an interrupt. The SISi bits (i=0 to 15) are not automatically set to "0" (no interrupt requested) when an interrupt is acknowledged. Set the SISj bits to "0" by program⁽¹⁾.

Refer to 22.3 CAN Interrupt for details.

22.1.11.1 Message Slot for Transmission

The SISi bit is set to "1" (interrupt requested) when the C0TSR register is stored into the message slot i after data transmission is completed.

22.1.11.2 Message Slot for Reception

The SISi bit is set to "1" when the received message is stored in the message slot i after data reception is completed.

NOTES:

1. Use the MOV instruction, instead of the bit clear instruction, to set the SISi bit to "0". Bits in the COSISTR register, which are not being changed to "0", must be to "1".

For example: To set the SIS0 bit to "0"

Assembly language: mov.w #07FFFh, C0SISTR

C language: c0sistr = 0x7FFF;

- 2. If the automatic answering function is enabled in the remote frame receive message slot, the SISi bit is set to "1" after the remote frame is received and after the data frame is transmitted.
- 3. In the remote frame transmit message slot, the SISi bit is set to "1" after the remote frame is transmitted and after the data frame is received.
- 4. The SISi bit is set to "1" if the SISi bit is set to "1" by an interrupt request and "0" by program simultaneously.

22.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)

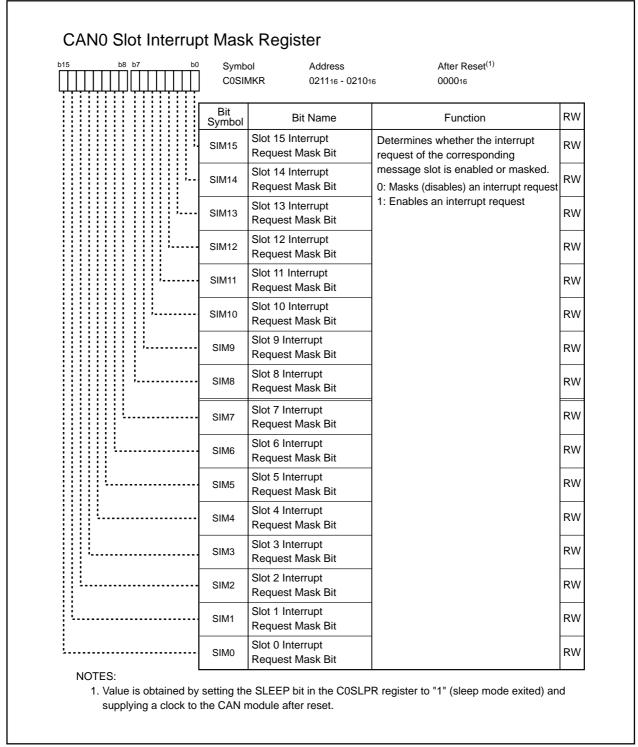


Figure 22.14 COSIMKR Register

The CiSIMKR register determines whether an interrupt request that is generated by a data transmission or reception in the corresponding message slot is enabled or disabled. When the SIMi bit (i=0 to 15) is set to "1", an interrupt request generated by a data transmission or reception in the corresponding message slot is enabled. Refer to **22.3 CAN Interrupt** for details.

CAN0 Error Interrupt Mask Register Symbol Address After Reset(1) C0EIMKR 021416 XXXX X0002 Bit Symbol Bit Name **Function** RW **Bus-off Interrupt** 0: Masks (disables) an interrupt request RW **BOIM** 1: Enables an interrupt request Mask Bit Error-passive Interrupt 0: Masks (disables) an interrupt request RW **EPIM** Mask Bit 1: Enables an interrupt request CAN bus-error Interrupt | 0: Masks (disables) an interrupt request RW BEIM 1: Enables an interrupt request Mask Bit Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b3) NOTES: 1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying the clock to the CAN module after reset.

22.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register)

Figure 22.15 C0EIMKR Register

22.1.13.1 BOIM Bit

The BOIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in a bus-off state. When the BOIM bit is set to "1", the bus-off interrupt request is enabled.

22.1.13.2 EPIM Bit

The EPIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in an error passive state. When the EPIM bit is set to "1", the error passive interrupt request is enabled.

22.1.13.3 BEIM Bit

The BEIM bit determines whether an interrupt request is enabled or disabled when a CAN bus error occurs. When the BEIM bit is set to "1", the CAN bus error interrupt request is enabled.

Refer to 22.3 CAN Interrupt for details.

22.1.14 CAN0 Error Interrupt Status Register (C0EISTR Register)

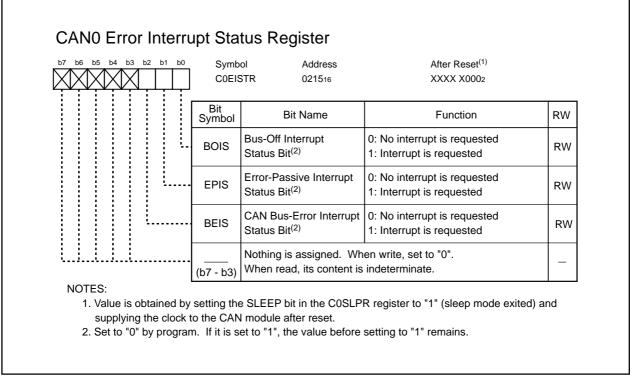


Figure 22.16 C0EISTR Register

When using the CAN interrupt, the C0EISTR register indicates the cause of the generated error interrupt. The BOIS, EPIS and BEIS bits are not automatically set to "0" (no interrupt requested) even if an interrupt is acknowledged. Set these bits to "0" by program⁽¹⁾.

Refer to 22.3 CAN Interrupt for details.

22.1.14.1 BOIS Bit

The BOIS bit is set to "1" when the CAN module is placed in a bus-off state.

22.1.14.2 EPIS Bit

The EPIS bit is set to "1" when the CAN module is placed in an error passive state.

22.1.14.3 BEIS Bit

The BEIS bit is set to "1" when a CAN bus error is detected.

NOTES:

 Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CoEISTR register to "0". Bits not being changed to "0" must be set to "1".

For example: To set the BOIS bit to "0"

Assembly language: mov.b#006h, C0EISTR

C language: c0eistr = 0x06;

22.1.15 CAN0 Global Mask Register, CAN0 Local Mask Register A and CAN0 Local Mask Register B (C0GMRj (j=0 to4), C0LMARj and C0LMBRj Registers)

The C0GMRj, C0LMARj and C0LMBRj registers are used for acceptance filtering.

The C0GMRj register determines whether the IDs in the message slots 0 to 13 are verified. The C0LMARj register determines whether the ID in the message slot 14 is verified. The C0LMBRj register determines whether the ID in the message slot 15 is verified.

- When bits in these registers are set to "0", each ID bit, standard ID 0 to 1 bit and extended ID0 to 2 bit in the CAN0 message slots i (i=0 to 15) corresponding to the bits in the above registers, is masked while acceptance filtering. (The corresponding bits are assumed to have matching IDs.)
- When bits in these registers are set to "1", corresponding ID bits are compared with received IDs while acceptance filtering. If the received ID matches the ID in the message slot i, the received data having the matching ID is stored into that message slot.

- 1. Change the C0GMRj register only when the message slots 0 to 13 have no receive request.
- 2. Change the C0LMARj register only when the message slot 14 has no receive request.
- 3. Change the C0LMBRj register only when the message slot 15 has no receive request.

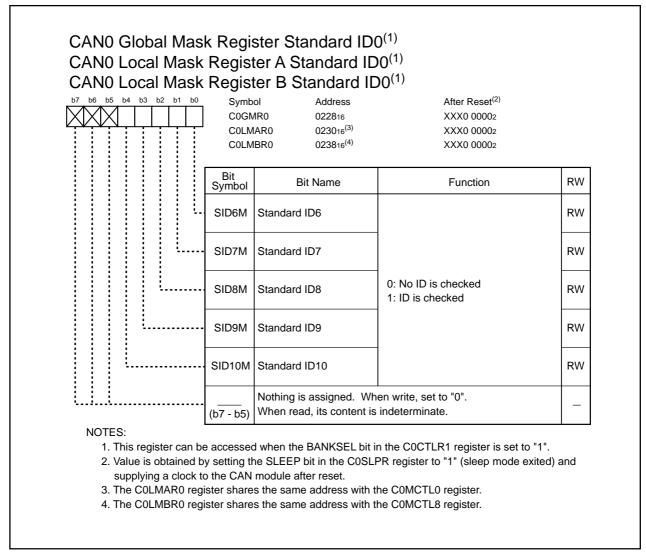
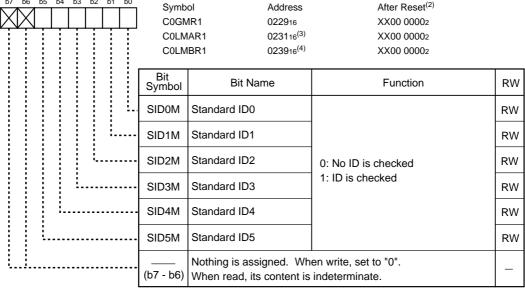
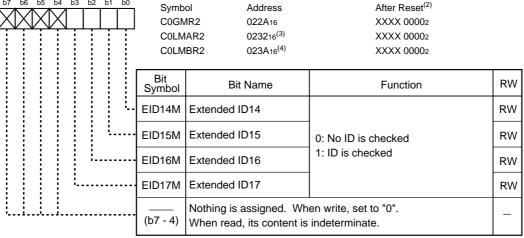



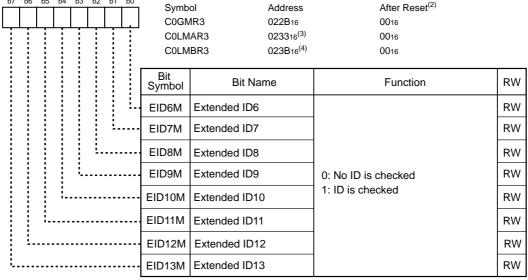
Figure 22.17 C0GMR0, C0LMAR0 and C0LMBR0 Registers


CAN0 Global Mask Register Standard ID1⁽¹⁾ CAN0 Local Mask Register A Standard ID1⁽¹⁾ CAN0 Local Mask Register B Standard ID1⁽¹⁾

NOTES:

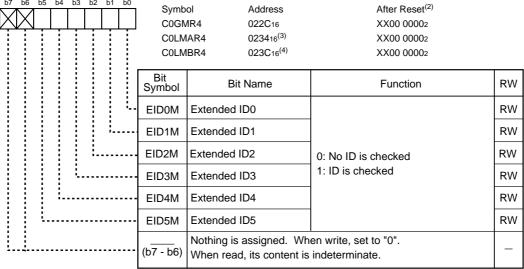
- 1. This register can be accessed when the BANKSEL bit in the COCTLR1 register is set to "1".
- Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.
- 3. The C0LMAR1 register shares the same address with the C0MCTL1 register.
- 4. The C0LMBR1 register shares the same address with the C0MCTL9 register.

CAN0 Global Mask Register Extended ID0⁽¹⁾ CAN0 Local Mask Register A Extended ID0⁽¹⁾ CAN0 Local Mask Register B Extended ID0⁽¹⁾



- 1. This register can be accessed when the BANKSEL bit in the COCTLR1 register is set to "1".
- 2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.
- 3. The C0LMAR2 register shares the same address with the C0MCTL2 register.
- 4. The C0LMBR2 register shares the same address with the C0MCTL10 register.

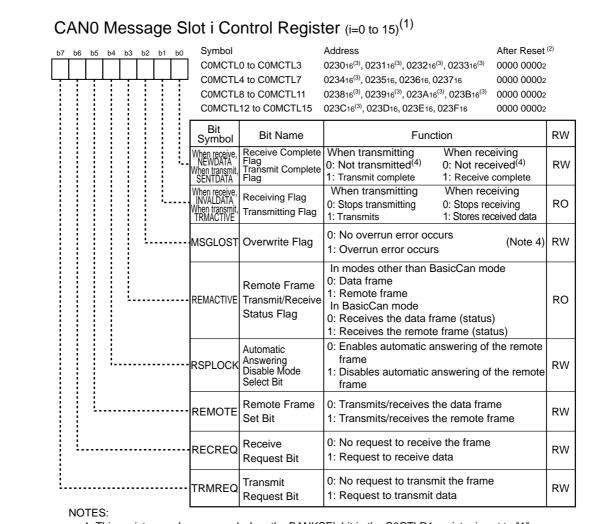
Figure 22.18 C0GMR1, C0LMAR1 and C0LMBR1 Registers and C0GMR2, C0LMAR2 and C0LMBR2 Registers


CAN0 Global Mask Register Extended ID1⁽¹⁾ CAN0 Local Mask Register A Extended ID1⁽¹⁾ CAN0 Local Mask Register B Extended ID1⁽¹⁾

NOTES:

- 1. This register can be accessed when the BANKSEL bit in the C0CTLR1 register is set to "1".
- 2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.
- 3. The C0LMAR3 register shares the same address with the C0MCTL3 register.
- 4. The C0LMBR3 register shares the same address with the C0MCTL11 register.

CAN0 Global Mask Register Extended ID2⁽¹⁾ CAN0 Local Mask Register A Extended ID2⁽¹⁾ CAN0 Local Mask Register B Extended ID2⁽¹⁾



- 1. This register can be accessed when the BANKSEL bit in the COCTLR1 register is set to "1".
- Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.
- 3. The C0LMAR4 register shares the same address with the C0MCTL4 register.
- 4. The C0LMBR4 register shares the same address with the C0MCTL12 register.

Figure 22.19 C0GMR3, C0LMAR3 and C0LMBR3 Registers and C0GMR4, C0LMAR4 and C0LMBR4 Registers

22.1.16 CANO Message Slot i Control Register (COMCTLi Register) (i=0 to 15)

- 1. This register can be accessed when the BANKSEL bit in the COCTLR1 register is set to "1".
- 2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.
- 3. The C0MCTL0 to C0MCTL4 registers each share addresses with the C0MAR0 to C0MAR4 registers.
- 4. Each bit can be set to "0" by program. If it is set to "1", the value before setting to "1" remains.

Figure 22.20 COMCTL0 to COMCTL15 Registers

Table 22.4 C0MCTLi Register (i= 0 to 15) Settings and Transmit/Receive Mode

Settings for the C0MCTLi Register								
TRMREQ	RECREQ	REMOTE	RSPLOCK	REMACTIVE	MSGLOST	TRMACTIVE	SENTDATA	Transmit/Receive Mode
						INVALDATA	NEWDATA	
0	0	0	0	0	0	0	0	No frame is transmitted or received
0	1	0	0	0	0	0	0	Data frame is received
0	1	1	1	0	0	0	0	Remote frame is received
			or					(The data frame is transmitted
			0					after receiving the remote frame.)
1	0	0	0	0	0	0	0	Data frame is transmitted
1	0	1	0	0	0	0	0	Remote frame is transmitted
								(The data frame is received after
								transmitting the remote frame)

22.1.16.1 SENTDATA/NEWDATA Bit

The SENTDATA/NEWDATA bit indicates that the CAN module has transmitted or received the CAN message. Set the SENTDATA/NEWDATA bit to "0" (not transmitted or not received) by program before data transmission and reception is started. The SENTDATA/NEWDATA bit is not set to "0" automatically. When the TRMACTIVE/INVALDATA bit is set to "1" (during transmission or storing received data), the SENTDATA/NEWDATA bit cannot be set to "0".

SENTDATA : The SENTDATA bit is set to "1" (transmit complete) when a data transmission is completed in the transmit message slot.

NEWDATA : The NEWDATA bit is set to "1" (receive complete) when the message to be stored into the message slot i (i=0 to 15) is received in the receive message slot as expected.

NOTES:

- 1. To read a received data from the message slot i, set the NEWDATA bit to "0" before reading. If the NEWDATA bit is set to "1" immediately after reading, this indicates that new received data has been stored into the message slot while reading and the data read contains an indeterminate value. In this case, discard the data with indeterminate value and then read the message slot again after the NEWDATA bit is set to "0".
- 2. When the remote frame is transmitted or received, the SENTDATA/NEWDATA bit remains unchanged after the remote frame transmission or reception is completed. The SENTDATA/NEWDATA bit is set to "1" when a subsequent data frame transmission or reception is completed.

22.1.16.2 TRMACTIVE/INVALDATA Bit

The TRMACTIVE/INVALDATA bit indicates that the CAN module is transmitting or receiving a message and accessing the message slot i. The TRMACTIVE/INVALDATA bit is set to "1" when the CAN module is accessing the message slot and to "0" when not accessing the message slot.

TRMACTIVE : The TRMACTIVE bit is set to "1" (transmitting) when a data transmission is started in the message slot. The TRMACTIVE bit is set to "0" (stops transmitting) if the CAN module loses in bus arbitration and a CAN bus error occurs or when a data transmission is completed.

INVALDATA : The INVALDATA bit is set to "1" (storing received data) when receiving a message and storing a received data into the message slot i. Data, if read from the message slot i while this bit is set to "1", is indeterminate.

22.1.16.3 MSGLOST Bit

The MSGLOST bit is valid only when the message slot is set for reception. The MSGLOST bit is set to "1" (overrun error occurred) when the message slot i is overwritten by a new received message while the NEWDATA bit set to "1" (already received).

The MSGLOST bit is not automatically set to "0". Set to "0" (no overrun error occurred) by program.

22.1.16.4 REMACTIVE Bit

The C0MCTL0 to C0MCTL15 registers all have the same function when the STATE_BASICCAN bit is set to "0" (other than BasicCAN mode).

The REMACTIVE bit is set to "1" (remote frame) when the message slot i is set to transmit or receive the remote frame. The REMACTIVE bit is set to "0" (data frame) after the remote frame has been transmitted or received.

The functions of the C0MCTL14 and C0MCTL15 registers change when the STATE_BASICCAN bit is set to "1" (BasicCAN mode). When the REMACTIVE bit is set to "0", this indicates that a message stored into the message slot is the data frame. When the REMACTIVE bit is set to "1", this indicates a message stored into the message slot is the remote frame.

22.1.16.5 RSPLOCK Bit

The RSPLOCK bit is valid only when remote frame reception shown in Table 22.4 is selected. The RSPLOCK bit determines whether the received remote frame is processed or not.

When the RSPLOCK bit is set to "0" (automatic answering of the remote frame enabled), the slot automatically changes to a transmit slot after the remote frame is received, and the message stored into the message slot is automatically transmitted as the data frame.

When the RSPLOCK bit is set to "1" (automatic answering of the remote frame disabled), message is not automatically transmitted upon receiving the remote frame.

Set the RSPLOCK bit to "0" to select any transmit/receive mode other than the remote frame reception.

22.1.16.6 REMOTE Bit

The REMOTE bit selects transmit/receive mode shown in Table 22.4. Set the REMOTE bit to "0" to transmit or receive data frame. Set to "1" to transmit or receive remote frame.

The followings occur during remote frame transmission or reception.

Transmitting the remote frame

A message stored into the message slot i (i=0 to 15) is transmitted as the remote frame. After transmission, the slot automatically becomes ready to receive data frame.

If the data frame is received before the remote frame is transmitted, the data frame is stored into the message slot i. The remote frame is not transmitted.

· Receiving the remote frame

The message slot receives the remote frame. The RSPLOCK bit determines whether or not to process the received remote frame.

22.1.16.7 RECREQ Bit

The RECREQ bit selects transmit/receive mode shown in Table 22.4. Set the RECREQ bit to "1" (receive requested) when data frame or remote frame is received. Set the RECREQ bit to "0" (no receive requested) when data frame or remote frame is transmitted.

When a data frame is automatically transmitted after a remote frame is received, the RECREQ bit remains set to "1". Set the RECREQ bit to "0" to transmit a remote frame. After a remote frame is transmitted, a data frame is automatically received while the RECREQ bit remains set to "0".

When setting the TRMREQ bit to "1" (transmit requested), do not set the RECREQ bit to "1" (receive requested).

22.1.16.8 TRMREQ Bit

The TRMREQ bit selects transmit/receive mode shown in Table 22.4. Set the TRMREQ bit to "1" (transmit requested) when data frame or remote frame is transmitted.

Set the TRMREQ bit to "0" (no request to transmit the frame) when data frame or remote frame is received. When the data frame is automatically received after the remote frame is transmitted, the TRMREQ bit remains set to "1". Set the TRMREQ bit to "0" to receive the remote frame. After the remote frame is received, data frame is automatically transmitted while the TRMREQ bit remains set to "0".

If the RECREQ bit is set to "1" (request to receive the frame), do not set the TRMREQ bit to "1" (request to transmit the frame).

CANO Slot Buffer Select Register Symbol Address After Reset(2) C0SBS 024016 0016 Bit RW Bit Name **Function** Symbol SBS00 0 0 0 0: Message slot 0 RW 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 **SBS01** RW CAN0 Message 0 0 1 1: Message slot 3 Slot Buffer 0 (Note 1) Number Select Bit SBS02 RW 1 1 0 0: Message slot 12 1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 SBS03 RW 1 1 1 1: Message slot 15 **SBS10** RW 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1 0 0 1 0: Message slot 2 SBS11 RW CAN0 Message 0 0 1 1: Message slot 3 Slot Buffer 1 (Note 1) Number Select Bit SBS12 RW 1 1 0 0: Message slot 12 1 1 0 1: Message slot 13 1 1 1 0: Message slot 14 **SBS13** RW 1 1 1 1: Message slot 15 NOTES: 1. 16 CAN0 message slots provided. Each message slot can be selected as a transmit or a receive 2. Value is obtained by setting the SLEEP bit in the C0SLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

22.1.17 CAN0 Slot Buffer Select Register (C0SBS Register)

Figure 22.21 COSBS Register

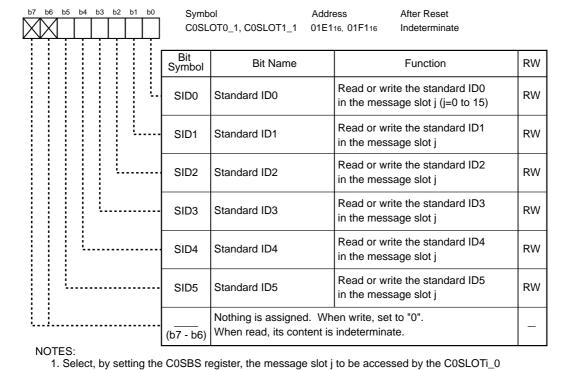
22.1.17.1 SBS03 to SBS00 Bits

If the SBS03 to SBS00 bits select a number i (i=0 to 15), the message slot i is allocated to the CAN0 message slot buffer 0. The message slot i can be accessed via addresses 01E016 to 01EF16.

22.1.17.2 SBS13 to SBS10 Bits

If the SBS13 to SBS10 bits select a number i, the message slot i is allocated to the CAN0 message slot buffer 1. The message slot i can be accessed via addresses 01F016 to 01FF16.

22.1.18 Message Slot Buffer

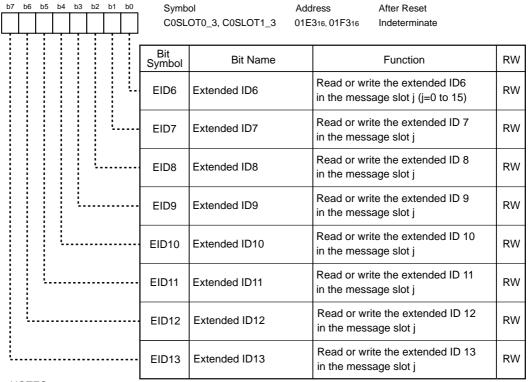

The message slot, selected by setting the COSBS register, is read by reading the message slot buffer. A message can be written in the message slot selected by the COSBS register if the message is written to the message slot buffer.

CANO Message Slot Buffer i Standard ID0 (i=0,1)(1) Symbol Address After Reset C0SLOT0_0, C0SLOT1_0 01E016, 01F016 Indeterminate RW Bit Name **Function** Symbol Read or write the standard ID6 Standard ID6 RW SID6 in the message slot j (j=0 to 15) Read or write the standard ID7 Standard ID7 RW SID7 in the message slot j Read or write the standard ID8 RW Standard ID8 SID8 in the message slot j Read or write the standard ID9 SID9 Standard ID9 RW in the message slot j Read or write the standard ID10 SID₁₀ Standard ID10 in the message slot j Nothing is assigned. When write, set to "0". When read, its content is indeterminate.

NOTES:

CANO Message Slot Buffer i Standard ID1 (i=0,1)(1)

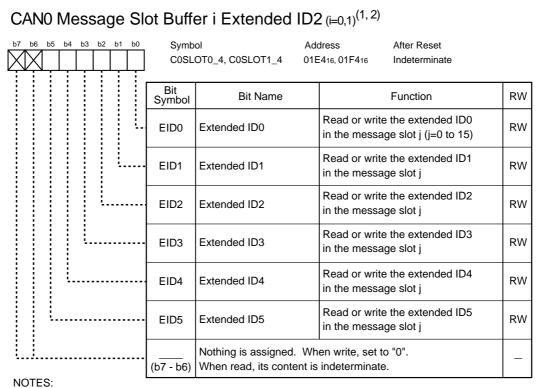
register.


Figure 22.22 C0SLOT0_0, C0SLOT1_0 Registers and C0SLOT0_1, C0SLOT1_1 Registers

^{1.} Select, by setting the C0SBS register, the message slot j to be accessed by the C0SLOTi_0 register.

CANO Message Slot Buffer i Extended ID0 (i=0,1)^(1, 2) Symbol Address After Reset C0SLOT0_2, C0SLOT1_2 01E216, 01F216 Indeterminate RW Bit Name Function Symbol Read or write the extended ID14 RW EID14 Extended ID14 in the message slot j (j=0 to 15) Read or write the extended ID15 EID15 Extended ID15 RW in the message slot j Read or write the extended ID16 EID16 Extended ID16 RW in the message slot j Read or write the extended ID17 EID17 Extended ID17 RW in the message slot j Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7 - b4)

NOTES: 1. If the receive slot is standard ID formatted, the EID17 to EID14 bits are indeterminate when the received data is stored.


CAN0 Message Slot Buffer i Extended ID1 (i=0,1)(1, 2)

- 1. If the receive slot is standard ID formatted, the EID13 to EID6 bits are indeterminate when the received data is stored.
- 2. Select, by setting the C0SBS register the message slot j to be accessed by the C0SLOTi_3 register.

Figure 22.23 C0SLOT0_2, C0SLOT1_2 Registers and C0SLOT0_3, C0SLOT1_3 Registers

^{2.} Select, by setting the COSBS register, the message slot j to be accessed by the COSLOTi_2 register.

- If the receive slot is standard ID formatted, the EID 5 to EID0 bits are indeterminate when received data is stored.
- 2. Select, by setting the C0SBS register, the message slot j to be accessed by the C0SLOTi_4 register.

CAN0 Message Slot Buffer i Data Length Code (i=0,1)⁽¹⁾

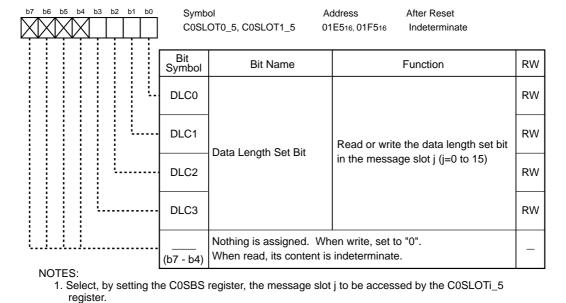
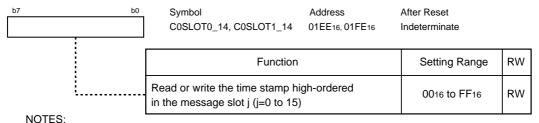
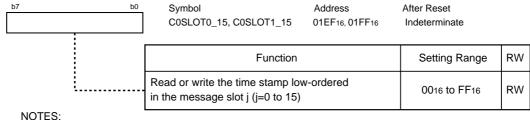



Figure 22.24 C0SLOT0 4, C0SLOT1 4 Registers and C0SLOT0 5 and C0SLOT1 5 Registers


CANO Message Slot Buffer i Data k (i=0,1 k=0 to 7)⁽¹⁾ Symbol Address After Reset $COSLOT0_q(q=k+6,k=0 \text{ to } 3)$ 01E616, 01E716, 01E816, 01E916 Indeterminate C0SLOT0_q(q=k+6,k=4 to 7) 01EA₁₆, 01EB₁₆, 01EC₁₆, 01ED₁₆ Indeterminate 01F616, 01F716, 01F816, 01F916 Indeterminate $COSLOT1_q(q=k+6,k=0 \text{ to } 3)$ $COSLOT1_q(q=k+6,k=4 \text{ to } 7)$ 01FA₁₆, 01FB₁₆, 01FC₁₆, 01FD₁₆ Indeterminate Function Setting Range RW Read or write data k in the message slot j (j=0 to 15) 0016 to FF16 RW NOTES:

CAN0 Message Slot Buffer i Time Stamp High-Ordered (i=0,1)(1)

^{1.} Select, by setting the COSBS register, the time stamp high-ordered in the message slot j to be accessed by the COSLOTi_14 register.

CAN0 Message Slot Buffer i Time Stamp Low-Ordered (i=0,1)⁽¹⁾

 Select, by setting the COSBS register, the time stamp low-ordered in the message slot j to be accessed by the COSLOTi_15 register.

Figure 22.25 C0SLOT0_6 to C0SLOT0_13, C0SLOT1_6 to C0SLOT1_13, C0SLOT0_14, C0SLOT1_14, C0SLOT0_15 and C0SLOT1_15 Registers

Select, by setting the COSBS register, the data k in the message slot j to be accessed by the COSLOTi_q register.

22.1.19 CANO Acceptance Filter Support Register (COAFS Register)

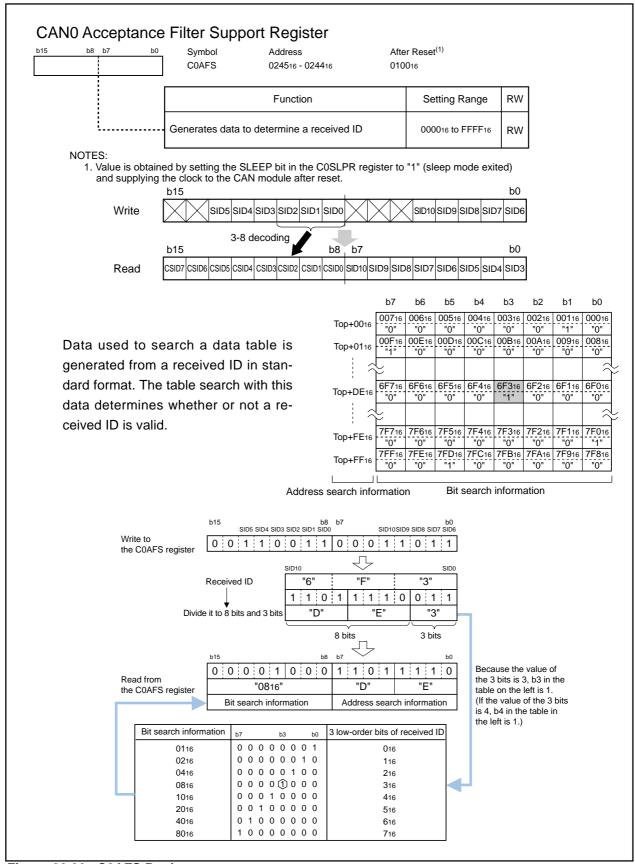


Figure 22.26 C0AFS Register

The COAFS register enables prompt performance of the table search to determine the validity of a received ID. This function is for standard-formatted ID only.

22.2 Timing with CAN-Associated Registers

22.2.1 CAN Module Reset Timing

Figure 22.27 shows an operation example of when the CAN module is reset.

- (1) The CAN module can be reset when the STATE_RESET bit in the C0STR register is set to "1" (CAN module reset completed) after the RESET0 and RESET1 bits in the C0CTLR0 register are set to "1" (CAN module reset).
- (2) Set necessary CAN-associated registers.
- (3) CAN communication can be established after the STATE_RESET bit is set to "0" (resetting) after the RESET0 and RESET1 bits are set to "0" (CAN module reset exited).

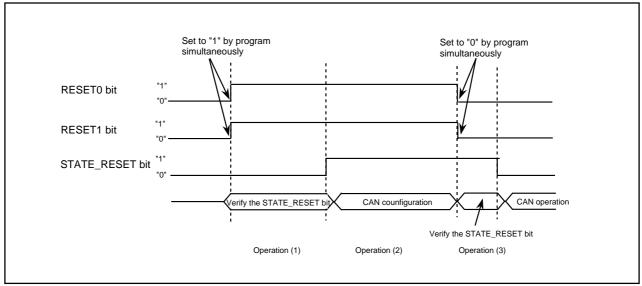


Figure 22.27 Example of CAN Module Reset Operation

22.2.2 CAN Transmit Timing

Figure 22.28 shows an operation example of when the CAN transmits a frame.

- (1) When the TRMREQ bit is set to "1" (request to transmit the data frame) while the CAN bus is in as idle state, the TRMACTIVE bit in the C0MCTLi register (i=0 to 15) is set to "1" (during transmission) and the TRMSTATE bit in the C0STR register is set to "1" (during transmission). The CAN starts transmitting the frame.
- (2) After a CAN frame transmission is completed, the SENTDATA bit in the COMCTLi register is set to "1" (already transmitted), the TRMSUCC bit in the COSTR register to "1" (transmission completed) and the SISi bit in the COSISTR register to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the COSTR register store transmitted message slot numbers.

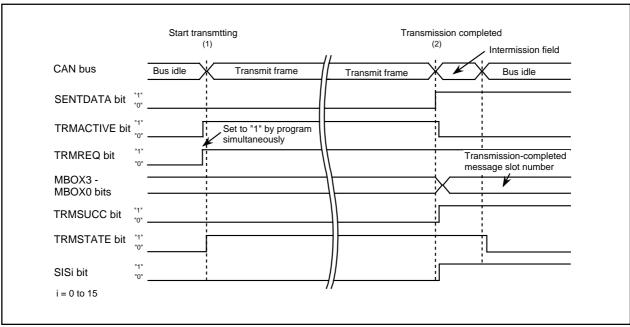


Figure 22.28 Example of CAN Data Frame Transmit Operation

22.2.3 CAN Receive Timing

Figure 22.29 shows an operation example of when the CAN receives a frame.

- (1) When the RECREQ bit in the C0MCTLi register (i=0 to 15) is set to "1" (receive requested), the CAN is ready to receive the frame at anytime.
- (2) When the CAN starts receiving the frame, the RECSTATE bit in the COSTR register is set to "1" (during reception).
- (3) After the CAN frame reception is completed, the INVALDTA bit in the C0MCTLi register is set to "1" (storing received data), the NEWDATA bit in the COMCTLi register is set to "1" (receive complete) and the RECSUCC bit in the COSTR register is set to "1" (reception completed).
- (4) After data is written to the message slot, the INVALDATA bit is set to "0" (stops receiving) and the SISi bit is set to "1" (interrupt requested). The MBOX3 to MBOX0 bits store received message slot numbers.

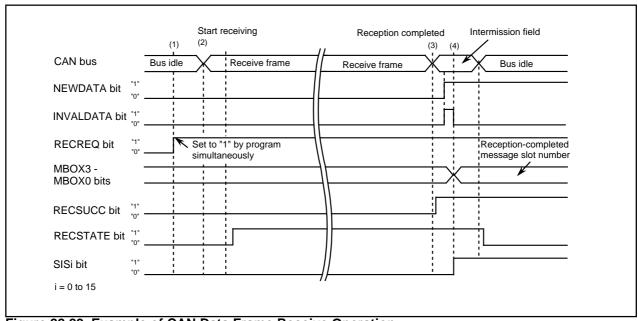


Figure 22.29 Example of CAN Data Frame Receive Operation

22.2.4 CAN Bus Error Timing

Figure 22.30 shows an operation example of when a CAN bus error occurs.

(1) When a CAN bus error is detected, the STATE_BUSERROR bit in the CiSTR register is set to "1", (error occurred) and the BEIS bit in the CiEISTR register is set to "1" (interrupt requested). The CAN starts transmitting the error frame.

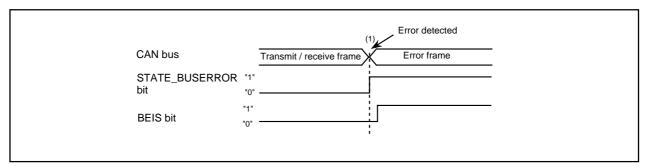


Figure 22.30 Operation Timing when CAN Bus Error Occurs

22.3 CAN Interrupts

The CANj interrupt (j=0 to 2) is provided as the CAN interrupt. Figure 22.31 shows a block diagram of the CAN interrupt.

The following factors cause the CAN-associated interrupt request to be generated.

- The CAN0 slot i (i=0 to 15) completes a transmission
- The CAN0 slot i completes a reception
- The CAN0 module detects a bus error
- The CAN0 module moves into an error-passive state
- The CAN0 module moves into a bus-off state

The CANj interrupt, caused by one of the CANi interrupt request factors listed above, is generated via the OR circuit.

If an interrupt request factor is established, the corresponding bit in the C0SISTR register is set to "1" (interrupt requested) when the CAN0 slot k completes a transmission or a reception. The corresponding bit in the C0EISTR register is set to "1" (interrupt requested) when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CAN0 interrupt request signal is set to "1" when the corresponding bit in the COSISTR or C0EISTR is set to "1" and the corresponding bit in the C0SIMKR or C0EIMKR is set to "1".

When the CAN0 interrupt request signal changes from "0" to "1", all CANjR bits in the IIO9IR to IIO11IR registers are set to "1" (interrupt requested).

If at least one of the CANjE bits in the IIO9IE to IIO11IE registers is set to "1" (interrupt enabled), the IR bits in the corresponding CANjIC registers are set to "1" (interrupt requested). The CAN0 interrupt request signal remains set to "1" if another interrupt request causes a corresponding bit in the COSISTR or COEISTR to be set to "1" and the corresponding bit in the COSIMKR or COEIMKR to be set to "1" after the CAN0 interrupt request signal changes "0" to "1". The CANjR and IR bits also remain unchanged. Bits in the COSISTR or COEISTR register and CANjR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi interrupts are acknowledged when the CANjR bit in the IIO9IR to IIO11IR register and the corresponding bit in the COSISTR or COEISTR register, which are set to enable interrupts though setting the COSIMKR or COEIMKR register, are set to "0". If these bits remain set to "1", all CAN-associated interrupt request factors become invalid.

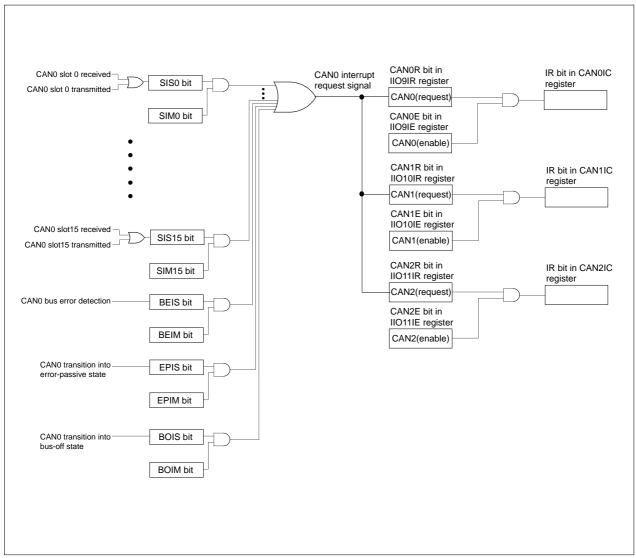


Figure 22.31 CAN Interrupts

23. DRAMC

The DRAM controller (DRAMC) controls the DRAM area, which ranges from 512 Kbytes to 8 Mbytes. Table 23.1 lists specifications of the DRAMC.

Table 23.1 DRAMC Specifications

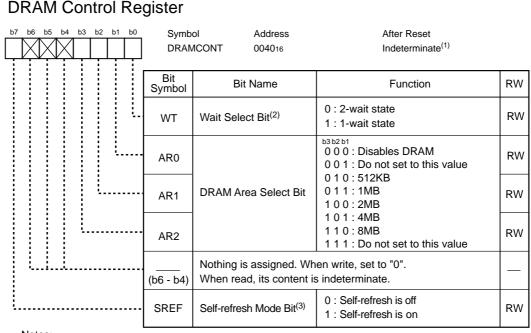

Item	Specification		
DRAM Area	512 KB, 1 MB, 2 MB, 4 MB, 8 MB		
Bus Control	2CAS/1W		
Refresh	CAS-before-RAS refresh, Self refresh		
Supported Function Mode	EDO, fast page mode		
Wait State Insertion	1-wait state, 2-wait state		

Table 23.2 shows pins associated with DRAMC. Signals listed in Table 23.2 are output by setting the AR2 to AR0 bits in the DRAMCONT register for the DRAM area and accessing DRAM. See **Table 7.9** for RAS, CASL, CASH and DW signal operations. Figure 23.1 shows the DRAMCONT register and REFCNT register.

Table 23.2 DRAMC-associated Pins

Port	Bus for Device Access except DRAM ⁽¹⁾	Bus for DRAM Access
P0	Do to D7	Do to D7
P1	D8 to D15	D8 to D15 ⁽²⁾
P3	A8 to D15	MAo to MA7
P40 to P44	A16 to A20	MA8 to MA12
P50	WRL / WR	CASL
P51	WRH / BHE	CASH
P52	RD	DW
P56	ALE	RAS

- 1. This is an example of the separate bus and 16-bit data bus.
- 2. This bus is available when the DS2 bit in the DS register is set to "1" (16-bit data bus) and the PM02 bit in the PM0 register is set to "1" (RD/WRL/WRH in R/W mode).

Notes:

- Contents of the DRAMCONT register is indeterminate. DRAMC starts operation when this register is written to.
- 2. Bus cycle with two waits is 3-2-2.... It is 2-1-1... with one wait.
- 3. Refer to **23.2.2 Self-refresh** for SREF bit setup procedure.

 When the SREF bit is set to "1", both RAS and CAS output "L". When any external device, excluding DRAM, is attached, the WR signal is "L".
- 4. The DS register determines the data bus width .
 CASH is indeterminate when the 8-bit data bus is selected.

DRAM Refresh Interval Set Register

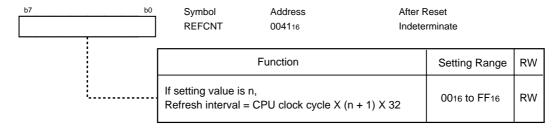


Figure 23.1 DRAMCONT Register and REFCNT Register

DRAMC is not available when the PM11 to PM10 bits in the PM1 register are set to "112" (mode 3). Set the PM11 to PM10 bits to "002," "012" or "102" (mode 0 to 2). When the 16-bit DRAM data bus is selected, set the PM02 bit in the PM0 register to "1" (RD/WRH/WRL).

Required wait time between DRAM power-on and memory operation, and necessary processing of dummy cycle for refresh varies with externally attached DRAM specifications.

23.1 DRAMC Multiplexed Address Output

DRAMC outputs signals, which are multiplexed row addresses and column addresses, to address bus A8 to A20. Figure 23.2 shows an output format for multiplexed addresses.

23.2 Refresh

23.2.1 Refresh

Refresh method is the CAS-before-RAS refresh. The REFCNT register controls the refresh interval. Refresh signals are not output in a hold state.

The setting value of the REFCNT register is obtained as follows:

The value of the REFCNT register (0016 to FF16) = refresh interval time / (CPU clock frequency X 32) - 1

23.2.2 Self-Refresh

The refresh signal described in 23.2.1 stops while the CPU stops in stop mode, etc. The DRAM self-refresh function can be activated by setting the self-refresh before the CPU stops. Setting and cancellation procedures for the self-refresh are as follows:

(1) Setting self-refresh (with 1 wait state, 4 Mbytes)

•••

mov.b #0000001b,DRAMCONT ;Set the AR2 to AR0 bits to "0002" (DRAM disabled)
mov.b #10001011b,DRAMCONT ;Set the AR2 to AR0 bits again and the SREF bit to "1"
(self-refresh on) simultaneously

nop ;Execute the nop instruction twice

nop

•••

(2) Cancellation of self-refresh (with 1 wait state, 4M bytes)

•••

mov.b #00000001b,DRAMCONT ;Set the AR2 to 0 bits to "0002" (self-refresh cancellation)

and the SREF bit to "0" (DRAM disabled) simultaneously

mov.b #00001011b,DRAMCONT ;Set the AR2 to AR0 bits again

mov.b 400h, 400h ;DRAM access is disabled immediately after cancellation.

This is an example of a dummy read operation.

•••

Both \overline{RAS} and \overline{CAS} are held "L" during self-refresh. When devices other than DRAM are attached, the \overline{WR} signal is held "L". Take procedures such as applying an "H" signal to the \overline{CS} .

Figures 23.3 to 23.5 show bus timings during DRAM access.

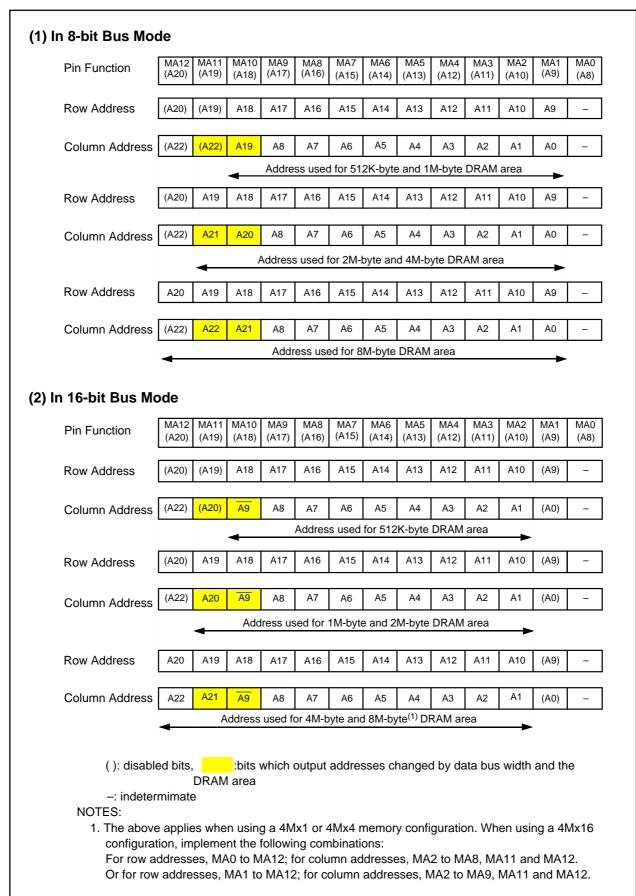


Figure 23.2 Multiplexed Address Output Pattern

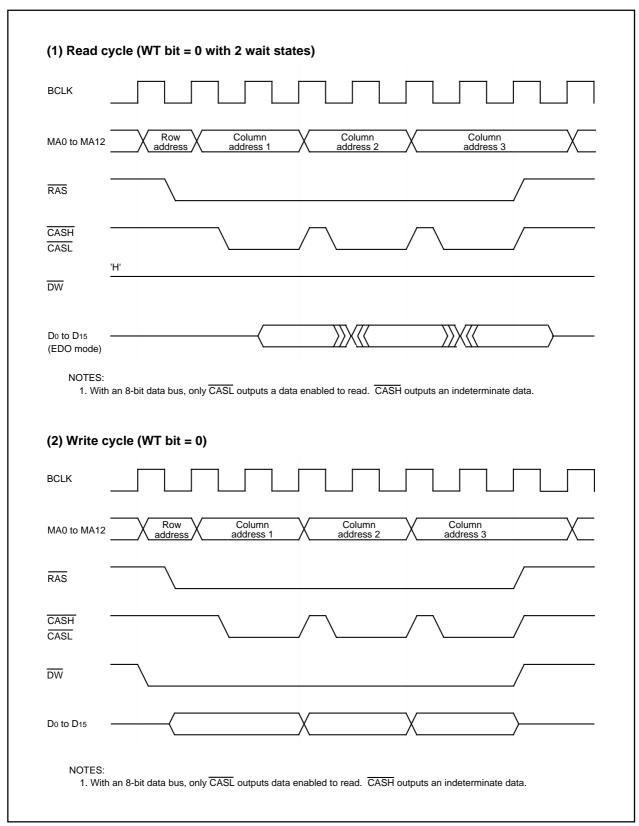


Figure 23.3 Bus Timing during DRAM Access (1)

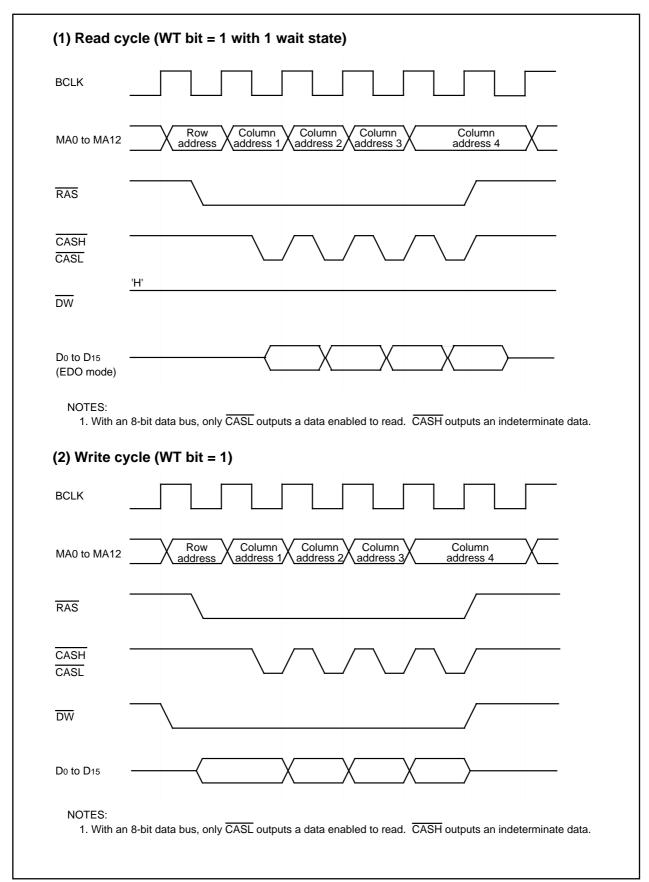


Figure 23.4 Bus Timing during DRAM Access (2)

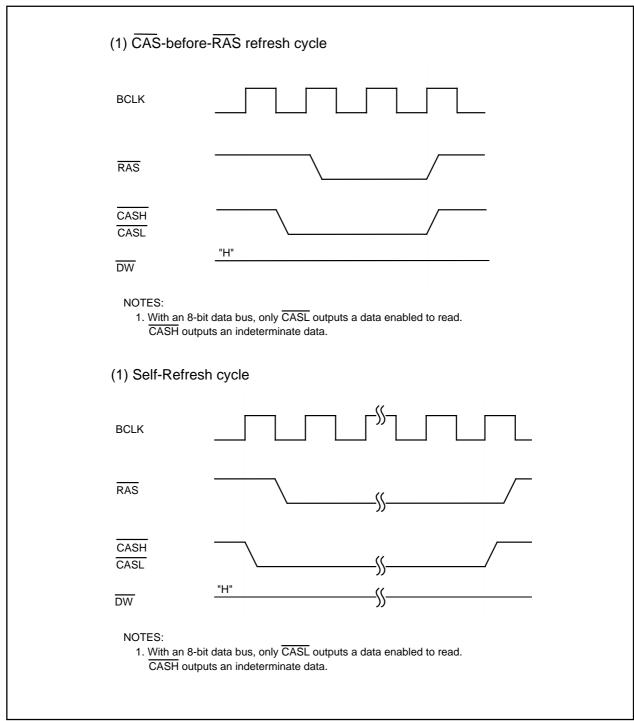


Figure 23.5 Bus Timing during DRAM Access (3)

24. Programmable I/O Ports

87 programmable I/O ports from P0 to P10 (excluding P85) are available in the 100-pin package and 123 programmable I/O ports from P0 to P15 (excluding P85) are in the 144-pin package. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since P85 shares pins with $\overline{\text{NMI}}$.

Figures 24.1 to 24.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port, an I/O pin for internal peripheral functions or the bus control pin.

To use the pins as input or output pins for internal peripheral functions, refer to the explanations for each function. Refer to **7. Bus** when used as the bus control pin.

The registers, described below, are associated with the programmable I/O ports.

24.1 Port Pi Direction Register (PDi Register, i=0 to 15)

Figure 24.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

In memory expansion and microprocessor mode, pins being used as bus control pins (A0 to A22, $\overline{\text{A23}}$, D0 to D15, MA0 to MA12, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{WRL/WR/CASL}}$, $\overline{\text{WRH/BHE}}$, $\overline{\text{RD/DW}}$, BCLK/ALE/CLKOUT, $\overline{\text{HLDA/ALE}}$, $\overline{\text{HOLD}}$, ALE/ $\overline{\text{RAS}}$, and $\overline{\text{RDY}}$) cannot be controlled by the PDi register. No bits controlling P85 are provided in the direction registers .

24.2 Port Pi Register (Pi Register, i=0 to 15)

Figure 24.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port. In memory expansion and microprocessor mode, pins being used as bus control pins (A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY) cannot be controlled by the Pi register.

24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)

Figures 24.7 to 24.11 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

Tables 24.3 to 24.12 list peripheral function output control settings for each pin.

When multiple peripheral function outputs are assigned to a pin, set the PSLk (k=0 to 3) and PSC registers to select which function is used.

24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)

Figures 24.12 and 24.13 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **24.9** Analog Input and Other Peripheral Function Input for the PSL3_3 to PSL3_6 bits in the PSL3 register.

24.5 Function Select Register C (PSC Register)

Figure 24.14 show the PSC register.

When multiple peripheral function outputs are assigned to a pin, the PSC register select which peripheral function output is used.

Refer to 24.9 Analog Input and Other Peripheral Function Input for the PSC_7 bit in the PSC register.

24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)

Figures 24.15 to 24.16 show the PUR0 to PUR4 registers.

The PUR0 to PUR4 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR4 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

Set bits in the PUR0 and PUR1 registers which control P0 to P5, running as bus, to "0" (no pull-up) in memory expansion and microprocessor mode. P0, P1, P40 to P43 can be pulled up when they are used as input ports in memory expansion mode and microprocessor mode.

24.7 Port Control Register (PCR Register)

Figure 24.17 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as the P1 output format. If the PCR0 bits is set to "1" (N-channel open drain output), N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is from -0.3V to Vcc + 0.3V.

If P1 is used as the data bus in memory expansion and microprocessor mode, set the PCR0 bit to "0" (CMOS output). If P1 is used as a port in memory expansion and microprocessor mode, the PCR0 bit determines the output format.

24.8 Input Function Select Register (IPS Register)

Figure 24.18 shows the IPS registers.

The IPS0 to IPS1 and IPS3 bits in the IPS register and the IPSA_0 and IPSA_3 bits in the IPSA register select which pin is assigned the intelligent I/O or CAN input functions.

Refer to 24.9 Analog Input and Other Peripheral Function Input for the IPS2 bit.

24.9 Analog Input and Other Peripheral Function Input

The PSL3_3 to PSL3_6 bits in the PSL3 register, the PSC_7 bit in the PSC register and the IPS2 bit in the IPS register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7 or AN150 to AN157) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC_7 bit is set to "1", key input interrupt request remains unchanged regardless of $\overline{\text{KI}_0}$ to $\overline{\text{KI}_3}$ pin input level change.

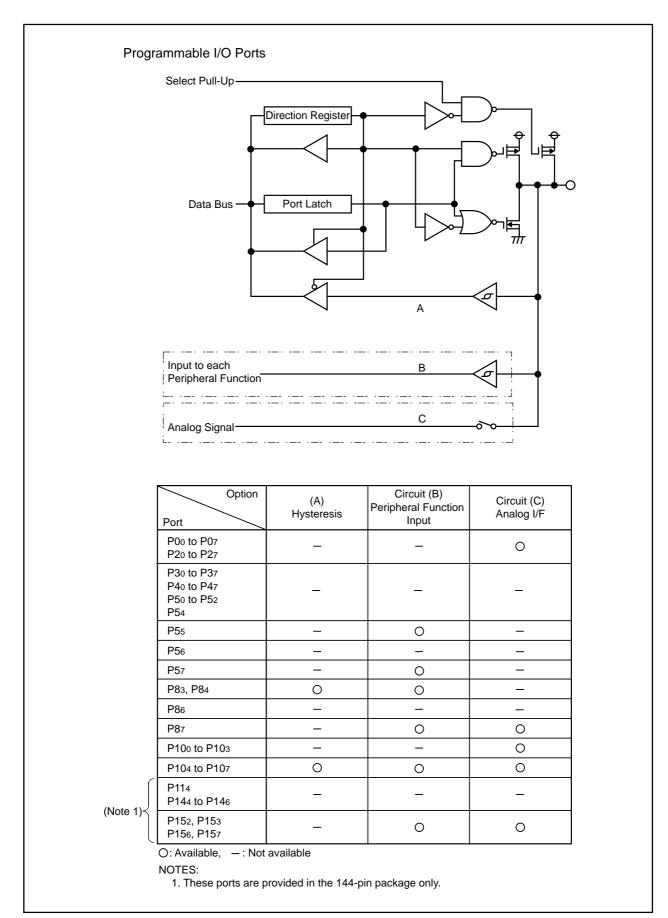


Figure 24.1 Programmable I/O Ports (1)

Figure 24.2 Programmable I/O Ports (2)

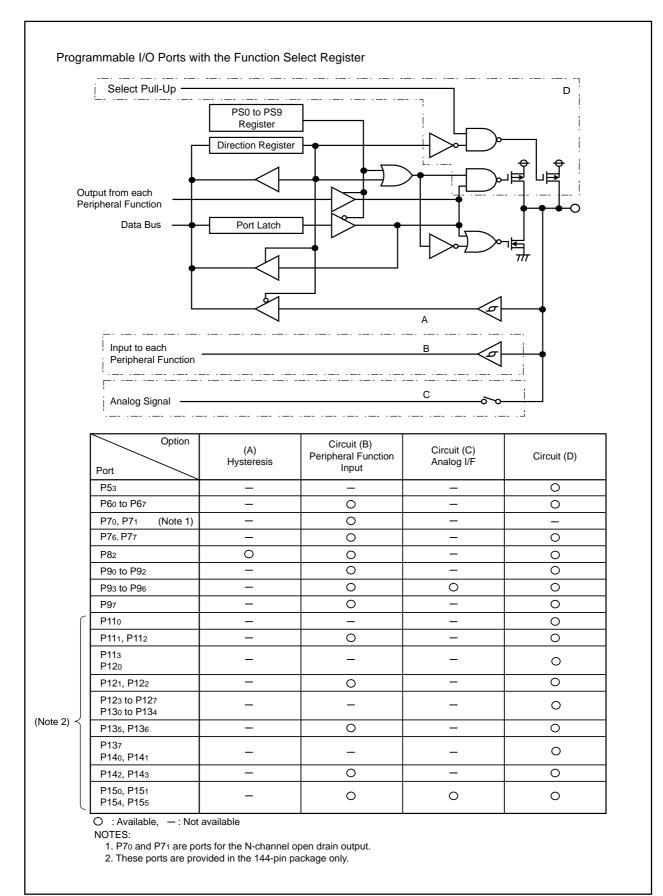


Figure 24.3 Programmable I/O Ports (3)

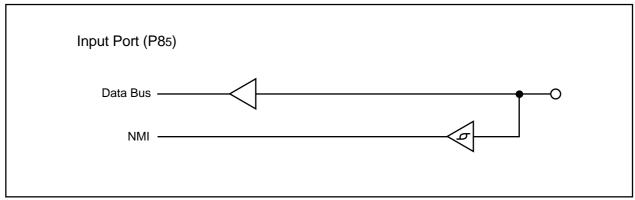
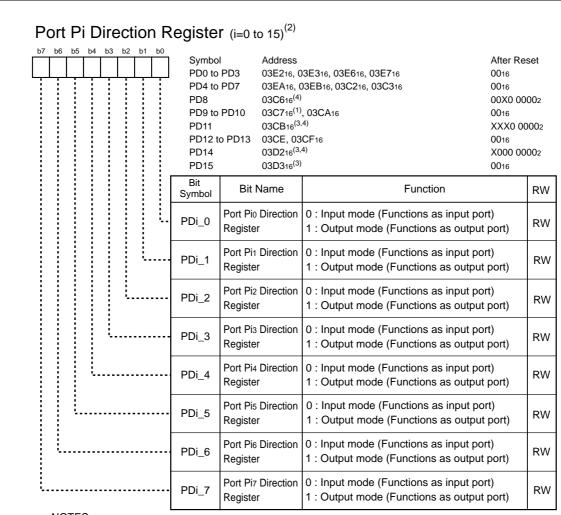
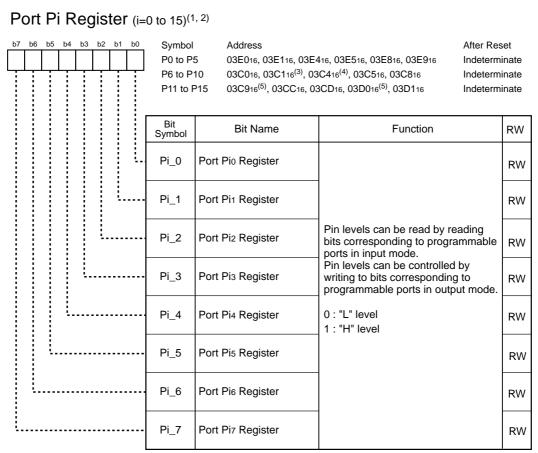




Figure 24.4 Programmable I/O Ports (4)

- 1. Set the PD9 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 register.
- In memory expansion and microprocessor mode, the direction register of pins being used as bus control pins (A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS and RDY) cannot be changed.
- 3. Set the PD11 to PD15 registers to "FF16" in the 100-pin package.
- 4. Nothing is assigned to the PD8_5 bit in the PD8 register, the PD11_5 to PD11_7 bits in the PD11 register and the P14_7 bit in the PD14 register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.5 PD0 to PD15 Registers

- 1. In memory expansion and microprocessor mode, the direction register of pins being used as bus control pins (A0 to A22, A23, D0 to D15, MA0 to MA12, CSO to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY) cannot be changed.
- 2. The P11 to P15 registers are provided in the 144-pin package only.
- 3. P70 and P71 are ports for the N-channel open drain output. The pins go into a high-impedance state when P70 and P71 output a high-level signal ("H").
- 4. The P85 bit is for read only.
- 5. Nothing is assigned to the P11_5 to P11_7 bits in the P11 register and the P14_7 bit in the P14 register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.6 P0 to P15 Registers

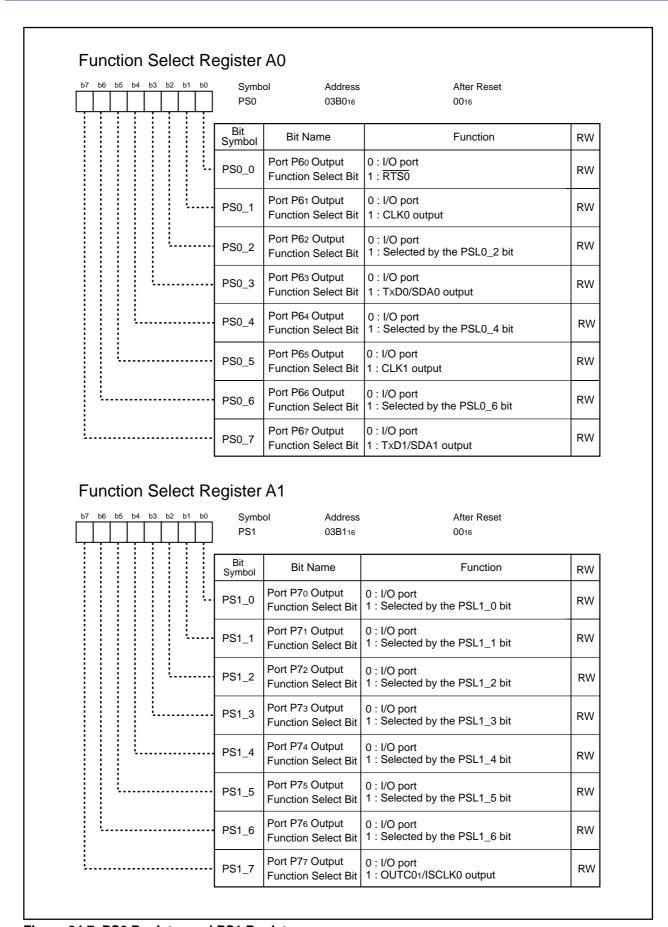


Figure 24.7 PS0 Register and PS1 Register

Function Select Register A2 Symbol Address After Reset 0 0 0 PS2 03B4₁₆ 00X0 00002 RW Bit Name Function Symbol Port P8₀ Output 0: I/O port PS2_0 RW **Function Select Bit** 1: Selected by the PSL2_0 bit Port P81 Output 0: I/O port PS2_1 RW Function Select Bit 1 : Selected by the PSL2_1 bit Port P82 Output 0: I/O port PS2_2 RW 1 : Selected by the PSL2_2 bit Function Select Bit Reserved Bit Set to "0" RW (b4 - b3)Nothing is assigned. When write, set to "0". (b5) When read, its content is indeterminate. Reserved Bit Set to "0" RW (b7 - b6)

Function Select Register A3⁽¹⁾

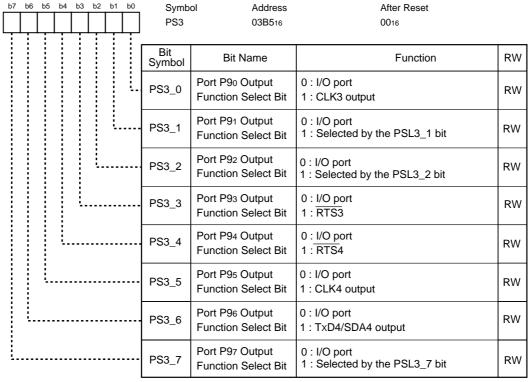


Figure 24.8 PS2 Register and PS3 Register

Set the PD9 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do
not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the
instruction to set the PD9 register.

Function Select Register A6⁽¹⁾

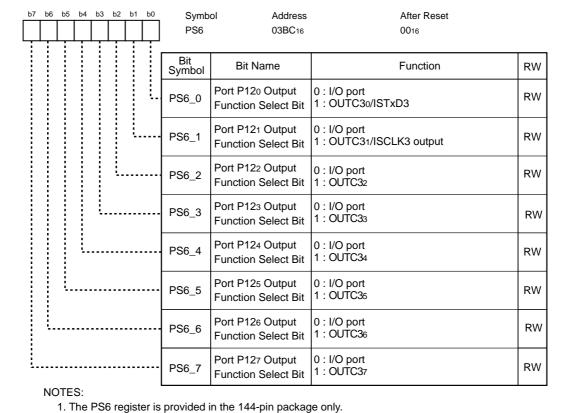
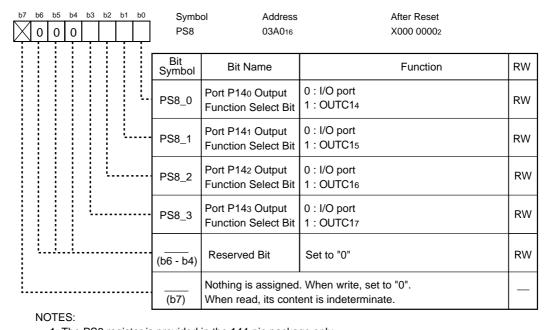



Figure 24.9 PS5 Register and PS6 Register

Function Select Register A7⁽¹⁾ b7 b6 b5 b4 b3 b2 b1 b0 Symbol Address After Reset 03BD₁₆ PS7 0016 Bit RW Bit Name Function Symbol Port P130 Output 0: I/O port PS7_0 RW Function Select Bit 1: OUTC24 Port P131 Output 0: I/O port RW PS7_1 Function Select Bit 1: OUTC25 Port P132 Output 0: I/O port RW PS7_2 Function Select Bit 1: OUTC26 Port P133 Output 0: I/O port PS7 3 RW Function Select Bit 1: OUTC23 Port P134 Output 0 : I/O port RW PS7_4 Function Select Bit 1: OUTC20/ISTXD2/IEOUT Port P135 Output 0 : I/O port PS7_5 RW Function Select Bit 1: OUTC22 Port P136 Output 0 : I/O port RW PS7_6 Function Select Bit 1 : OUTC21/ISCLK2 output 0 : I/O port Port P137 Output RW PS7_7 Function Select Bit 1: OUTC27

1. The PS7 register is provided in the 144-pin package only.

Function Select Register A8⁽¹⁾

1: The PS8 register is provided in the 144-pin package only.

Figure 24.10 PS7 Register and PS8 Register

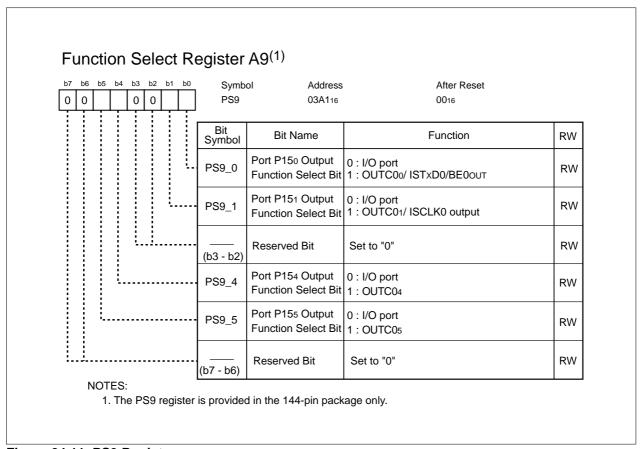


Figure 24.11 PS9 Register

Function Select Register B0 Symbol Address After Reset PSL0 0 0 03B216 0 0016 Bit Bit Name Function RW Symbol Reserved Bit Set to "0" RW (b1 - b0)Port P62 Output Peripheral 0: SCL0 PSL0_2 RW Function Select Bit 1: STxD0 Reserved bit Set to "0" RW (b3)Port P64 Output Peripheral 0: RTS1 PSL0_4 RW Function Select Bit 1: OUTC21/ISCLK2 output Reserved Bit Set to "0" RW (b5)0: SCL1 output Port P66 Output Peripheral PSL0_6 RW Function Select Bit 1: STxD1 Reserved Bit Set to "0" RW (b7) Function Select Register B1 b3 b2 b1 Symbol Address After Reset 0 PSL1 03B3₁₆ 0016 Bit Symbol Bit Name **Function** RW Port P70 Output Peripheral 0 : Selected by the PSC_0 bit PSL1_0 RW Function Select Bit 1: TA0out output Port P71 Output Peripheral 0 : Selected by the PSC_1 bit PSL1_1 RW Function Select Bit 1: STxD2 Port P72 Output Peripheral PSL1_2 0 : Selected by the PSC_2 bit RW Function Select Bit 1: TA1out output Port P73 Output Peripheral 0 : Selected by the PSC_3 bit PSL1_3 RW Function Select Bit Port P74 Output Peripheral 0 : Selected by the PSC_4 bit PSL1_4 RW Function Select Bit Port P75 Output Peripheral 0 : W PSL1_5 RW Function Select Bit 1: OUTC12 Port P76 Output Peripheral 0: Selected by the PSC_6 bit PSL1_6 RW Function Select Bit 1: TA3ouT output Reserved Bit Set to "0" (b7)NOTES: 1. Set the corresponding PSC_i bit in the PSC register to "0" when setting the PSL1_i bit (i=0 to 4, 6) to "1".

Figure 24.12 PSL0 Register and PSL1 Register

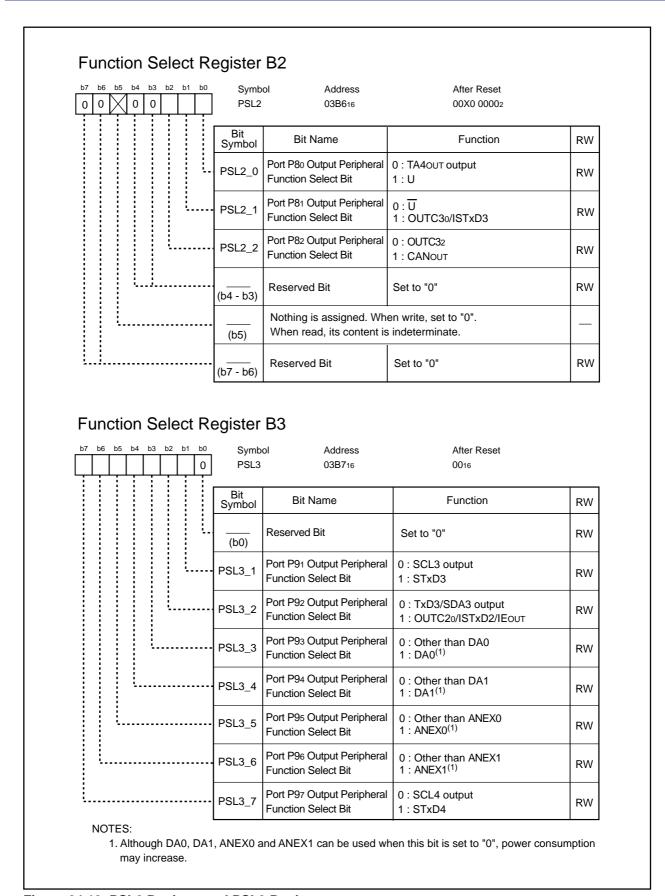
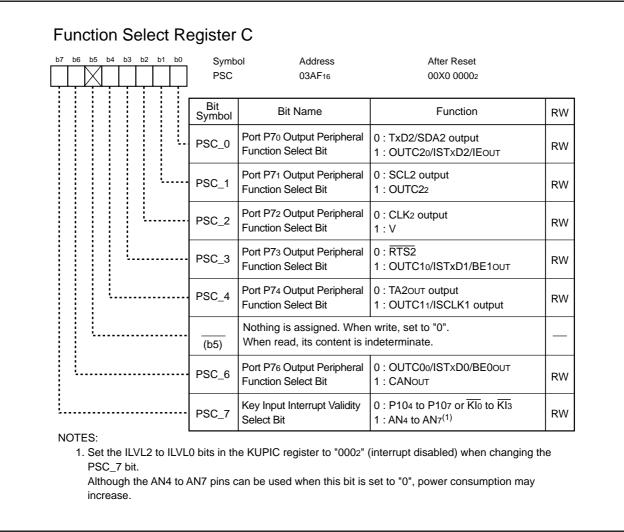
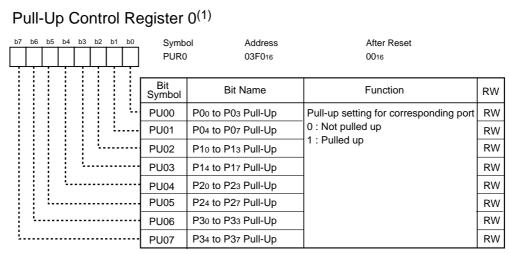
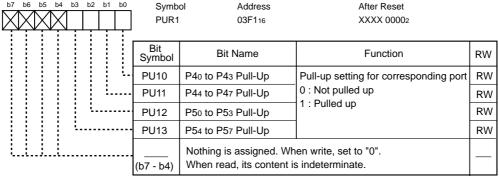


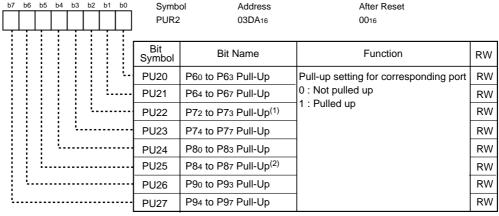
Figure 24.13 PSL2 Register and PSL3 Register


Figure 24.14 PSC Register

NOTES:

1. Set each bit in the PUR0 register to "0" since P0 to P5 operate as the address bus in the memory expansion mode and microprocessor mode. Pull-up or no pull-up setting can be selected when using these ports as I/O ports.


Pull-Up Control Register 1(1)

NOTES:

1. Set each bit in the PUR1 register to "0" since P0 to P5 operate as the address bus in the memory expansion mode and microprocessor mode. Pull-up or no pull-up setting can be selected when using these ports as I/O ports.

Pull-Up Control Register 2

- 1. P70 and P71 cannot be pulled up.
- 2. P85 cannot be pulled up.

Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register

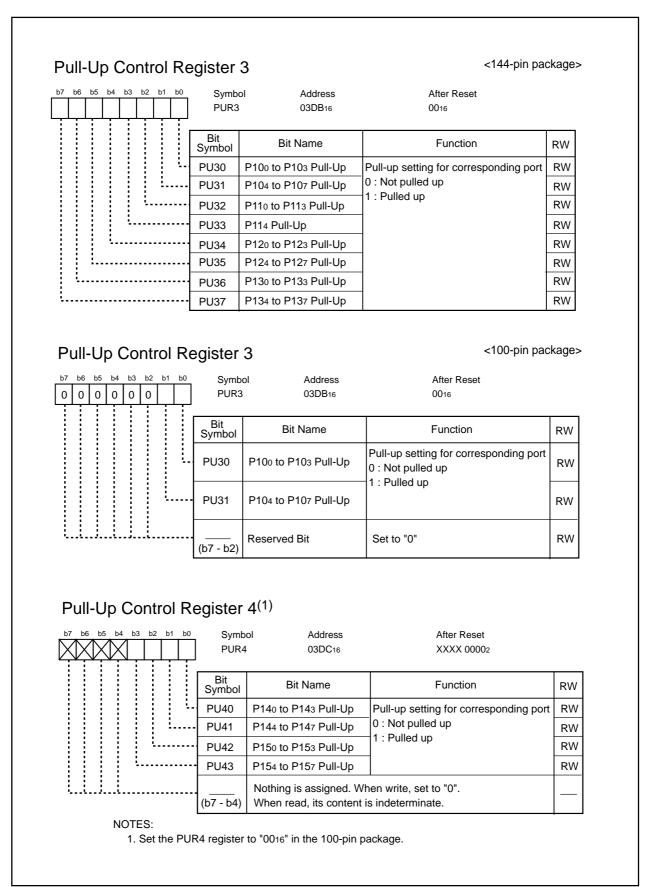
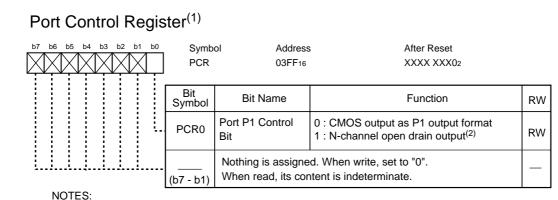



Figure 24.16 PUR3 Register and PUR4 Register

- 1. Set the PUR0 bit to "0" since P1 operates as the data bus in memory expansion mode and microprocessor mode. When using the ports as I/O ports, CMOS port or N-channel open drain can be selected.
- 2. This function is designed, not to make port P1 a full open drain, but to turn off the P channel in the CMOS port. Absolute maximum rating of the input voltage is from -0.3V to Vcc + 0.3V.

Figure 23.17 PCR Register

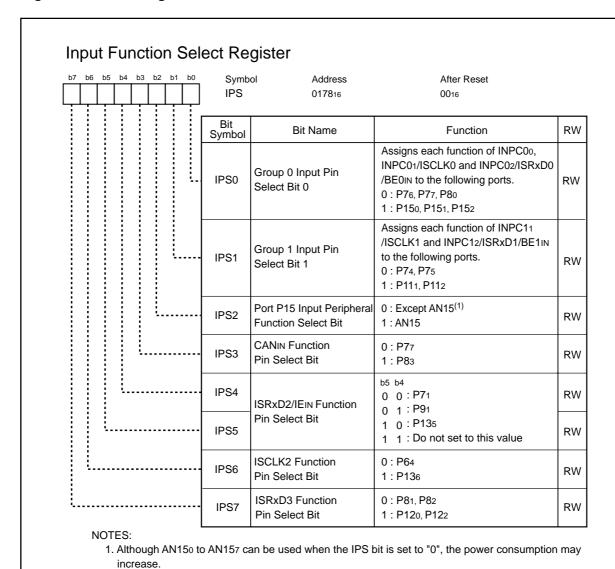


Figure 24.18 IPS Register

Table 24.1 Unassigned Pin Settings in Single-chip Mode

Pin Name	Setting
P0 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave pins open
XOUT ⁽⁵⁾	Leave pin open
NMI(P85)	Connect pin to Vcc via a resistor (pull-up)
AVcc	Connect pin to Vcc
AVSS, VREF, BYTE	Connect pins to Vss

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports for the N-channel open drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

Table 24.2 Unassigned Pin Setting in Memory Expansion Mode and Microprocessor Mode

Pin Name	Setting	
P6 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);	
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave pins open	
BHE, ALE, HLDA,	Leave pin open	
XOUT ⁽⁵⁾ , BCLK		
NMI(P85), RDY, HOLD	I(P85), RDY, HOLD Connect pin to VCC via a resistor (pull-up)	
AVcc	Connect pin to Vcc	
AVSS, VREF	Connect pins to Vss	
NOTES:		

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.
 - Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.
- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports for the N-channel open drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

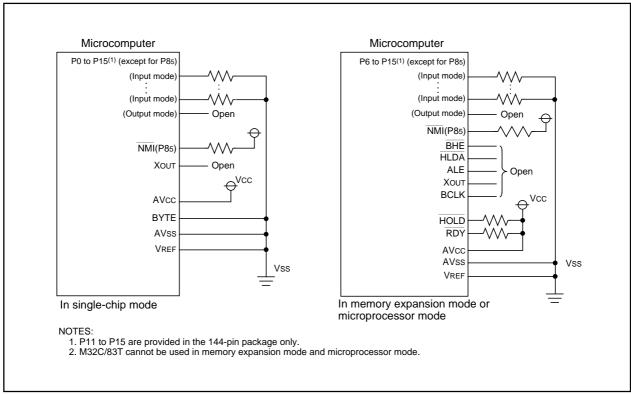


Figure 24.19 Unassigned Pin Handling

Table 24.3 Port P6 Peripheral Function Output Control

	PS0 Register	PSL0 Register
Bit 0	0: P60/CTS0/SS0 1: RTS0	Set to "0"
Bit 1	0: P61/CLK0 (input) 1: CLK0 (output)	Set to "0"
Bit 2	0: P62/RxD0/SCL0 (input) 1: Selected by the PSL0 register	0: SCL0 (output) 1: STxD0
Bit 3	0: P63/SRxD0/SDA0 (input) 1: TxD0/SDA0 (output)	Set to "0"
Bit 4	0: P64/CTS1/SS1/ISCLK2 (input) 1: Selected by the PSL0 register	0: RTS1 1: OUT21/ISCLK2(output)
Bit 5	0: P65/CLK1(input) 1: CLK1(output)	Set to "0"
Bit 6	0: P66/RxD1/SCL1 (input) 1: Selected by the PSL0 register	0: SCL1(output) 1: STxD1
Bit 7	0: P67/SRxD1/SDA1 (input) 1: TxD1/SDA1 (output)	Set to "0"

Table 24.4 Port P7 Peripheral Function Output Control

	PS1 Register	PSL1 Register	PSC Register ⁽¹⁾
Bit 0	0: P70/SRxD2/TA0ouT(input)/ SDA2(input)	0: Selected by the PSC register	0: TxD2/SDA2(output)
	1: Selected by the PSL1 register	1: TA0o∪⊤(output)	1: OUTC20/ISTxD2/IEOUT
Bit 1	0: P71/TB5IN/TA0IN/RxD2/ISRxD2/IEIN/	0: Selected by the PSC register	0: SCL2(output)
	SCL2(input)		
	1: Selected by the PSL1 register	1: STxD2	1: OUTC22
Bit 2	0: P72/TA10UT(input)/CLK2(input)	0: Selected by the PSC register	0: CLK2(output)
	1: Selected by the PSL1 register	1: TA1o∪⊤(output)	1: V
Bit 3	0: P73/TA1ın/CTS2/SS2	0: Selected by the PSC register	0: RTS2
	1: Selected by the PSL1 register	1: ∇	1: OUTC10/ISTxD1/BE1out
Bit 4	0: P74/INPC11/ISCLK1(input)/TA20UT(input)	0: Selected by the PSC register	0: TA2o∪⊤(output)
	1: Selected by the PSL1 register	1: W	1: OUTC11/ISCLK1(output)
Bit 5	0: P75/TA2IN/INPC12/ISRxD1/BE1IN	0: W	Set to "0"
	1: Selected by the PSL1 register	1: OUTC12	
Bit 6	0: P76/INPC00/TA3out(input)	0: Selected by the PSC register	0: OUTC0o/ISTxD0/BE0ouт
	1: Selected by the PSL1 register	1: TA3o∪⊤(output)	1: CAN0out
Bit 7	0: P77/TA3IN/CANIN/ISCLK0(input)/INPC01	Set to "0"	0: P104 to P107 or KIO to KI3
	1: OUTC01/ISCLK0(output)		1: AN4 to AN7
			(No relation to P77)

NOTES:

1. Set the corresponding PSC_i bit to "0" when setting the PSL1_i bit (i=0 to 4, 6) to "1".

Table 24.5 Port P8 Peripheral Function Output Control

	PS2 Register	PSL2 Register
Bit 0	0: P80/INPC02/ISRxD0/BE0out/TA4out(input)	0: TA4out(output)
	1: Selected by the PSL2 register	1: U
Bit 1	0: P81/TA4IN	0: U
	1: Selected by the PSL2 register	1: OUTC32/ISTxD3
Bit 2	0: P82/INT0/ISRxD3	0: OUTC32
	1: Selected by the PSL2 register	1: CANOUT
Bit 3 to 7	Set to "0"	

Table 24.6 Port P9 Peripheral Function Output Control

	PS3 Register	PSL3 Register
Bit 0	0: P9o/TB0in/CLK3(input)	Set to "0"
	1: CLK3(output)	
Bit 1	0: P91/TB1IN/RxD3/ISRxD2/SCL3(input)/IEIN	0: SCL3(output)
	1: Selected by the PSL3 register	1: STxD3
Bit 2	0: P92/TB2IN/SRxD3/SDA3(input)	0: TxD3/SDA3(output)
	1: Selected by the PSL3 register	1: OUTC20/ISTxD2/IEIN
Bit 3	0: P93/TB3IN/CTS3/SS3/DA0(output)	0: Except DA0
	1: RTS3	1: DA0
Bit 4	0: P94/TB4IN/CTS4/SS4/DA1(output)	0: Except DA1
	1: RTS4	1: DA1
Bit 5	0: P95/ANEX0/CLK4(input)	0: Except ANEX0
	1: CLK4(output)	1: ANEX0
Bit 6	0: P96/SRxD4/ANEX1/SDA4(input)	0: Except ANEX1
	1: TxD4/SDA4(output)	1: ANEX1
Bit 7	0: P97/RxD4/ADTRG/SCL4(input)	0: SCL4(output)
	1: Selected by the PSL3 register	1: STxD4

Table 24.7 Port P10 Peripheral Function Output Control

	PSC Register
Bit 7	0: P104 to P107 or Klo to Kl3
	1: AN4 to AN7

Table 24.8 Port P11 Peripheral Function Output Control

	PS5 Register
Bit 0	0: P110
	1: OUTC10/ISTxD1/BE1OUT
Bit 1	0: P111/INPC11/ISCLK1(input)
	1: OUTC11/ISCLK1(output)
Bit 2	0: P112/INPC12/ISRxD1/BE1IN
	1: OUTC12
Bit 3	0: P113
	1: OUTC13
Bit 4 to 7	Set to "0"

Table 24.9 Port P12 Peripheral Function Output Control

	PS6 Register
Bit 0	0: P120
	1: OUTC30/ISTxD3
Bit 1	0: P121/ISCLK3(input)
	1: OUTC31/ISCLK3(output)
Bit 2	0: P122/ISRxD3
	1: OUTC32
Bit 3	0: P123
	1: OUTC33
Bit 4	0: P124
	1: OUTC34
Bit 5	0: P125
	1: OUTC35
Bit 6	0: P126
	1: OUTC36
Bit 7	0: P127
	1: OUTC37

Table 24.10 Port P13 Peripheral Function Output Control

	PS7 Register
Bit 0	0: P130
	1: OUTC24
Bit 1	0: P131
	1: OUTC25
Bit 2	0: P132
	1: OUTC26
Bit 3	0: P133
	1: OUTC23
Bit 4	0: P134
	1: OUTC20/ISTxD2/IEOUT
Bit 5	0: P135/ISRxD2/IEIN
	1: OUTC22
Bit 6	0: P136/ISCLK2(input)
	1: OUTC21/ISCLK2(output)
Bit 7	0: P137
	1: OUTC27

Table 24.11 Port P14 Peripheral Function Output Control

	PS8 Register	
Bit 0	0: P140	
	1: OUTC14	
Bit 1	0: P141	
	1: OUTC15	
Bit 2	0: P142/INPC16	
	1: OUTC16	
Bit 3	0: P143/INPC17	
	1: OUTC17	
Bit 4 to 7	Set to " 0"	

Table 24.12 Port P15 Peripheral Function Output Control

	PS9 Register
Bit 0	0: P150/INPC00/AN150
	1: OUTC00/ISTxD0/BE0out
Bit 1	0: P151/INPC01/AN151/ISCLK0(input)
	1: OUTC01/ISCLK0(output)
Bit 2 to 3	Set to "0"
Bit 4	0: P154/INPC04/AN154
	1: OUTC04
Bit 4	0: P155/INPC05/AN155
	1: OUTC05
Bit 6 to 7	Set to " 0"

25. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, rewrite operations to the flash memory can be performed in three modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 25.1 lists specifications of the flash memory version. See Tables 1.1 and 1.2 for the items not listed in Table 25.1.

Table 25.1 Flash Memory Version Specifications

Item		Specification		
Supply Voltage		4.2V to 5.5V (f(XIN) = 32MHz, no wait)		
		3.0V to 5.5V (f(XIN) = 20MHz, no wait)		
Program and Erase Voltage		4.2V to 5.5V (through VDC), 3.0V to 3.6V (not through VDC)		
		CPU clock=12.5MHz (1 wait state), CPU clock=6.25MHz (no wait)		
Flash Memory Re	ewrite Mode	3 modes (CPU rewrite, standard serial I/O, parallel I/O)		
Erase Block	User ROM Area	See Figure 25.1		
	Boot ROM Area	1 block (8 Kbytes) ⁽¹⁾		
Program Method		Per page (256 bytes)		
Erase Method		All block erase, erase per block		
Program and Erase Control Method		Software commands control programming and erasing on the flash memor		
Protect Method		The lock bit protects each block in the flash memory		
Number of Comn	nands	8 commands		
Program and Era	se Endurance	100 cycles ⁽³⁾		
Data Retention		10 years		
ROM Code Protection		Standard serial I/O mode and parallel I/O mode supported		

Table 25.2 Flash Memory Rewrite Mode Overview

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode	
Function	Software command execution by CPU rewrites the user ROM area.	A dedicated serial programmer rewrites the user ROM area. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART	A dedicated parallel programmer rewrites the boot ROM area and user ROM area.	
Space which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area	
Operating Mode	Single-chip mode Memory expansion mode Boot mode	Boot mode	Parallel I/O mode	
Programmer None		Serial programmer	Parallel programmer	

^{1.} The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. This space can be rewritten in parallel I/O mode only.

25.1 Memory Map

The flash memory contains a user ROM area, with space to store microcomputer operating programs in single-chip mode or memory expansion mode, and a separate 8-Kbyte boot ROM area. Figure 25.1 shows a block diagram of the flash memory.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program and erase. The user ROM area can be rewritten in CPU rewrite, standard serial I/O and parallel I/O modes. The boot ROM area is allocated in the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to 25.5 Parallel I/O Mode). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVss and P50 pins and an "L" signal is applied to the P55 pin (refer to 25.1.1 Boot Mode). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVss pin. Consequently, the boot ROM area cannot be read.

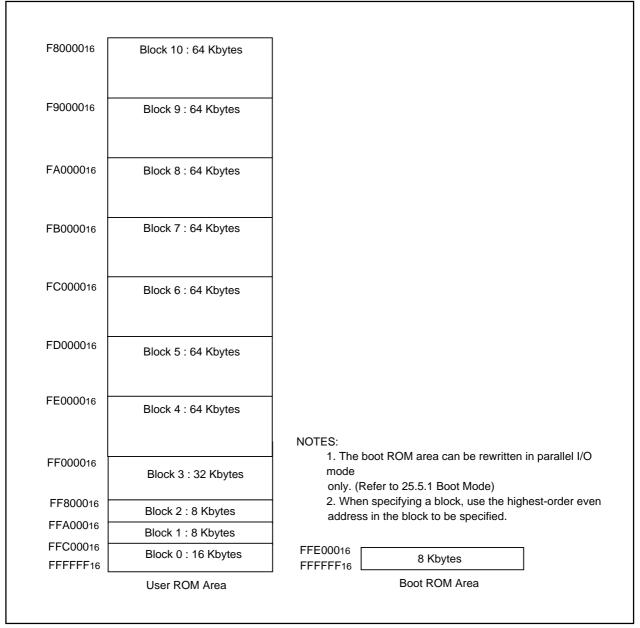


Figure 25.1 Flash Memory Block Diagram

25.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset is performed while an "H" signal is applied to the CNVss and P50 pins and an "L" signal is applied to the P55 pin. The program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to either the boot ROM area or the user ROM area.

The rewrite control program for standard serial I/O mode (refer to 25.4 Standard Serial I/O Mode) is stored in the boot ROM area before shipment.

The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erasewrite mode is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

25.2 Functions to Prevent the Flash Memory from Rewriting

The flash memory has the ROM code protect function for parallel I/O mode and the ID code verify function for standard I/O mode to prevent the flash memory from reading or rewriting.

25.2.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel I/O mode. Figure 25.2 shows the ROMCP register. The ROMCP register is located in the user ROM area.

The ROM code protect function is enabled when the ROMCP1 bit is set to "002". The ROM code protect function is disabled when the ROMCR bit is set to "002", regardless of the ROMCP1 bit setting.

Therefore, set the ROMCR bit to "112" and the ROMCP1 bit to "002" when setting up the ROM code protect function.

Once the ROM code protect function is enabled, the ROMCR bit cannot be changed in parallel I/O mode. Rewrite the ROMCR bit to "002" in standard serial I/O mode or CPU rewrite mode when disabling the ROM code protect function.

25.2.2 ID Code Verify Function

Use the ID code verify function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFF16", ID codes are not compared, and all commands are accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses OFFFFDF16, OFFFFEB16, OFFFFEB16, OFFFFFB16, OFFFFF716 and OFFFFFB16. The flash memory must have a program with the ID codes set in these addresses.

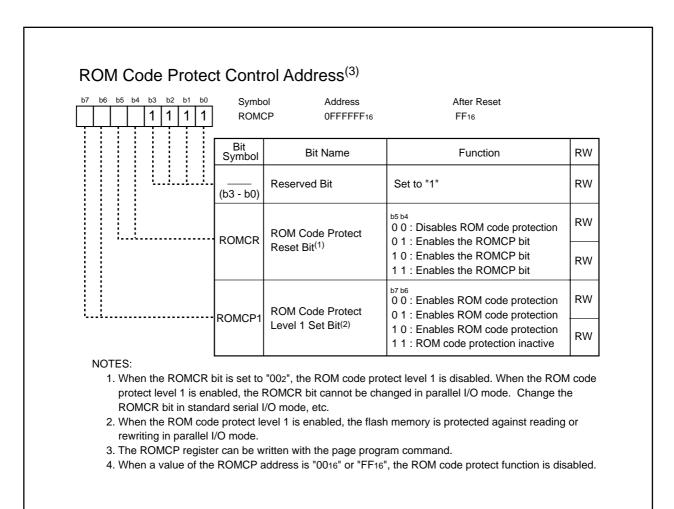


Figure 25.2 ROMCP Register

Figure 25.3 Address to Store ID Code

25.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer mounted on a board, without using a parallel or serial programmer.

Write the rewrite control program to either the user ROM area or the boot ROM area, beforehand. No program in the flash memory can be executed in CPU rewrite mode. Therefore, transfer rewrite control program to an area other than flash memory (internal RAM, etc.), and execute.

CPU rewrite mode can be entered when the microcomputer is in single-chip, memory expansion, and boot

Software commands, listed in Table 25.3, can be used in CPU rewrite mode. Refer to 25.3.3 Software **Command** for details of each command.

Read or write commands and data from or to even addresses in the user ROM area, in 16-bit units. The 8 high-order bits (D₁₅ to D₈) are ignored when writing command codes.

Table 25.3 Software Commands

Software Command	First Bus Cycle		Second Bus Cycle		Third Bus Cycle				
Software Command	Mode	Address	Data (D ₁₅ to D ₀)	Mode	Address	Data (D ₁₅ to D ₀)	Mode	Address	Data (D ₁₅ to D ₀)
Read Array	Write	Х	xxFF16						
Read Status Register	Write	Х	xx7016	Read	X	SRD			
Clear Status Register	Write	Х	xx5016						
Page Program	Write	Х	xx41 ₁₆	Write	WA	WD	Write	WA+2	WD
Block Erase	Write	Х	xx2016	Write	BA	xxD016			
Erase All Unlocked Block	Write	Х	xxA716	Write	Х	xxD016			
Lock Bit Program	Write	Х	xx7716	Write	BA	xxD016			
Read Lock Bit Status	Write	Х	xx71 ₁₆	Read	BA	D6			

Data in the SRD register (D7 to D0)

Address to be written (Increment A7 to A0 by 2 from "0016" to "FE16".) WA:

16-bit write data WD:

Highest-order block address $(A_0 = 0)$ BA: D6: Lock bit (D6=1: unlock, D6=0: locked)

X: Any even address in the user ROM area $(A_0 = 0)$ 8 high-order bits of command code (ignored) xx:

25.3.1 Flash Memory Control Register 0 (FMR0 Register)

Figure 25.4 shows the FMR0 register.

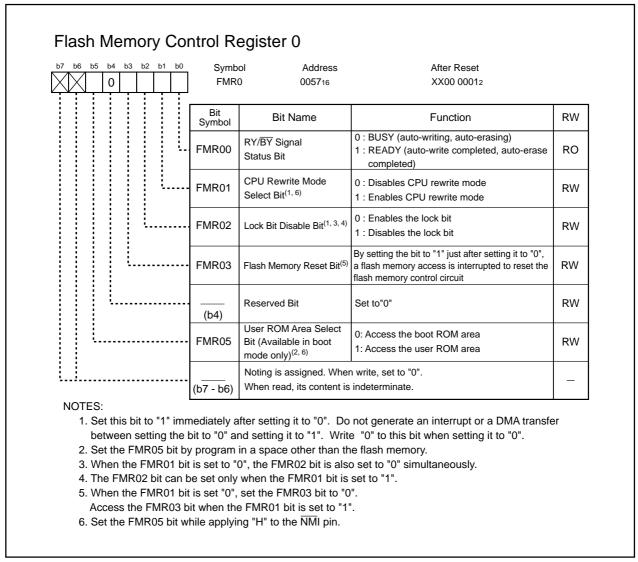


Figure 25.4 FMR0 Register

25.3.1.1 FMR00 Bit

The FMR00 bit indicates the write status machine (WSM) operation state during an auto write and auto erase operation. The FMR00 bit is set to "0" during an auto write or auto erase operation and is set to "1" when an auto write or auto erase operation is completed. The FMR00 bit changes while executing the page program, block erase, erase all unlocked block or lock bit program command. Determine whether the auto write or erase operation is completed by reading the FMR00 bit . The FMR00 bit is changed by the above commands only.

25.3.1.2 FMR01 Bit

Commands can be accepted when the FMR01 bit is set to "1" (CPU rewrite mode). To set the FMR01 bit to "1", set to "1" immediately after setting it to "0". To set the FMR01 bit to "0", set it to "0".

CPU rewrite mode is entered by setting the FMR01 bit to "1" and programs in the flash memory cannot be executed. Execute an instruction written to this bit in a space (internal RAM, etc.) other than the flash memory.

If a command for CPU rewrite mode is executed in boot mode, set the FMR05 bit to "1" (user ROM area access).

25.3.1.3 FMR02 Bit

The lock bit set for each block can be disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **25.3.3 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The FMR02 bit can be set when the FMR01 bit is set to "1". To set the FMR02 bit to "1", set it to "1" immediately after setting it to "0". To set the FMR02 bit to "0", set it to "0".

The FMR02 bit does not change the lock bit state, but disables the lock bit function. If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the lock bit state changes "0" (locked) to "1" (unlocked) after command execution is completed.

25.3.1.4 FMR03 Bit

By setting the FMR03 bit to "0" following "1", access to the user ROM area is interrupted to reset the flash memory control circuit. The flash memory enters read array mode after reset. The FMR00 bit is set to "1" (READY) and the Status register is set to "8016". (Refer to **25.3.2 Status Register**.)

When the FMR03 bit resets the flash memory control circuit during an auto write or auto erase operation, an auto write or auto erase operation is interrupted. Data in the block is invalid.

To set the FMR03 bit to "0", set it to "0" immediately after setting it to "1".

25.3.1.5 FMR05 Bit

The FMR05 bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area. Execute an instruction written to the FMR05 bit in a space (internal RAM, etc.) other than the flash memory.

In modes other than boot mode, the user ROM area is accessed (read) regardless of the FMR05 bit setting.

25.3.2 Status Register

The write state machine (WSM) in the flash memory controls programming and erasing of the flash memory. The status register indicates whether or not the WSM is operating as expected, and whether or not a program or erase operation is completed as expected. Refer to 25.3.6 Full Status Check for details on each error.

Table 25.4 lists the status register.

The status register can be read by the read status command (Refer to 25.3.5 Software Command).

Table 25.4 Status Register

Symbol	Status Name	Definition			
Symbol	Status Name	0	1		
SR0 (D0)	Reserved bit	-	-		
SR1 (D1)	Reserved bit	-	-		
SR2 (D2)	Reserved bit	-	-		
SR3 (D3)	Block status after program	Completed as expected	Error (excessive write error)		
SR4 (D4)	Program status	Completed as expected	Error (program error)		
SR5 (D5)	Erase status	Completed as expected	Error (erase error)		
SR6 (D6)	Reserved bit	-	-		
SR7 (D7)	Write state machine (WSM) status	BUSY	READY		

D7 to D0: These data bus are read when the read status register command is executed.

25.3.2.1 Block Status After Program (SR3)

The SR3 bit is set to "1" when a page program command execution is completed with an excessive write error. The SR3 bit is set to "0" when the clear status command is executed.

The SR3 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.2 Program Status (SR4)

The SR4 bit is set to "1" when a program error occurs while the page program or lock bit program command is being executed. The SR4 bit is set to "0" when the clear status command is executed. The SR4 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.3 Erase Status (SR5)

The SR5 bit is set to "1" when an erase error occurs while the block erase or erase all unlocked block command is being executed. The SR5 bit is set to "0" when the clear status command is executed. The SR5 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.4 Write State Machine (WSM) Status (SR7)

The SR7 bit indicates the WSM operation state. The SR7 bit is set to "0" during auto write or auto erase and to "1" when an auto write or auto erase operation is completed. The SR7 bit changes while the page program, block erase, erase all unlocked block or lock bit program command is being executed. The SR7 bit changes with the above commands only. The SR7 bit is set to "1" after reset or after setting the FMR03 bit to "0" following "1",.

The FMR00 bit indicates the WSM status. Read the FMR00 bit to determine whether the auto write or erase operation is completed.

25.3.3 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit individually protects (locks) each block against program and erase. This prevents data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block is set to "1" after an erase operation has been completed.

Refer to 25.3.5 Software Commands for details on each command.

25.3.4 How to Enter and Exit CPU Rewrite Mode

Figure 25.5 shows how to enter and exit CPU rewrite mode.

No program in the flash memory can be executed in CPU rewrite mode. Execute rewrite control program in a space other than the flash memory (internal RAM, etc.) after transferring the program to that space.

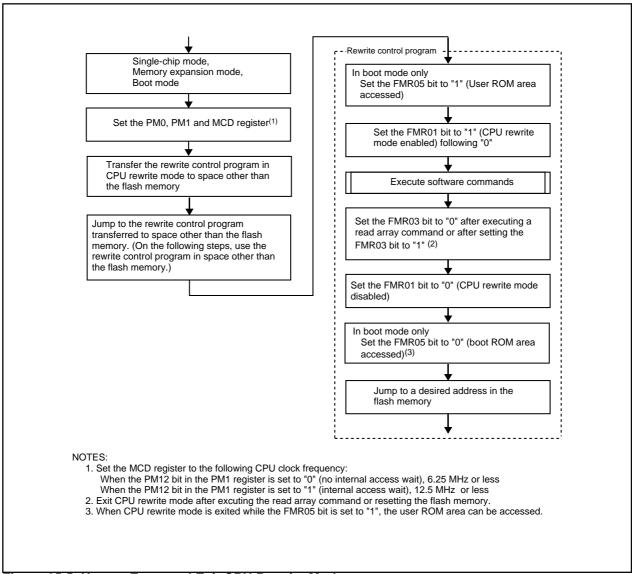


Figure 25.5 How to Enter and Exit CPU Rewrite Mode

25.3.5 Software Commands

Read or write commands and data from or to even addresses in the user ROM area, in 16-bit units. When writing a command code, 8 high-order bits (D15 to D8) are ignored.

25.3.5.1 Read Array Command

The read array command reads the flash memory.

Read array mode is entered by writing command code "xxFF16" in the first bus cycle. Content of a specified address can be read after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

25.3.5.2 Read Status Register Command

The read status register command reads the status register (refer to 25.3.7 Status Register for details). By writing command code "xx7016" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

25.3.5.3 Clear Status Register Command

The clear status register command clears the status register. By writing "xx5016" in the first bus cycle, the SR5 to SR3 bits in the status register (see Table 25.4) are set to "0".

25.3.5.4 Page Program Command

The page program command executes programs in 128-word (256-byte) units.

After writing command code "xx4116" in the first bus cycle, write data to the 2nd through 129th bus cycles in 16-bit units. Increment by two, from "0016" to "FE16", the 8 low-order bits of the write address. Auto write, programming and verification of data, is performed when 128 word data has been written. Do not access the flash memory or execute the next command during auto write operation.

The FMR00 bit in the FMR0 register indicates whether an auto program operation is completed.

After an auto write operation is completed, the Status register indicates whether the auto write operation is completed as expected or not. (Refer to 25.3.6 Full Status Check.)

Figure 25.6 shows a flow chart of the page program command programming. When programming a space which is already programmed, execute erase (block erase) before programming. If the page program command is executed to a space already programmed, no program error occurs but the page is indeterminate.

The lock bit can protect blocks from being programmed. (Refer to 25.3.3 Data Protect Function.)

Figure 25.6 Program Command

25.3.5.5 Block Erase Command

The block erase command erases each block.

By writing command code "xx2016" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) starts in the specified block. Do not access the flash memory or execute the next command during auto erase operations.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed. After the completion of an auto erase operation, the Status register indicates whether or not the auto erase operation has been completed as expected. (Refer to 25.3.6 Full Status Check.)

Figure 25.7 shows a flow chart of the block erase command programming.

The lock bit can protect blocks from being erased. (Refer to 25.3.6 Data Protect Function.)

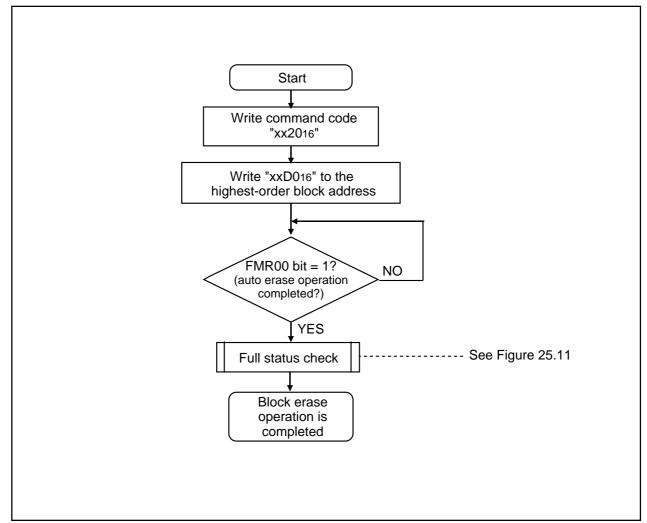


Figure 25.7 Block Erase Command

25.3.5.6 Erase All Unlocked Block Command

By writing command code "xxA716" in the first bus cycle and "xxD016" in the second bus cycle, an auto erase (erase and verify) operation will run in all blocks. Do not access the flash memory or execute the next command during auto erase operations.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation is completed.

After the completion of an auto erase operation, the Status register indicates whether or not the auto erase operation is completed as expected.

Figure 25.8 shows a flow chart of the erase all unlocked block command programming.

The lock bit can protect each block from being erased. (Refer to 25.3.6 Data Protect Function.)

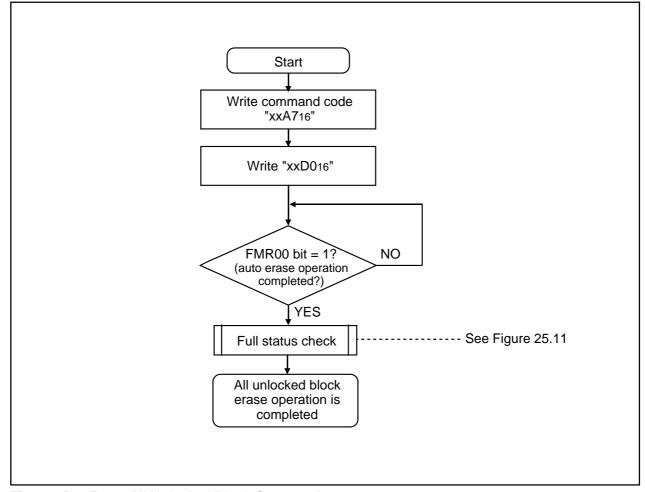


Figure 25.8 Erase All Unlocked Block Command

25.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing command code "xx7716" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, auto write operation starts, and the lock bit for the specified block is set to "0". Do not access the flash memory or execute the next instructions during the lock bit program operation.

The FMR00 bit in the FMR0 register indicates whether or not the lock bit program operation has been completed. After the completion of a lock bit program operation, the Status register indicates whether or not the operation has been completed as expected. (Refer to **25.3.6 Full Status Check**.) Figure 25.9 shows a flow chart of the lock bit program command programming.

Refer to 25.3.6 Data Protect Function for details on how to set the lock bit function to "0" (unlocked).

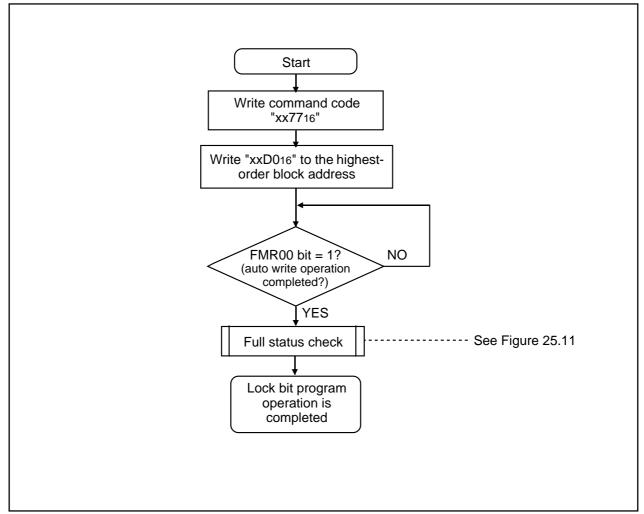


Figure 25.9 Lock Bit Program Command

25.3.5.8 Read Lock Bit Status Command

The read lock bit status command reads the lock bit state of a specified block.

By writing command code "xx7116" in the first bus cycle and reading the highest-order address (however, Ao=0) of a block in the second bus cycle, the lock bit state information of a specified block is read out to the data bus (D6).

Figure 25.10 shows a flow chart of the read lock bit status command programming.

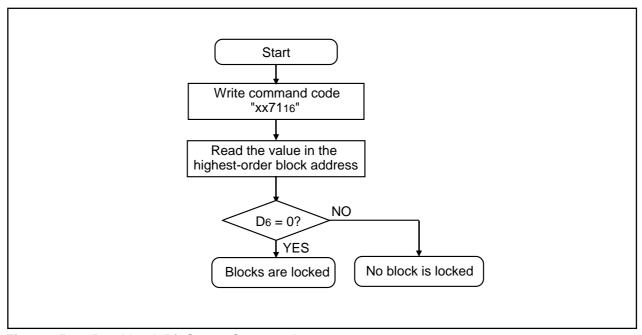


Figure 25.10 Read Lock Bit Status Command

25.3.6 Full Status Check

If an error occurs when a program or erase operation is completed, the SR3 to SR5 bits in the status register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by verifying these bits (full status check).

Table 25.5 lists errors and status register state. Figure 25.12 shows a flow chart of the full status check and handling procedure for each error.

Table 25.5 Errors and Status Register State

Status Register Error		Error	Error Occurrence Conditions		
SR5	SR4	SR3			
1	1	0	Command sequence	An incorrect command is written	
			error	• A value other than "xxD016" or "xxFF16" is written in the sec-	
				ond bus cycle of the lock bit program, block erase or erase	
				all unlocked block command ⁽¹⁾	
1	0	0	Erase error	The block erase command is executed on a locked block ²	
				The block erase or erase all unlocked block command is	
				executed on an unlock block but the erase operation is not	
				completed as expected	
0	1	0	Program error	The page program command is executed on a locked block ⁽²⁾	
				The page program command is executed in an unlocked	
				block but the program operation is not completed as ex-	
				pected	
				The lock bit program command is executed but the pro-	
				gram operation is not completed as expected	
0	0	1	Excessive write error	Excessive write occurs after the page program command	
				is executed	

- 1. The flash memory enters read array mode when command code "xxFF16" is written in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.
- 2. If the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions listed above.

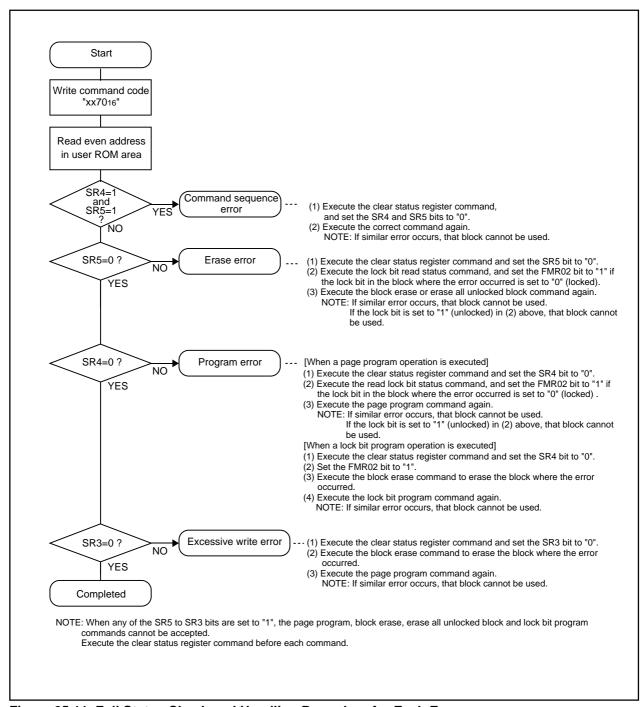


Figure 25.11 Full Status Check and Handling Procedure for Each Error

25.3.7 Precautions in CPU Rewrite Mode

25.3.7.1 Operating Speed

Set the MCD register to the following CPU clock before entering CPU rewrite mode .

When the PM12 bit in the PM register is set to "0" (no wait state), 6.25MHz or less

When the PM12 bit in the PM register is set to "1" (wait state), 12.5MHz or less

25.3.7.2 Prohibited Instructions

In CPU rewrite mode, programs cannot be executed, nor can interrupt vectors be read in the flash memory. Execute the rewrite control program after the program is transferred to a space other than the flash memory. (See Figure 25.5.)

The following instructions cannot be used because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction and BRK instruction.

25.3.7.3 Interrupts

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the
- The NMI and watchdog timer interrupts are available since the FMR01 is forcibly reset when either interrupt occurs. Allocate the jump addresses for each interrupt service routine and write to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

25.3.7.4 Reading and Writing Commands and Data

Read or write 16-bit commands and data from or to even addresses in the user ROM area.

25.3.7.5 Reset

Reset is always enabled.

25.3.7.6 Access Prohibited

Write the FMR01 bit and FMR05 bit in a space other than the flash memory.

25.3.7.7 How to Access

To set the FMR01 bit and FMR02 bits to "1", set to "1" immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bits to "1" and the instruction to set the bits to "0". Set the FMR01 bit to "1" after an "H" signal is applied to the P85/NMI pin.

25.3.7.8 Rewriting in the User ROM Area

If the supply voltage drops while in CPU rewrite mode, when rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

25.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M32C/83 group can be used to rewrite the flash memory user ROM area, while the microcomputer is mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Standard serial I/O mode includes:

- Standard serial I/O mode 1 (clock synchronous)
- Standard serial I/O mode 2 (clock asynchronous)

25.4.1 Pin Function

Table 25.6 lists pin descriptions (flash memory standard serial I/O mode). Figures 2.12 to 25.14 show pin connections in serial I/O mode.

25.4.2 ID Code Verify Function

The ID code verify function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting.**)

Table 25.6 Pin Description (Flash Memory Standard Serial I/O Mode)

Symbol	Function	I/O Type	Description
Vcc	Power Supply	I	Apply 4.2 V to 5.5 V to the Vcc pin
Vss	Input		Apply 0 V to the Vss pin
CNVss	CNVss	I	Connect this pin to Vcc
RESET	Reset Input	I	Reset input pin. Apply 20 or more clock cycles to the XIN pin while "L"
			is applied to the RESET pin.
XIN	Clock Input	I	Connect a ceramic resonator or crystal oscillator between XIN and
Хоит	Clock Output	0	XOUT. To use the external clock, input the clock from XIN and leave
			XOUT open.
BYTE	BYTE Input	I	Connect this pin to Vss or Vcc
AVcc	Analog Power	I	Connect AVCC to VCC
AVss	Supply Input	I	Connect AVss to Vss
VREF	Reference	I	Reference voltage input pin for the A/D converter.
	Voltage Input		
P00 to P07	Input Port P0	I	Apply "H" or "L" to this pin, or leave open
P10 to P17	Input Port P1	I	Apply "H" or "L" to this pin, or leave open
P20 to P27	Input Port P2	I	Apply "H" or "L" to this pin, or leave open
P30 to P37	Input Port P3	I	Apply "H" or "L" to this pin, or leave open
P40 to P47	Input port P4	I	Apply "H" or "L" to this pin, or leave open
P50	CE Input	I	Apply "H" to this pin.
P55	EPM Input		Apply "L" to this pin.
P51 to P54	Input Port P5		Apply "H" or "L" to this pin, or leave open
P56, P57			
P60 to P63	Input Port P6	I	Apply "H" or "L" to this pin, or leave open
P64	BUSY Output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Program running verify monitor
P65	SCLK Input	I	Standard serial I/O mode 1: Serial clock input pin
			Standard serial I/O mode 2: Apply "L" to this pin
P66	RxD	I	Serial data input pin
P67	TxD	0	Serial data output pin ⁽¹⁾
P70 to P77	Input Port P7	I	Apply "H" or "L" to this pin, or leave open
P80 to P84	Input Port P8	I	Apply "H" or "L" to this pin, or leave open
P86, P87			
P85	NMI Input	I	Connect this pin to Vcc
P90 to P97	Input Port P9	I	Apply "H" or "L" to this pin, or leave open
P100 to P107	Input Port P10	I	Apply "H" or "L" to this pin, or leave open
P110 to P114 ⁽²⁾	Input Port P11	I	Apply "H" or "L" to this pin, or leave open
P120 to P127 ⁽²⁾	Input Port P12	I	Apply "H" or "L" to this pin, or leave open
P130 to P137 ⁽²⁾	Input Port P13	I	Apply "H" or "L" to this pin, or leave open
P140 to P146 ⁽²⁾	Input Port P14	I	Apply "H" or "L" to this pin, or leave open
P150 to P157 ⁽²⁾	Input Port P15	I	Apply "H" or "L" to this pin, or leave open

- 1. In standard serial I/O mode 1, apply an "L" signal to the TxD pin while applying "L" to the RESET pin. Connect P67 to Vss via a resistor. P67 becomes a data output pin after reset. Adjust the value of the pull-down resistor on your system so as not to affect data transfer.
- 2. These pins are provided in the 144-pin package only.

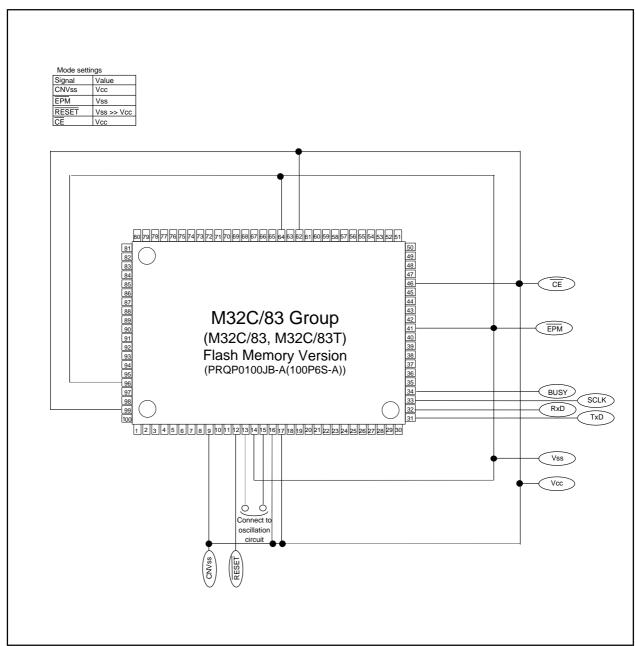


Figure 25.12 Pin Connections in Standard Serial I/O Mode (1)

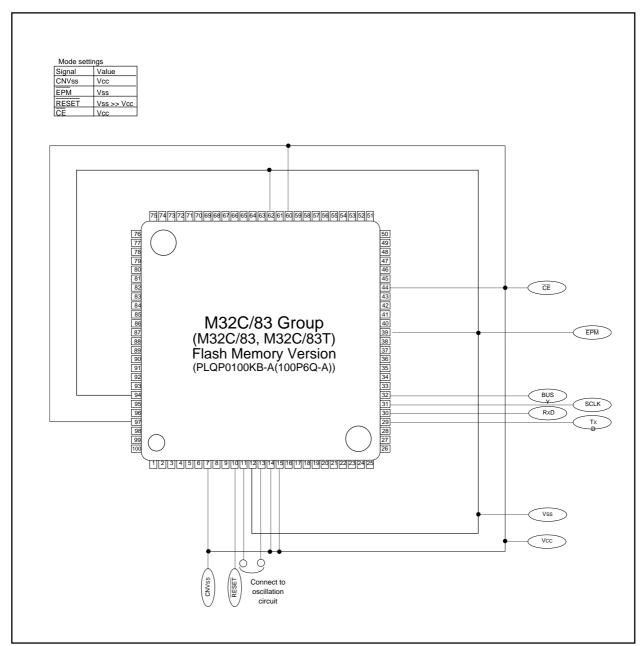


Figure 25.13 Pin Connections in Standard Serial I/O Mode (2)

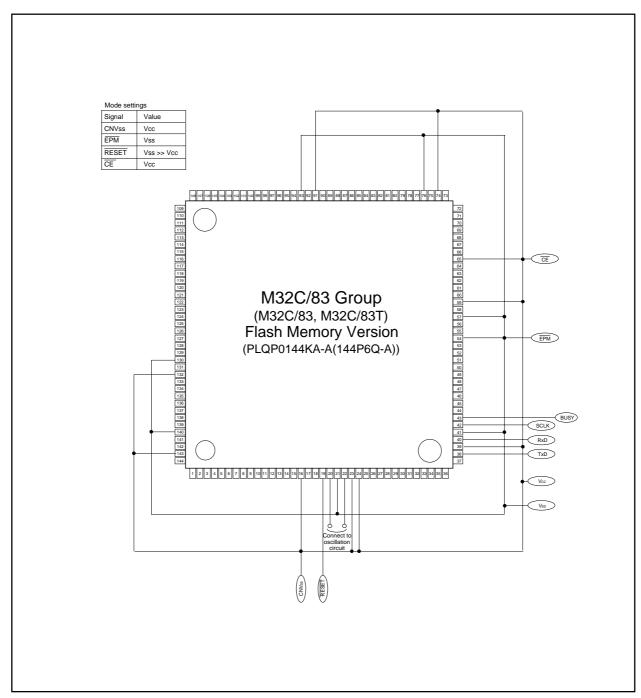


Figure 25.14 Pin Connections in Standard Serial I/O Mode (3)

25.4.3 Precautions in Standard Serial I/O Mode

- Serial I/O mode cannot be used after boot ROM area is written in parallel I/O mode.
- If an user reset signal becomes "L" in serial I/O mode, break connection between the user reset signal and the RESET pin by using, for example, a jumper selector.

25.4.4 Circuit Application in Standard Serial I/O Mode

Figure 25.15 shows an example of a circuit application in standard serial I/O mode 1. Figure 25.16 shows an example of a circuit application in serial I/O mode 2. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

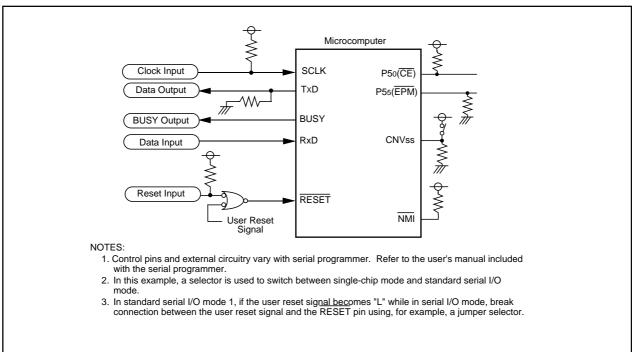


Figure 25.15 Circuit Application in Standard Serial I/O Mode 1

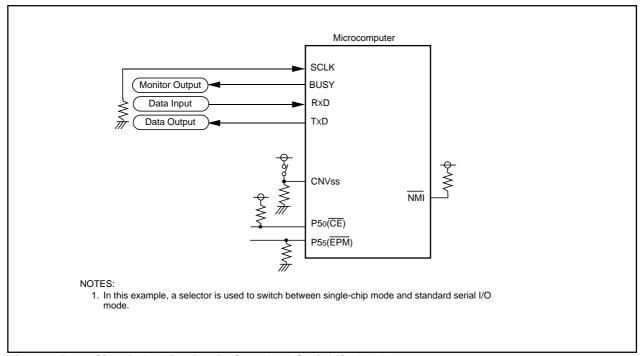


Figure 25.16 Circuit Application in Standard Serial I/O Mode 2

25.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area (see Figure 25.1) can be rewritten by a parallel programmer supporting the M32C/83 Group. Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

25.5.1 Boot ROM Area

Within the boot ROM area, 8K bytes equal one block.

The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using a serial programmer.

In parallel I/O mode, the boot ROM area is allocated to addresses 0FFE00016 to 0FFFFF16. Rewrite only this address range when rewriting the boot ROM area. (Do not access addresses other than addresses 0FFE00016 to 0FFFFF16.)

25.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)

25.5.3 Precautions on Parallel I/O Mode

Standard serial I/O mode cannot be used if rewriting the boot ROM area in parallel I/O mode. (Refer to **25.4 Standard Serial I/O Mode**.)

26. Electrical Characteristics

26.1 Electrical Characteristics (M32C/83)

Table 26.1 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
Vcc	Supply Voltage	Supply Voltage		-0.3 to 6.0	V
AV∝	Analog Supply	Voltage	Vc=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P0o-P07, P1o-P17, P2o-P27,		-0.3 to V∞+0.3	V
		P3o-P37, P4o-P47, P5o-P57, P6o-P67, P72-P77, P8o-			
		P87, P90-P97, P100-P107, P110-P114, P120-P127,			
		P13o-P137, P14o-P146, P15o-P157 ⁽¹⁾ , VREF, XIN			
		P70, P71		-0.3 to 6.0	V
Vo	Output Voltage	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-		-0.3 to V∞+0.3	V
		P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97,			
		P100-P107, P110-P114, P120-P127, P130-P137, P140-			
		Р146, Р150-Р157 ⁽¹⁾ , Хоит			
Pd	Power Dissipati	on	Topr=25° C	500	mW
Topr	Operating Ambi	ent Temperature		-20 to 85	° C
Tstg	Storage Tempe	rature		-65 to 150	° C

^{1.} P11 to P15 are provided in the 144-pin package.

Table 26.2 Recommended Operating Conditions (VCC = 3.0V to 5.5V at Topr = -20 to 85°C)

Symbol		Parameter			Standar	d	Unit
				Min	Тур	Max	1
Vα	Supply Voltage ((Through VDC)		3.0	5.0	5.5	V
	Supply Voltage ((Not through VDC)		3.0	3.3	3.6	V
AV∞	Analog Supply V	oltage/			Vcc		V
Vss	Supply Voltage				0		V
AVss	Analog Supply V	oltage/			0		V
Vн		P20-P27, P30-P37, P40-P47, P50-P57, F	P60-P67, P72-P77, P80-	0.8Vcc		Vcc	V
	Voltage	P87 ⁽³⁾ , P90-P97, P100-P107, P110-P114	, P120-P127, P130-				
		P137, P140-P146, P150-P157 ⁽⁴⁾ , XIN, RE	SET, CNVss, BYTE				
		P70, P71		0.8V∞		6.0	
		P0o-P07, P1o-P17 (in single-chip mode	e)	0.8V∞		Vcc	V
		P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ (in memory expansion mode and mic	roprocesor mode)	0.5V∞		Vcc	V
VIL	Input Low ("L")	P20-P27, P30-P37, P40-P47, P50-P57, F	<u>'</u>	0		0.2V∞	V
•	Voltage	P87 ⁽³⁾ , P90-P97, P100-P107, P110-P114				0.2.00	
		P137, P140-P146, P150-P157 ⁽⁴⁾ , XIN, RE				0.2V∞	
		P0o-P07, P1o-P17 (in single-chip mode	· · · · · · · · · · · · · · · · · · ·	0			V
		P00-P07, P10-P17 (in memory expansion mode and mic	roprocesor mode)	0		0.16V∝	V
IOH(peak)	Peak Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, F	P40-P47, P50-P57, P60-			-10.0	mA
	High ("H")	P67, P72-P77, P80-P84, P86, P87, P90-I	P97, P100-P107, P110-				
	Current ⁽²⁾	P114, P120-P127, P130-P137, P140-P1	46, P150-P157 ⁽⁴⁾				
IOH(avg)	Average Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, F	240-P47, P50-P57, P60-			-5.0	mA
	High ("H")	P67, P72-P77, P80-P84, P86, P87, P90-I	P97, P100-P107, P110-				
	Current ⁽¹⁾	P114, P120-P127, P130-P137, P140-P1	46, P150-P157 ⁽⁴⁾				
IOL(peak)	Peak Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, F	240-P47, P50-P57, P60-			10.0	mA
	Low ("L")	P67, P70-P77, P80-P84, P86, P87, P90-I	P97, P100-P107, P110-				
	Current ⁽²⁾	P114, P120-P127, P130-P137, P140-P1	46, P150-P157 ⁽⁴⁾				
IOL(avg)	Average Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, F	240-P47, P50-P57, P60-			5.0	mA
	Low ("L")	P67, P70-P77, P80-P84, P86, P87, P90-I	P97, P100-P107, P110-				
	Current ⁽¹⁾	P114, P120-P127, P130-P137, P140-P1	46, P150-P157 ⁽⁴⁾				
f(XIN)	Main Clock	Through VDC	Vc=4.2 to 5.5V	0		32	MHz
•	Input		Vc=3.0 to 4.3V	0		20	MHz
	Frequency	Not through VDC	V∞=3.0 to 3.6	0		20	MHz
f(Xcin)	Sub Clock Oscill	ation Frequency	1		32.768	50	kHz

NOTES:

- 1. Typical values when average output current is 100ms.
- 2. Total Iou(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less.

 $Total\ I_{OH(peak)}\ for\ P0,\ P1,\ P2,\ P86,\ P87,\ P9,\ P10,\ P11,\ P14\ and\ P15\ must\ be\ -80mA\ or\ less.$

Total IoL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less.

Total IoH(peak) for P3, P4, P5, P6, P72 to P77, P80 to P84, P12 and P13 must be -80mA or less.

- 3. V_{IH} and V_{IL} reference for P8 $_7$ applies when P8 $_7$ is used as a programmable input port. It does not apply to P8 $_7$ used as X_{CIN}.
- 4. P11 to P15 are provided in the 144-pin package only.

Table 26.3 Electrical Characteristics (VCC=4.2 to 5.5V, VSS=0V at Topr= -20 to 85°C f(XIN)=32MHz unless otherwise specified)

Symbol		Parameter		Condition	Sta	andard		Unit
					Min	Тур	Max	1
Vон	Output High ("H") Voltage	P00-P07, P10-P17, P20-P27, P30-P50-P57, P60-P67, P72-P77, P80-P67, P72-P77, P80-P77,		lo≔-5mA	Vcc - 2.0			V
		P90-P97, P100-P107, P110-P11	•					
		P130-P137, P140-P146, P150-P		In 2000 A	Vcc - 0.3			-
		P00-P07, P10-P17, P20-P27, P3		Io+=-200μA	VCC - 0.3			
		P50-P57, P60-P67, P70-P77, P8						
		P90-P97, P100-P107, P110-P11						
		Р13о-Р137, Р14о-Р146, Р15о-Р Халт	15/-	lo⊢=-1mA	3.0			V
		Хоол		No load applied	3.0	3.3		V
	0 (11 . 10)			1.		3.3		
VaL	Output Low ("L") Voltage	P0o-P07, P1o-P17, P2o-P27, P3		IoL=5mA			2.0	V
	Voltage	P50-P57, P60-P67, P70-P77, P8						
		P90-P97, P100-P107, P110-P11						
		P130-P137, P140-P146, P150-P						.,
		P0o-P07, P1o-P17, P2o-P27, P3		IoL=200μA			0.45	V
		P50-P57, P60-P67, P70-P77, P8						
		P90-P97, P100-P107, P110-P11						
		P130-P137, P140-P146, P150-P	157(1)	lo: 1m A			2.0	V
		Хол		loL=1mA		_	2.0	V
		Хсолт		No load applied		0		
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, TB0 INT5, ADTRG, CTS0-CTS4, CL			0.2		1.0	V
		TA0our-TA4our, NMI, KI0-KI3,	RxD0-RxD4,					
		SCL0-SCL4, SDA0-SDA4						
		RESET			0.2		1.8	V
lıн	Input High ("H")	P0o-P07, P1o-P17, P2o-P27, P3	o-P37, P40-P47,	V⊫5V			5.0	μΑ
	Current	P50-P57, P60-P67, P70-P77, P8	o-P87, P9o-P97,					
		P100-P107, P110-P114, P120-P	127, P130-P137,					
		P140-P146, P150-P157(1), XIN, R	ESET, CNVss,					
		BYTE						
lı∟	Input Low ("L")	P00-P07, P10-P17, P20-P27, P3	o-P37, P40-P47,	Vi=0V			-5.0	μΑ
	Current	P50-P57, P60-P67, P70-P77, P8						
		P100-P107, P110-P114, P120-P						
		P140-P146, P150-P157 ⁽¹⁾ , XIN, R	ESET, CNVss,					
		BYTE						
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-P27, P3	o-P37, P40-P47,	Vi=0V	30	50	167	kΩ
		P50-P57, P60-P67, P72-P77, P8						
		P90-P97, P100-P107, P110-P11						
		P130-P137, P140-P146, P150-P	157 ⁽¹⁾					
Rfxin	Feedback Resistance	Xin				1.5		ΜΩ
Rfxan	Feedback Resistance	Xan			0.5	10		ΜΩ
VRAM	RAM Standby Voltage	Through VDC	(//) 60 141		2.5	40	F.4	V
lcc	Power Supply Current	Measurement conditions: In single-chip mode, output	f(X _{IN})=32 MHz, no division			40	54	mA
		pins are left open and other pins are connected to Vss.	Topr=25° C	with a wait state,		470		μА
			Topr=25° C wh	en the clock tops		0.4	20	μА

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.4 A/D Conversion Characteristics (VCC = AVCC = VREF = 4.2 to 5.5V, Vss = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measure	ment Condition	5	Standa	rd	Unit
Cymbol	rarameter	Wicasurci	weasurement Condition		Тур	Max	
-	Resolution	VREF=VCC				10	Bits
	IL Integral Nonlinearity Error VREF=V∞=5V	ANo to AN7				±3	LSB
INL		ANEXO, ANEX1			10	LSB	
		External op-amp			±7	LSB	
		connection mode			_ ±/	LSB	
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC		8		40	kΩ
toonv	10-bit Conversion Time			2.1			μs
toonv	8-bit Conversion Time			1.8			μs
tsamp .	Sample Time			0.2			μs
VREF	Reference Voltage			2		Vα	V
VIA	Analog Input Voltage			0		VREF	V

NOTES:

Table 26.5 D/A Conversion Characteristics (VCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	5	Unit		
	i arameter	Weasurement Condition	Min	Тур	Max	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

Table 26.6 Flash Memory Version Electrical Characteristics

Parameter			Unit	
Falametei	Min	Тур	Max	Offic
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V (through VDC), 3.0 to 3.6V (not through VDC) at Topr= 0 to 60° C, unless otherwise specified

^{1.} Divide f(X_{IN}), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.

^{1.} Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "0016". The resistor ladder in the A/D converter is exclued. IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Timing Requirements (VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.7 External Clock Input

Symbol	Parameter	Star	Unit	
-,		Min	Max	
tc	External Clock Input Cycle Time	33		ns
tw(H)	External Clock Input High ("H") Pulse Width	13		ns
tw(L)	External Clock Input Low ("L") Pulse Width	13		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 26.8 Memory Expansion and Microprocessor Modes

Comme la mal	Parameter		ndard	Unit
Symbol	Parameter	Min	Max	Unit
tac1(RD-DB)	Data Input Access Time (RD standard, with no wait state)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard, with no wait state)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, with a wait state)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, CS standard, with a wait state)		(Note 1)	ns
tac3(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac3(AD-DB)	Data Input Access Time (AD standard, CS standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac4(RAS-DB)	Data Input Access Time (RAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAS-DB)	Data Input Access Time (CAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAD-DB)	Data Input Access Time (CAD standard, when accessing a DRAM space)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	26		ns
tsu(RDY-BOLK)	RDY Input Setup Time	26		ns
tsu(HOLD-BOLK)	HOLD Input Setup Time	30		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(CAS-DB)	Data Input Hold Time	0		ns
th(Balk-RDY)	RDY Input Hold Time	0		ns
th(BOLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

$$t_{ac1(RD-DB)} = \frac{10^9}{f(BCLK) \times 2} - 35 \qquad [ns]$$

$$t_{ac1(AD-DB)} = \frac{10^9}{f(BCLK)} - 35 \qquad [ns]$$

$$t_{ac2(RD-DB)} = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [ns] \qquad [m=3 \text{ with 1 wait state, m=5 with 2 wait states}$$

$$t_{ac2(AD-DB)} = \frac{10^9 \times m}{f(BCLK)} - 35 \qquad [ns] \qquad [ns] \qquad [n=2 \text{ with 1 wait state, n=3 with 2 wait states}$$

$$t_{ac3(RD-DB)} = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [ns] \qquad [m=3 \text{ with 2 wait states}]$$

$$t_{ac3(AD-DB)} = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=5 \text{ with 2 wait states and n=7 with 3 wait states})$$

$$t_{ac4(RAS-DB)} = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=3 \text{ with 1 wait state and n=5 with 2 wait states})$$

$$t_{ac4(CAS-DB)} = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=1 \text{ with 1 wait state and n=3 when 2 wait states})$$

$$t_{ac4(CAD-DB)} = \frac{10^9 \times n}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=1 \text{ with 1 wait state and n=3 when 2 wait states})$$

^{1.} Values can be obtained from the following equations, according to BCLK frequenncy. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.9 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter		Standard		
	i didiliciei	Min	Max	Unit	
tc(TA)	TAin Input Cycle Time	100		ns	
tw(TAH)	TAil Input High ("H") Pulse Width	40		ns	
tw(TAL)	TAin Input Low ("L") Pulse Width	40		ns	

Table 26.10 Timer A Input (Gate Input in Timer Mode)

Symbol	December		Standard		
	Parameter	Min	Max	Unit	
tc(TA)	TAin Input Cycle Time	400		ns	
tw(tah)	TAil Input High ("H") Pulse Width	200		ns	
tw(tal)	TAil Input Low ("L") Pulse Width	200		ns	

Table 26.11 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter		Standard		
	raidilletei	Min	Max	Unit	
tc(TA)	TAil Input Cycle Time	200		ns	
tw(tah)	TAil Input High ("H") Pulse Width	100		ns	
tw(TAL)	TAil Input Low ("L") Pulse Width	100		ns	

Table 26.12 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Unit	
		Min	Max	Onit
tw(TAH)	TAil Input High ("H") Pulse Width	100		ns
tw(TAL)	TAilN Input Low ("L") Pulse Width	100		ns

Table 26.13 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
		Min	Max	
tc(UP)	TAiαπ Input Cycle Time	2000		ns
tw(UPH)	TAiατ Input High ("H") Pulse Width	1000		ns
tW(UPL)	TAiαπ Input Low ("L") Pulse Width	1000		ns
tsu(UP-TIN)	TAiαπ Input Setup Time	400		ns
th(TIN-UP)	TAiαπ Input Hold Time	400		ns

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.14 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	raiametei	Min	Max	Onit
tc(TB)	TBin Input Cycle Time (counted on one edge)	100		ns
tw(твн)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.15 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Star	Unit	
		Min	Max	Offic
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.16 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Star	Unit	
		Min	Max	Unit
tc(TB)	TBin Input Cycle Time	400		ns
tw(твн)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.17 A/D Trigger Input

Symbol	Parameter	Stan	Unit	
		Min	Max	Onne
tc(AD)	ADTRG Input Cycle Time (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.18 Serial I/O

Symbol	Parameter	Star	Unit	
	raidilletei	Min	Max	Offic
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Pulse Width	100		ns
tw(ckl)	CLKi Input Low ("L") Pulse Width	100		ns
td(c-q)	TxDi Output Delay Time		80	ns
th(c-q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Set Up Time	30		ns
th(c-q)	RxDi Input Hold Time	90		ns

Table 26.19 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min	Max	Offic
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width	250		ns

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.20 Memory Expansion Mode and Microprocessor Mode (with No Wait State)

Symbol	Parameter	Measurement	Standard		Unit
		Condition	Min	Max	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		0		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-3		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)	1	(Note 1)		ns
tw(WR)	WR Output Width		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) \times 2} - 15 \text{ [ns]}$$

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.21 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory)

Symbol	Parameter	Measurement Condition	Standard		Unit
		Condition	Min	Max	
td(BOLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		0		ns
th(WR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BOLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BOLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BOLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BOLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-3		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)]	(Note 1)		ns
tw(WR)	WR Output Width	1	(Note 1)		ns

$$td(DB-WR) = \frac{10^9 \, \text{X n}}{f(BCLK)} - 20 \qquad [ns] \quad (n=1 \text{ with 1 wait state, n=2 with 2 wait states})$$

$$th(WR-DB) = \frac{10^9}{f(BCLK) \, \text{X 2}} - 10 \qquad [ns]$$

$$th(WR-AD) = \frac{10^9}{f(BCLK) \, \text{X 2}} - 10 \qquad [ns]$$

$$th(WR-CS) = \frac{10^9}{f(BCLK) \, \text{X 2}} - 10 \qquad [ns]$$

$$tw(WR) = \frac{10^9 \, \text{X n}}{f(BCLK) \, \text{X 2}} - 15 \qquad [ns] \quad (n=1 \text{ with 1 wait state, n=3 with 2 wait states})$$

^{1.} Values can be obtained from the following equations, according to BCLK frequency.

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.22 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory and Selecting a Space with the **Multiplexed Bus)**

Symbol	Parameter	Measurement	Standard		Unit
		Condition	Min	Max	_
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(Balk-as)	Chip-select Signal Output Hold Time (BCLK standard)		-3		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		(Note 1)		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-AD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		-3		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)	1	(Note 1)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)	1	(Note 1)		ns
tdz(RD-AD)	Address Output High-Impedance Time	1		8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$\begin{array}{lll} th(RD-AD) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ th(WR-AD) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ th(RD-CS) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ th(WR-CS) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ td(DB-WR) = & \dfrac{10^{\,9} \, X \, m}{f(BCLK) \, X \, 2} - 25 & [ns] \, (m=3 \, \text{with 2 wait states and m=5 with 3 wait states)} \\ th(WR-DB) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ td(AD-ALE) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 20 & [ns] \\ th(ALE-AD) = & \dfrac{10^{\,9}}{f(BCLK) \, X \, 2} - 10 & [ns] \\ \end{array}$$

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.23 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory and Selecting the DRAM Space)

	(Titli a Trait State, Assessing an Exter	<u> </u>			
Symbol	Parameter	Measurement	Standard		Unit
		Condition	Min	Max	
td(BCLK-RAD)	Row Address Output Delay Time			18	ns
th(BCLK-RAD)	Row Address Output Hold Time (BCLK standard)		-3		ns
td(BCLK-CAD)	Column Address Output Delay Time	1		18	ns
th(BCLK-CAD)	Column Address Output Hold Time (BCLK standard)		-3		ns
th(RAS-RAD)	Row Address Output Hold Time after RAS Output	1	(Note 1)		ns
td(BCLK-RAS)	RAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS Output Hold Time (BCLK standard)	See Figure 26.1	-3		ns
trp	RAS High ("H") Hold Time		(Note 1)		ns
td(BCLK-CAS)	CAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS Output Hold Time (BCLK standard)		-3		ns
td(BCLK-DW)	DW Output Delay Time (BCLK standard)			18	ns
th(BCLK-DW)	DW Output Hold Time (BCLK standard)		-5		ns
tsu(DB-CAS)	CAS Output Setup Time after DB Output		(Note 1)		ns
th(BCLK-DB)	DB Signal Output Hold Time (BCLK standard)		-7		ns
tsu(CAS-RAS)	CAS Output Setup Time before RAS Output (refresh)		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equation, according to BCLK frequency.

$$th(RAS - RAD) = \frac{10^{9}}{f(BCLK) \times 2} - 13$$
 [ns]
$$tRP = \frac{10^{9} \times 3}{f(BCLK) \times 2} - 20$$
 [ns]
$$tsu(DB - CAS) = \frac{10^{9}}{f(BCLK)} - 20$$
 [ns]
$$tsu(CAS - RAS) = \frac{10^{9}}{f(BCLK) \times 2} - 13$$
 [ns]

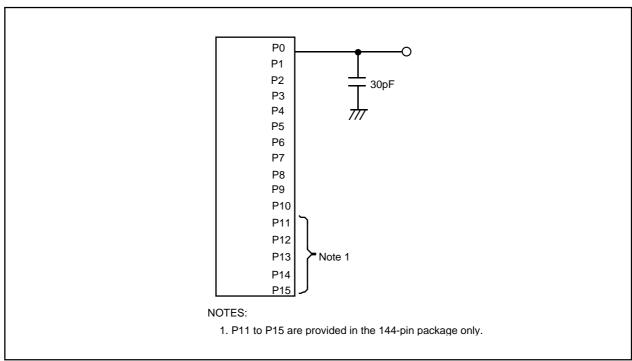


Figure 26.1 P0 to P15 Measurement Circuit

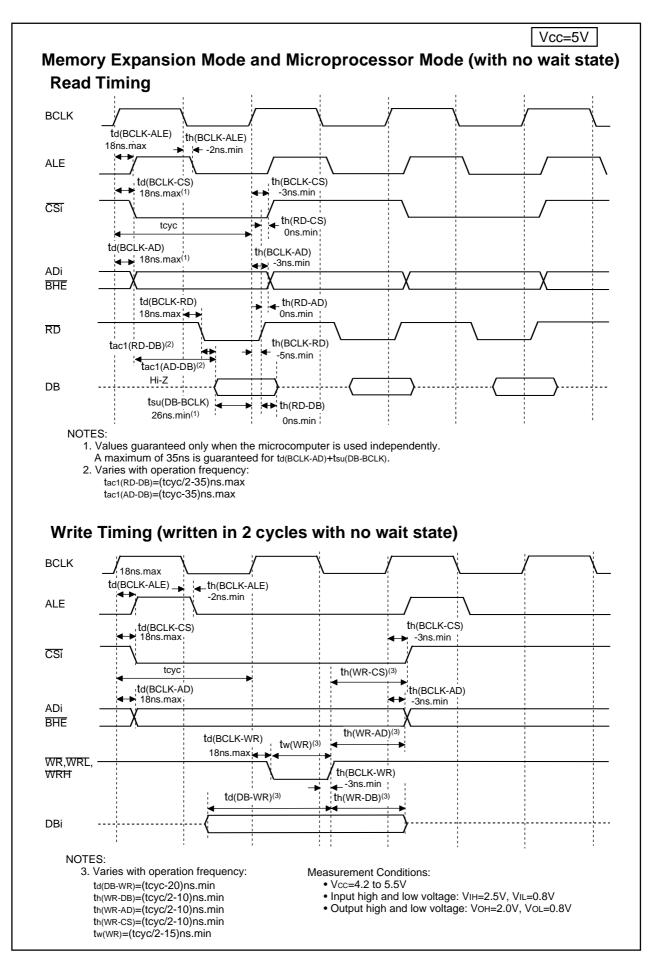


Figure 26.2 Vcc=5V Timing Diagram (1)

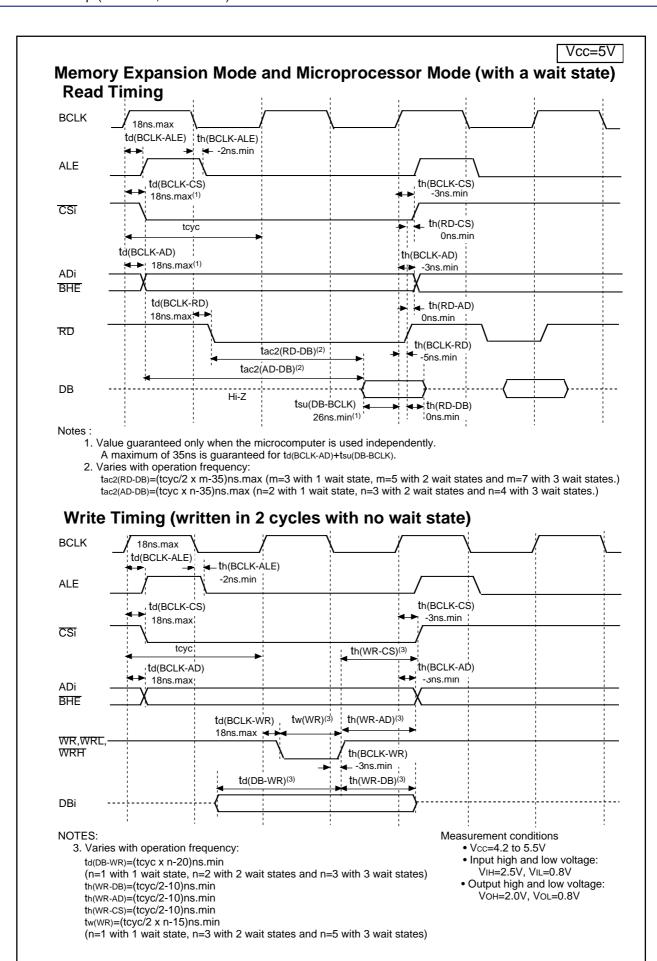


Figure 26.3 Vcc=5V Timing Diagram (2)



Figure 26.4 Vcc=5V Timing Diagram (3)

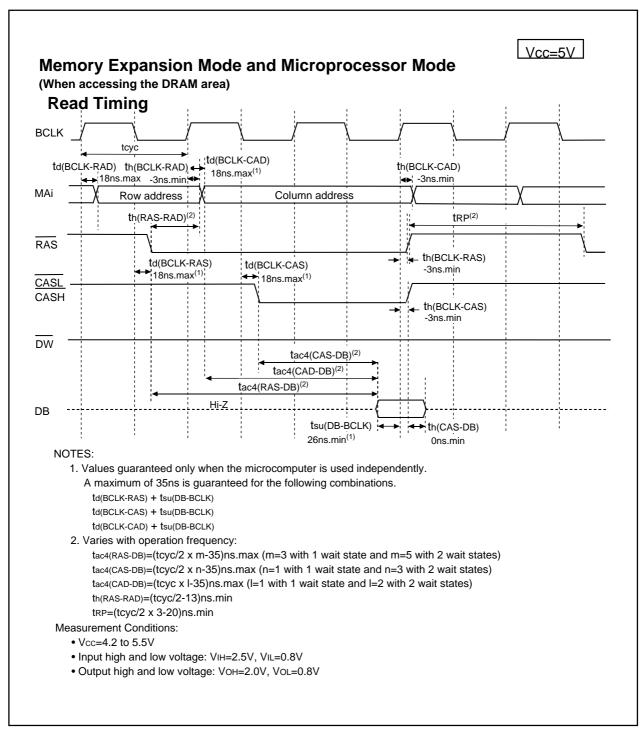


Figure 26.5 Vcc=5V Timing Diagram (4)

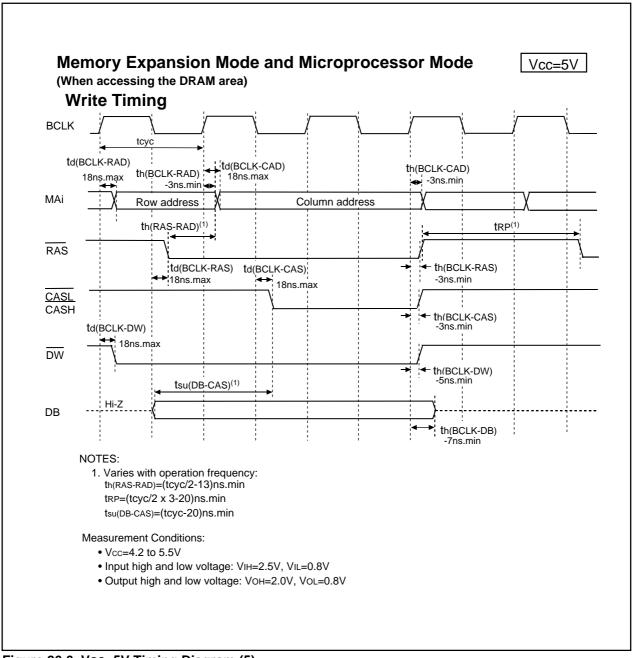


Figure 26.6 Vcc=5V Timing Diagram (5)

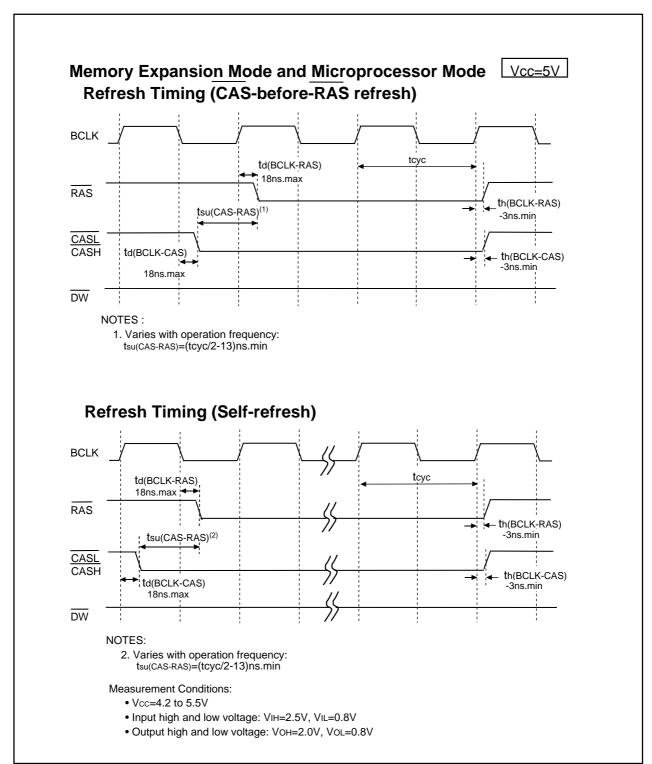


Figure 26.7 Vcc=5V Timing Diagram (6)

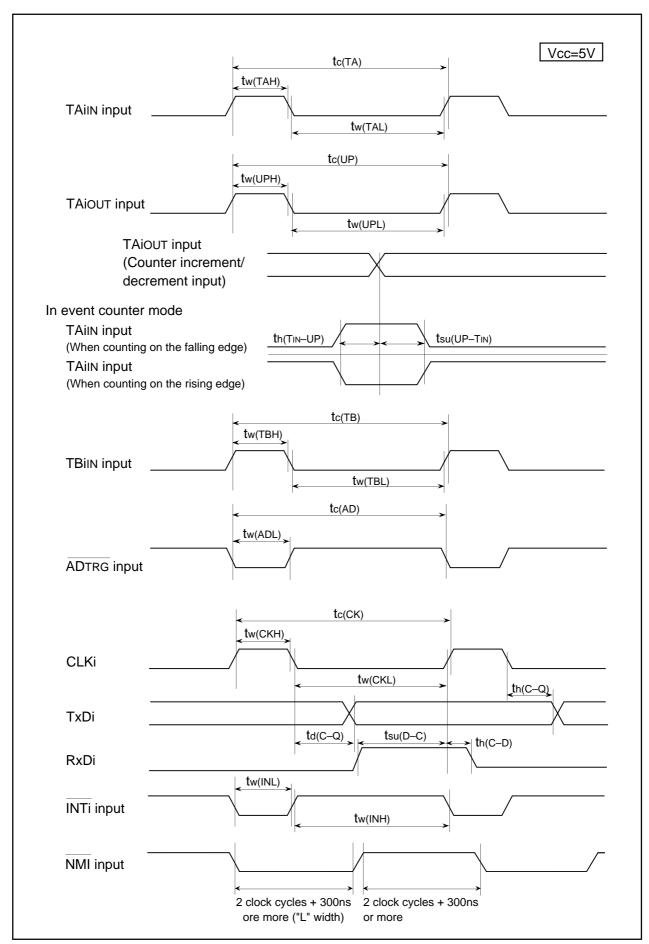


Figure 26.8 Vcc=5V Timing Diagram (7)

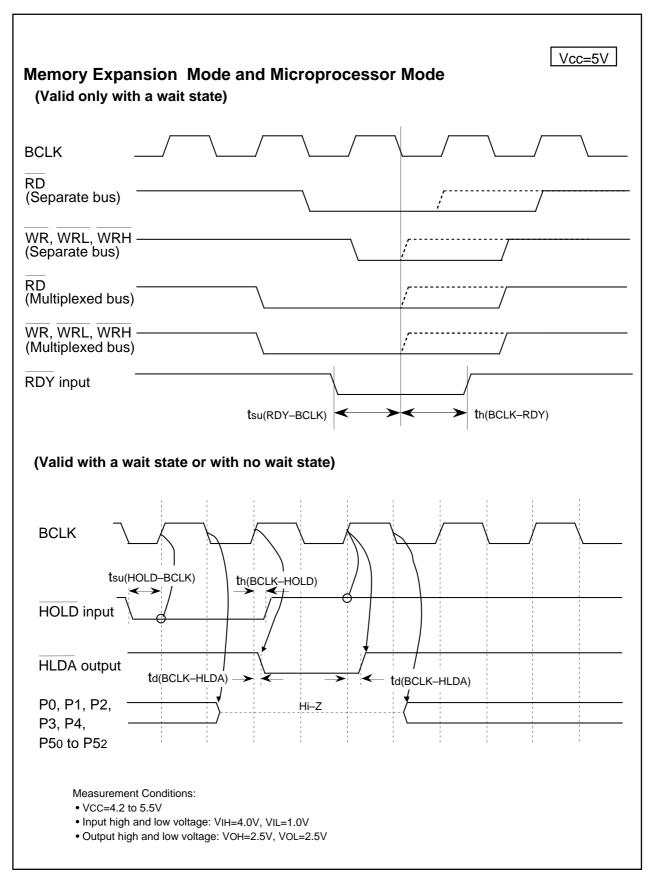


Figure 26.9 Vcc=5V Timing Diagram (8)

Table 26.24 Electrical Characteristics (VCC=3.0 to 3.6V, VSS=0V at Topr = -20 to 85°C, f(XIN)=20MHz unless otherwise specified)

Symbol		Parameter		Condition	Sta	andard	t	Unit
					Min	Тур	Max	1
Vон	Output High ("H") Voltage	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P72-P77, P8 P90-P97, P100-P107, P110-P130-P137, P140-P146, P150-F	30-P84, P86, P87, 14, P120-P127,	Іон=-1mA	Vcc-0.6			V
		Хоит		Іон=-0.1mA	2.7			V
		Хсоит		No load applied		3.3		V
Vol	Output Low ("L") Voltage	P0o-P07, P1o-P17, P2o-P27, P3 P5o-P57, P6o-P67, P7o-P77, P8 P9o-P97, P10o-P107, P11o-P13o-P137, P14o-P146, P15o-F	30-P84, P86, P87, 14, P120-P127,	IoL=1mA			0.5	V
		Хоит		IoL=0.1mA			0.5	V
		Хсоит		No load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, TB INT5, ADTRG, CTS0-CTS4, CL TA40UT, NMI, KI0-KI3, RXD0-I SDA0-SDA4	K0-CLK4, TA0out-		0.2		1.0	V
		RESET			0.2		1.8	V
Іін	Input High ("H") Current	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P70-P77, P8 P100-P107, P110-P114, P120-F P140-P146, P150-P157 ⁽¹⁾ , XIN, BYTE	30-P87, P90-P97, P127, P130-P137,	VI=3V			4.0	μΑ
lı.	Input Low ("L") Current	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P70-P77, P8 P100-P107, P110-P114, P120-F P140-P146, P150-P157 ⁽¹⁾ , XIN, BYTE	30-P87, P90-P97, P127, P130-P137,	VI=0V			-4.0	μА
RPULLUP	Pull-up Resistance	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P72-P77, P8 P90-P97, P100-P107, P110-P130-P137, P140-P146, P150-F	30-P84, P86, P87, 14, P120-P127,	Vi=0V	66	120	500	kΩ
Rfxin	Feedback Resistance	XIN				3.0		МΩ
Rfxcin	Feedback Resistance	Xcin				20.0		МΩ
VRAM	RAM Standby Voltage	Through VDC Not through VDC			2.5 2.0			V
lcc	Power Supply Current	Measurement condition: In single-chip mode, output pins are left open and other pins are connected to Vss.	f(X _{IN})=20 MHz, squ no division f(X _{CIN})=32 kHz, with	th a wait state,		26 5.0	38	mA μA
			not through VDC, f(Xcin)=32 kHz, with through VDC, Top	th a wait state, r=25° C		340		μΑ
NOTES:			Topr=25° C when	the clock stops		0.4	20	μΑ

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.25 A/D Conversion Characteristics (VCC = AVCC = VREF = 3.0 to 3.6V, Vss = AVss = 0V at Topr = -20 to 85° C, f(XIN) = 20MHz unless otherwise specified)

Symbol	Parameter		Measurement	Standard			Unit
Cymbol	1 drame		Condition	Min	Тур	Max	
-	Resolution		Vref=Vcc			10	Bits
INL	Integral Nonlinearity Error	No S&H function (8-bit)	Vcc=Vref=3.3V			±2	LSB
DNL	Differential Nonlinearity Error	No S&H function (8-bit)				±1	LSB
-	Offset Error	No S&H function (8-bit)				±2	LSB
-	Gain Error	No S&H function (8-bit)				±2	LSB
RLADDER	Resistor Ladder	•	VREF=VCC	8		40	kΩ
toonv	8-bit Conversion Time			4.9			μs
VREF	Reference Voltage			3.0		Vα	V
VIA	Analog Input Voltage			0		VREF	V

S&H: Sample and hold

NOTES:

1. Divide f(X_{IN}), if exceeding 10 MHz, to keep ϕ AD frequency at 10 MHz or less.

Table 26.26 D/A Conversion Characteristics (VCC = VREF = 3.0 to 3.6V, VSS = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 20MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	Standard			Unit
	r didinois.	measurement serialism	Min	Тур	Max	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.0	mA

NOTES:

1. Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "0016". The resistor ladder in the A/D converter is exclued. IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Table 26.27 Flash Memory Version Electrical Characteristics

Parameter		Unit		
Falametei	Min	Тур	Max	Offic
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V (through VDC), 3.0 to 3.6V (not through VDC) at Topr= 0 to 60° C, unless otherwise specified

Timing Requirements (Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.28 External Clock Input

Symbol	Parameter	Stan	Unit	
		Min	Max	
tc	External Clock Input Cycle Time	50		ns
tw(H)	External Clock Input High ("H") Pulse Width	22		ns
tw(L)	External Clock Input Low ("L") Pulse Width	22		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 26.29 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Standard		Unit
Symbol	Falantetel	Min	Max	Onit
tac1(RD-DB)	Data Input Access Time (RD standard, with no wait state)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard, with no wait state)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, with a wait state)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, CS standard, with a wait state)		(Note 1)	ns
tac3(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac3(AD-DB)	Data Input Access Time (AD standard, CS standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac4(RAS-DB)	Data Input Access Time (RAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAS-DB)	Data Input Access Time (CAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAD-DB)	Data Input Access Time (CAD standard, when accessing a DRAM space)		(Note 1)	ns
tsu(DB-BCLK)	Data Input Setup Time	30		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BOLK)	HOLD Input Setup Time	60		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(CAS-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BOLK-HOLD)	HOLD Input Hold Time	0		ns
td(BOLK-HLDA)	HLDA Output Delay Time		25	ns

$$tac1(RD-DB) = \frac{10^9}{f(BCLK) \times 2} - 35 \qquad [ns]$$

$$tac1(AD-DB) = \frac{10^9}{f(BCLK)} - 35 \qquad [ns]$$

$$tac2(RD-DB) = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [ns] \qquad [m=3 \text{ with 1 wait state, m=5 with 2 wait states}$$

$$tac2(AD-DB) = \frac{10^9 \times n}{f(BCLK)} - 35 \qquad [ns] \qquad [n=2 \text{ with 1 wait state, n=3 with 2 wait states}$$

$$tac3(RD-DB) = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=2 \text{ with 1 wait state, n=3 with 2 wait states}$$

$$tac3(RD-DB) = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=3 \text{ with 2 wait states and m=5 with 3 wait states})$$

$$tac4(RAS-DB) = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=3 \text{ with 1 wait state and n=7 with 3 wait states})$$

$$tac4(CAS-DB) = \frac{10^9 \times m}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=1 \text{ with 1 wait state and n=3 when 2 wait states})$$

$$tac4(CAS-DB) = \frac{10^9 \times n}{f(BCLK) \times 2} - 35 \qquad [ns] \qquad [n=1 \text{ with 1 wait state and n=3 when 2 wait states})$$

$$tac4(CAD-DB) = \frac{10^9 \times 1}{f(BCLK)} - 35 \qquad [ns] \qquad [n=1 \text{ with 1 wait state and n=3 when 2 wait states})$$

^{1.} Values can be obtained from the following equations, according to BCLK frequency. Insert a wait state or lower operation frequency, f(BCLK), if the calculated value is negative.

Timing Requirements

(VCC = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.30 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
	T drameter	Min	Max	
tc(TA)	TAin Input Cycle Time	100		ns
tw(tah)	TAiเท Input High ("H") Pulse Width	40		ns
tw(tal)	TAin Input Low ("L") Pulse Width	40		ns

Table 26.31 Timer A Input (Gate Input in Timer Mode)

Symbol	Davasastas	Star	I lait	
	Parameter	Min	Max	Unit
tc(TA)	TAin Input Cycle Time	400		ns
tw(tah)	TAiเท Input High ("H") Pulse Width	200		ns
tw(tal)	TAiเก Input Low ("L") Pulse Width	200		ns

Table 26.32 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min	Max	Offic
tc(TA)	TAiıN Input Cycle Time	200		ns
tw(tah)	TAiเท Input High ("H") Pulse Width	100		ns
tw(TAL)	TAilN Input Low ("L") Pulse Width	100		ns

Table 26.33 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
	raidilletei	Min	Max	Unit	
tw(tah)	TAiın Input High ("H") Pulse Width	100		ns	
tw(TAL)	TAilN Input Low ("L") Pulse Width	100		ns	

Table 26.34 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
		Min	Max	
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAiout Input High ("H") Pulse Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Pulse Width	1000		ns
tsu(UP-TIN)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.35 Timer B input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
		Min	Max	Onit
tc(TB)	TBin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(твн)	TBin Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.36 Timer B input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min	Max	Office
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.37 Timer B input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min	Max	Onit
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	ТВім Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.38 A/D Trigger Input

Symbol	Parameter	Stan	Unit	
		Min	Max	
tc(AD)	ADTRG Input High ("H") Pulse Width (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.39 Serial I/O

Symbol	Parameter	Stan	Unit	
	Falanielei	Min	Max	
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Pulse Width	100		ns
tw(CKL)	CLKi Input Low ("L") Pulse Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(c-q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Set Up Time	30		ns
th(c-q)	RxDi Input Hold Time	90		ns

Table 26.40 External Interrupt INTi input

Symbol	Parameter	Standard		Unit
		Min	Max	Office
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width	250		ns

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C, unless otherwise specified)

Table 26.41 Memory Expansion Mode and Microprocessor Mode (with No Wait State)

Symbol	Parameter	Measurement	Standard		Unit
		Condition	Min	Max	1
td(BOLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)	-	(Note 1)		ns
td(BOLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)	See Figure 26.1	0		ns
th(WR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Figure 20. i	(Note 1)		ns
td(BOLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BOLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BOLK-RD)	RD Signal Output Delay Time			18	ns
th(BOLK-RD)	RD Signal Output Hold Time		-3		ns
td(BOLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
tw(WR)	WR Output Width		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equations according to the BCLK frequency.

$$td(DB - WR) = \frac{10^{9}}{f(BCLK)} - 20 \quad [ns]$$

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns]$$

$$tw(WR) = \frac{10^{9}}{f(BCLK) \times 2} - 15 \quad [ns]$$

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.42 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory)

Symbol	Parameter	Measurement	Standard		Unit
•		Condition	Min	Max	1 1
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		0		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
tw(WR)	WR Output Width]	(Note 1)		ns

$$td(DB - WR) = \frac{10^{9} X \text{ n}}{f(BCLK)} - 20$$
 [ns] (n=1 with 1 wait state, n=2 with 2 wait states and n=3 with 3 wait states)
$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2} - 10$$
 [ns]
$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2} - 10$$
 [ns]
$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2} - 10$$
 [ns]
$$tw(WR) = \frac{10^{9} X \text{ n}}{f(BCLK) \times 2} - 15$$
 [ns] (n=1 with 1 wait state, n=3 with 2 wait states and n=5 with 3 wait states)

^{1.} Values can be obtained from the following equations, according to BCLK frequency.

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.43 Memory Expansion Mode and Microprocessor Mode
(With a Wait State, Accessing an External Memory and Selecting a Space with the
Multiplexed Bus)

Symbol	Parameter	Measurement	Standard		Unit
	, a.asis	Condition	Min	Max	7
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time	-		18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)	-	0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BOLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-AD)	RD Signal Output Hold Time		-3		ns
td(BOLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
td(BOLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BOLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 1)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)		(Note 1)		ns
tdz(RD-AD)	Address Output High-Impedance Time			8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$\begin{split} th(\text{RD}-\text{AD}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ th(\text{WR}-\text{AD}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ th(\text{RD}-\text{CS}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ th(\text{WR}-\text{CS}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ td(\text{DB}-\text{WR}) &= \frac{10^{\,9} \, \text{X} \, \text{m}}{f(\text{BCLK}) \, \text{X} \, 2} - 25 \quad [\text{ns}] \quad (\text{m=3 with 2 wait states and m=5 with 3 wait states)} \\ th(\text{WR}-\text{DB}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ td(\text{AD}-\text{ALE}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 20 \quad [\text{ns}] \\ th(\text{ALE}-\text{AD}) &= \frac{10^{\,9}}{f(\text{BCLK}) \, \text{X} \, 2} - 10 \quad [\text{ns}] \\ \end{split}$$

Vcc=3.3V

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.44 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory and Selecting the DRAM Area)

Symbol	Parameter	Measurement Condition	Standard		Unit
		Condition	Min	Max	
td(BCLK-RAD)	Row Address Output Delay Time			18	ns
th(BCLK-RAD)	Row Address Output Hold Time (BCLK standard)		0		ns
td(BCLK-CAD)	Column Address Output Delay Time	1		18	ns
th(BCLK-CAD)	Column Address Output Hold Time (BCLK standard)		0		ns
th(RAS-RAD)	Row Address Output Hold Time after RAS Output		(Note 1)		ns
td(BCLK-RAS)	RAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS Output Hold Time (BCLK standard)	See Figure 26.1	0		ns
trp	RAS High ("H") Hold Time]	(Note 1)		ns
td(BCLK-CAS)	CAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS Output Hold Time (BCLK standard)		0		ns
td(BCLK-DW)	DW Output Delay Time (BCLK standard)			18	ns
th(BCLK-DW)	DW Output Hold Time (BCLK standard)		-3		ns
tsu(DB-CAS)	CAS Output Setup Time after DB output		(Note 1)		ns
th(BCLK-DB)	DB Signal Output Hold Time (BCLK standard)		-7		ns
tsu(CAS-RAS)	CAS Output Setup Time before RAS Output (refresh)		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equations, according to the BCLK frequency.

$$th(RAS - RAD) = \frac{10^{9}}{f(BCLK) \times 2} - 13 \quad [ns]$$

$$tRP = \frac{10^{9} \times 3}{f(BCLK) \times 2} - 20 \quad [ns]$$

$$tsu(DB - CAS) = \frac{10^{9}}{f(BCLK)} - 20 \quad [ns]$$

$$tsu(CAS - RAS) = \frac{10^{9}}{f(BCLK) \times 2} - 13 \quad [ns]$$

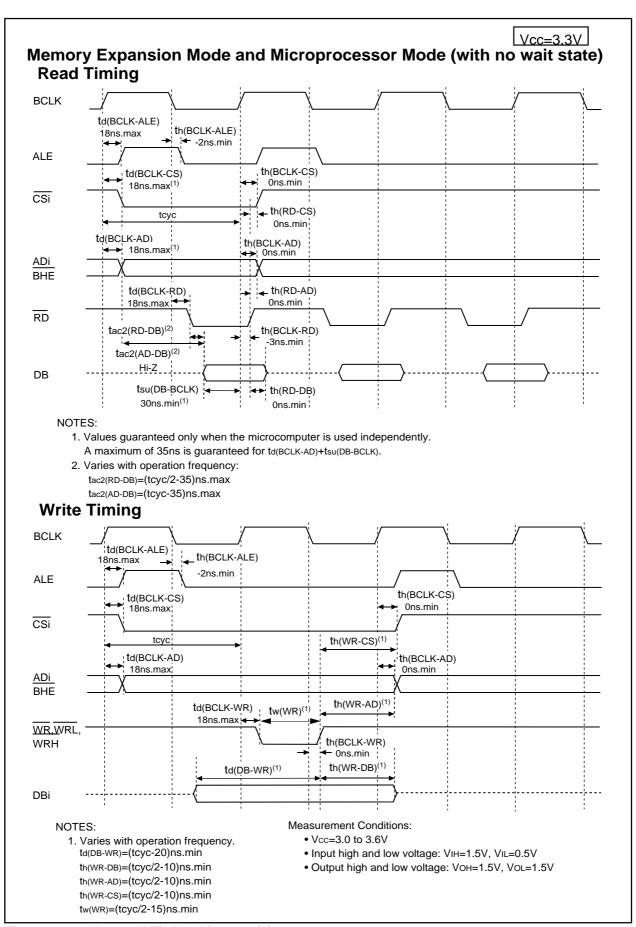


Figure 26.10 Vcc=3.3V Timing Diagram (1)

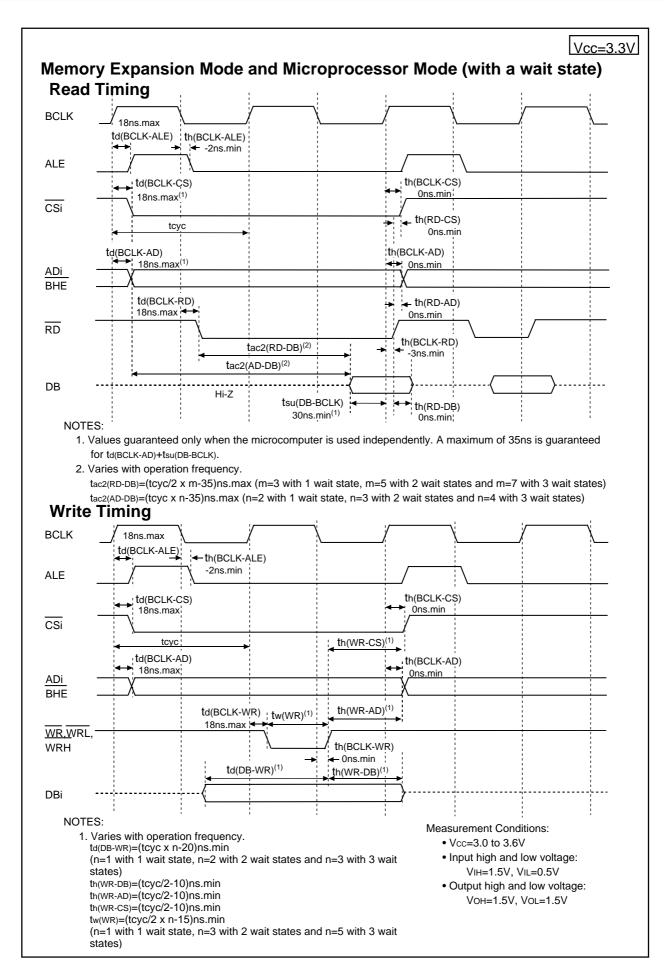


Figure 26.11 Vcc=3.3V Timing Diagram (2)

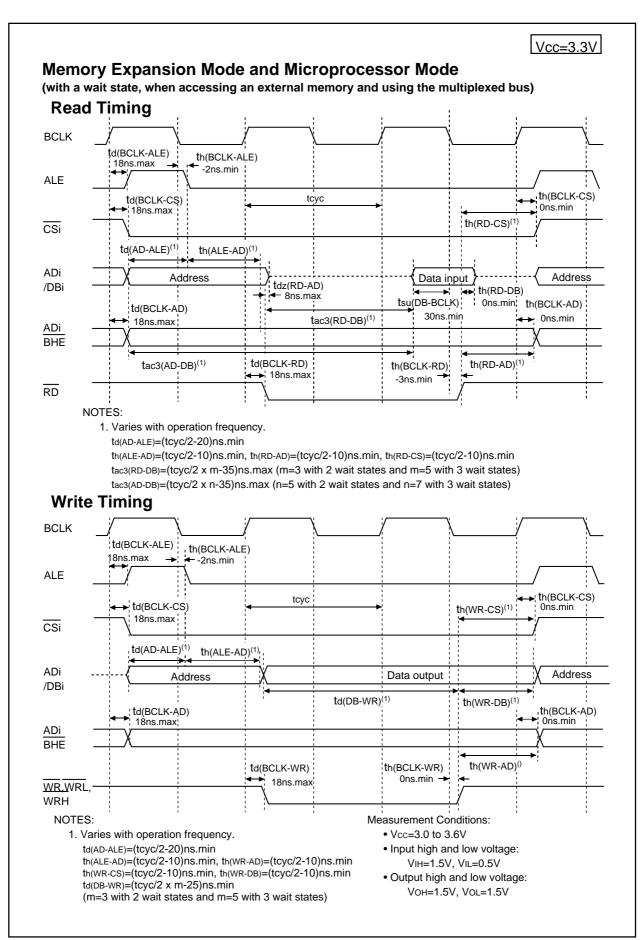


Figure 26.12 Vcc=3.3V Timing Diagram (3)

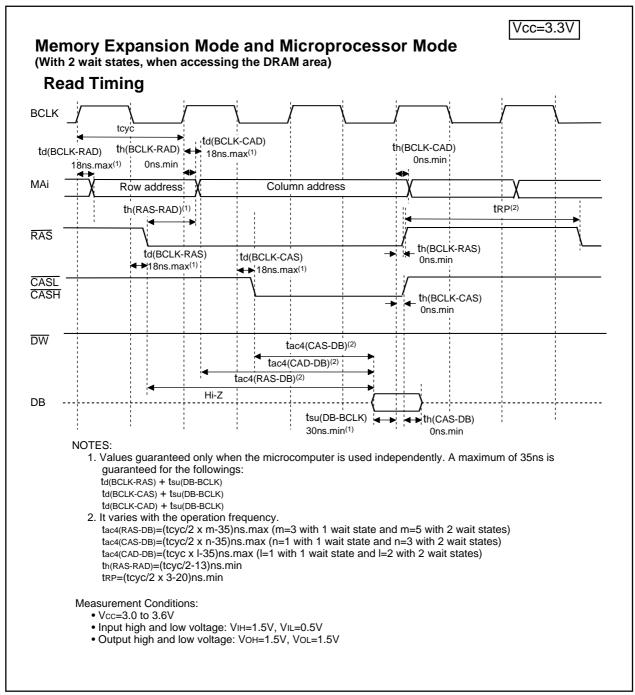


Figure 26.13 Vcc=3.3V Timing Diagram (4)

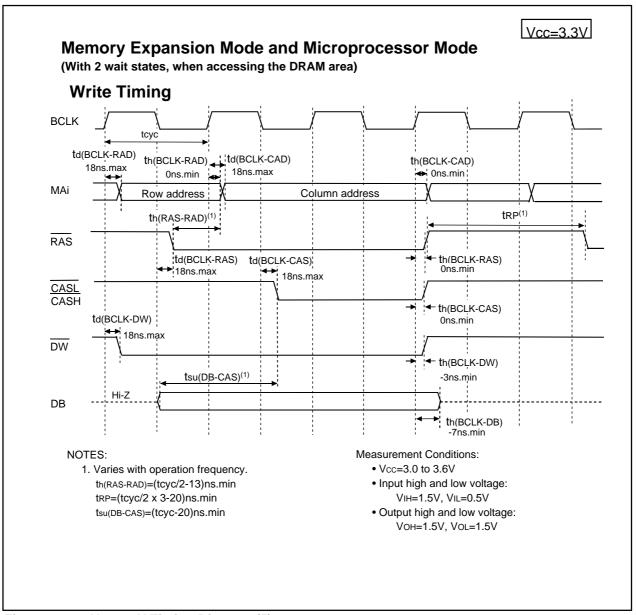


Figure 26.14 Vcc=3.3V Timing Diagram (5)

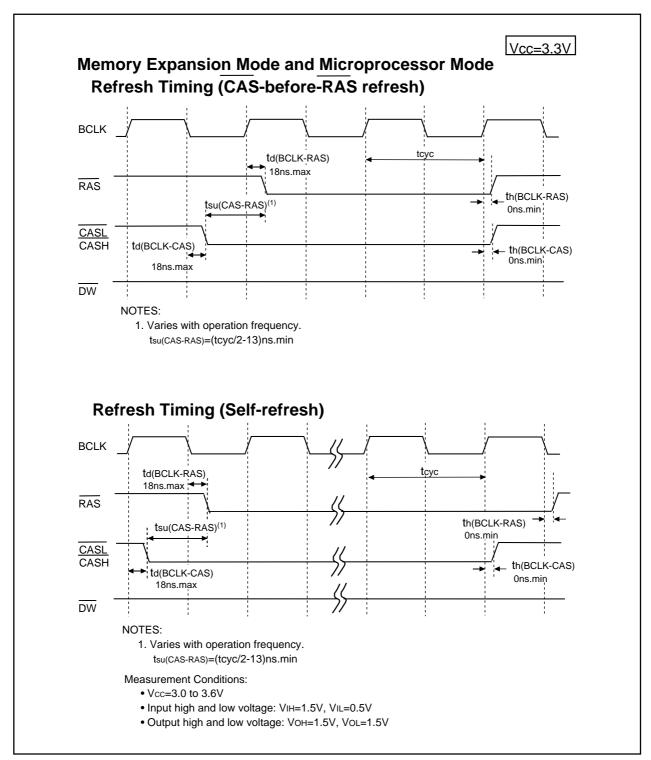


Figure 26.15 Vcc=3.3V Timing Diagram (6)

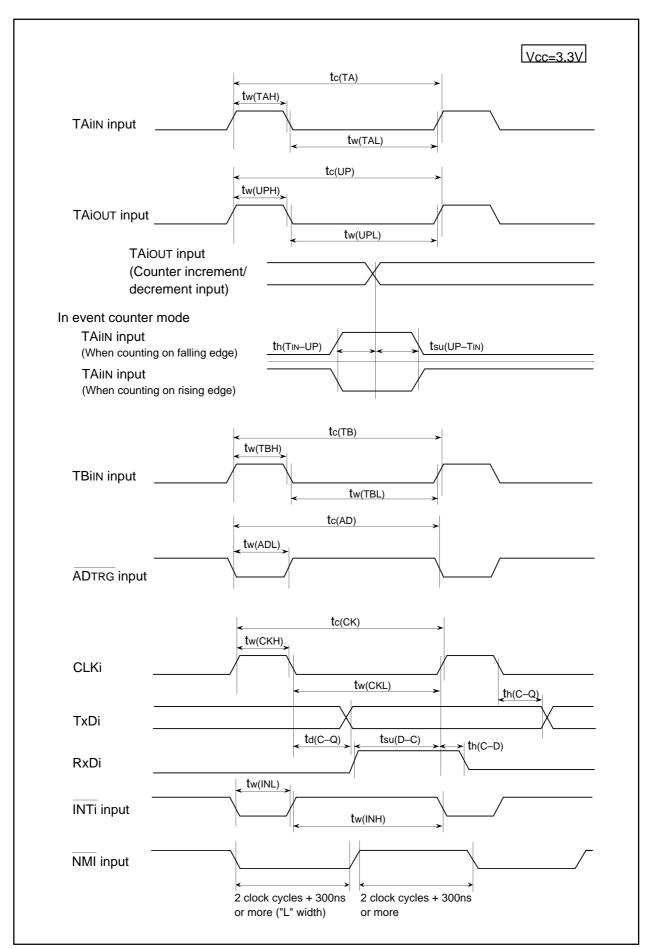


Figure 26.16 Vcc=3.3V Timing Diagram (7)

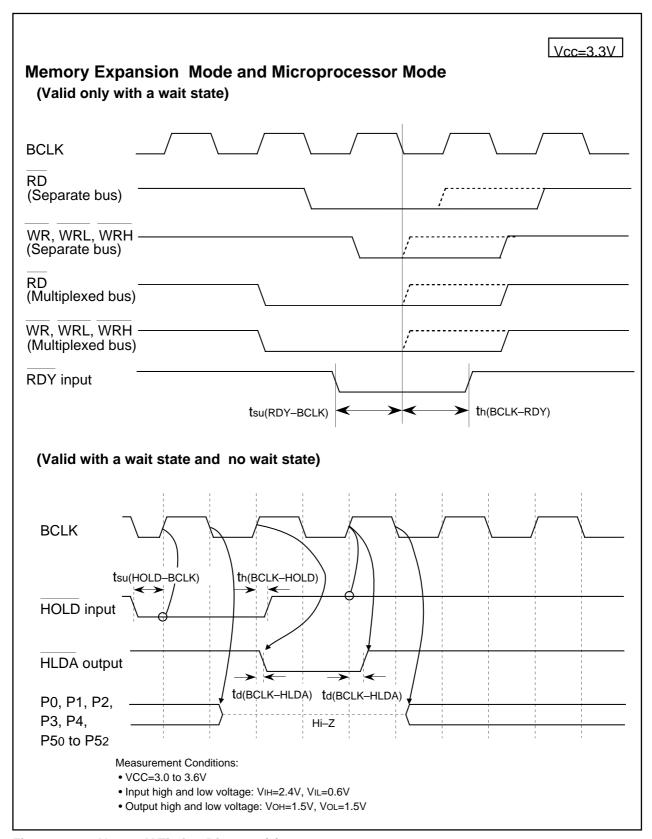


Figure 26.17 Vcc=3.3V Timing Diagram (8)

26.2 Electrical Characteristics (M32C/83T)

Table 26.45 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
Vcc	Supply Voltage		Vcc=AVcc	-0.3 to 6.0	V
AVœ	Analog Supply	Voltage	Vcc=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P0o-P07, P1o-P17, P2o-P27,		-0.3 to Vcc+0.3	V
		P3o-P37, P4o-P47, P5o-P57, P6o-P67, P72-P77, P8o-			
		P87, P90-P97, P100-P107, P110-P114, P120-P127,			
		P13o-P137, P14o-P146, P15o-P157 ⁽¹⁾ , VREF, XIN			
		P70, P71		-0.3 to 6.0	V
Vo	Output Voltage	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-		-0.3 to V∞+0.3	V
		P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97,			
		P100-P107, P110-P114, P120-P127, P130-P137, P140-			
		Р146, Р150-Р157 ⁽¹⁾ , Холт			
Pd	Power Dissipation	on	Topr=25° C	400	mW
Topr	Operating Ambi	ent Temperature	T version	-40 to 85	° C
Tstg	Storage Tempe	rature		-65 to 150	° C

NOTES:

^{1.} P11 to P15 are provided in the 144-pin package.

Table 26.46 Recommended Operating Conditions (Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Symbol	Parameter			Standard	d	Unit
Symbol		Parameter	Min.	Тур.	Max.	
Vcc	Supply Voltage		4.2	5.0	5.5	V
AVcc	Analog Supply Vo	ltage		Vα		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Vo	Itage		0		V
VIH	Input High ("H")	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-	0.8Vcc		Vœ	V
	Voltage	P67, P72-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P110-P114,				
		P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾ , XIN,				
		RESET, CNVss, BYTE				
		P7 ₀ , P7 ₁	0.8Vcc		6.0	
VIL	Input Low ("L")	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-	0		0.2Vcc	V
	Voltage	P67, P70-P77, P80-P87 ⁽³⁾ , P90-P97, P100-P107, P110-P114,				
		P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾ , XIN,				
		RESET, CNVss, BYTE				
OH(peak)	Peak Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-			-10.0	mA
	High ("H")	P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-				
	Current ⁽²⁾	P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾				
IOH(avg)	Average Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-			-5.0	mA
	High ("H")	P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-				
	Current ⁽¹⁾	P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾				
OL(peak)	Peak Output Low	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-			10.0	mA
	("L") Current ⁽²⁾	P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-				
		P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾				
IOL(avg)	Average Output	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o-			5.0	mA
	Low ("L")	P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-				
	Current ⁽¹⁾	P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾				
f(XIN)	Main Clock Input Frequency	Vc=4.2 to 5.5V	0		32	MHz
f(Xan)	Sub Clock Oscilla	tion Frequency		32.768	50	kHz

NOTES:

- 1. Typical values when average output current is 100ms.
- 2. Total IOL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less.

Total IoH(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be -80mA or less.

Total Io. (peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less.

Total IoH(peak) for P3, P4, P5, P6, P72 to P77, P80 to P84, P12 and P13 must be -80mA or less.

- 3. V_{IH} and V_{IL} reference for P8₇ applies when P8₇ is used as a programmable input port. It does not apply when P87 is used as Xon.
- 4. P11 to P15 are provided in the 144-pin package only.

Table 26.47 Electrical Characteristics (VCC = 4.2 to 5.5 V, VSS = 0V at Topr = -40 to 85°C(T version), f(XIN)=32MHz unless otherwise specified)

Symbol		Parameter	Condition	Standard			Unit	
					Min	Тур	Max	
Vон	Output High ("H")	P0o-P07, P1o-P17, P2o-P27, F	30-P37, P40-P47,	Io⊢=-5mA	V∞-2.0			V
	Voltage	P50-P57, P60-P67, P72-P77, F	980-P84, P86,					
		P87, P90-P97, P100-P107, P1	10-P114, P120-					
		P127, P130-P137, P140-P146,	P150-P157 ⁽¹⁾					
		P0o-P07, P1o-P17, P2o-P27, P	30-P37, P40-P47,	Io+=-200μA	V∞-0.3			
		P50-P57, P60-P67, P72-P77, F	P80-P84, P86,					
		P87, P90-P97, P100-P107, P1	1 ₀ -P11 ₄ , P12 ₀ -					
		P127, P130-P137, P140-P146,	P150-P157 ⁽¹⁾					
		Холт		lo≔-1mA	3.0			V
		Хсолт		No load applied		3.3		V
VaL	Output Low ("L")	P00-P07, P10-P17, P20-P27, F	230-P37, P40-P47,	lo=5mA			2.0	V
	Voltage	P50-P57, P60-P67, P70-P77, F						
		P87, P90-P97, P100-P107, P1						
		P127, P130-P137, P140-P146,						
		P0o-P07, P1o-P17, P2o-P27, F		Iα=200μA			0.45	V
		P50-P57, P60-P67, P70-P77, F		α=200μΑ			0.43	"
		P87, P90-P97, P100-P107, P1						
		P127, P130-P137, P140-P146,						
		Xout	F150-F15/\(\tau\)	la=1mA			2.0	V
		Хсолт		No load applied		0	2.0	V
\/- \/-	Lht		DO TOE	140 load applied	0.0	0	4.0	
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, T			0.2		1.0	V
		INTO-INT5, ADTRG, CTSO-CT						
		CLK4, TA0our-TA4our, NMI,						
		RxD4, SCL0-SCL4, SDA0-S	DA4					١,,
		RESET			0.2		1.8	V
Іін	Input High ("H") Current	P00-P07, P10-P17, P20-P27, P		V⊫5V			5.0	μΑ
	Current	P50-P57, P60-P67, P70-P77, P						
		P100-P107, P110-P114, P120	<u> </u>					
		P137, P140-P146, P150-P157	1), XIN, RESET,					
		CNVss, BYTE						<u> </u>
lı∟	Input Low ("L")	P0o-P07, P1o-P17, P2o-P27, F		VI=0V			-5.0	μΑ
	Current	P50-P57, P60-P67, P70-P77, F						
		P100-P107, P110-P114, P120						
		P137, P140-P146, P150-P157	$^{1)}$, XIN, \overline{RESET} ,					
		CNVss, BYTE						
RPULLUP	Pull-up Resistance	P0o-P07, P1o-P17, P2o-P27, F	230-P37, P40-P47,	VI=0V	30	50	167	kΩ
		P50-P57, P60-P67, P72-P77, F	280-P84, P86,					
		P87, P90-P97, P100-P107, P1	10-P114, P120-					
		P127, P130-P137, P140-P146,	P150-P157 ⁽¹⁾					
Rfxin	Feedback Resistance	XIN				1.5		МΩ
Rfxan	Feedback Resistance	Xan				10		MΩ
VRAM	RAM Standby Voltage				2.5			V
lœ	Power Supply Current	Measurement conditions: In single-chip mode, output	f(X _{IN})=32 MHz, s no division	square wave,		40	54	mA
		pins are left open and other pins are connected to Vss	f(Xan)=32 kHz, v Topr=25° C	with a wait state,		470		μА
l			Topr=25° C whe	en the clock stops		0.4	20	μΑ

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.48 A/D Conversion Characteristics (VCC = AVCC = VREF = 4.2 to 5.5V, Vss = AVSS = 0V at $Topr = -40 \text{ to } 85^{\circ}C$ (T version), f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Monguron	Measurement Condition		Standard		
Symbol	i arametei	Measurer			Тур	Max	Unit
-	Resolution	VREF=VCC				10	Bits
	ANo to AN7	ANo to AN7			±3	LSB	
INL	Integral Nonlinearity Error	VREF=VCC=5V	ANEX0, ANEX1			±3	LSB
IINL	integral Normineanty Error	VREF-VCC-5V	External op-amp			±7	LSB
			connection mode			_ ±/	LSB
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC		8		40	kΩ
tconv	10-bit Conversion Time			2.1			μs
tconv	8-bit Conversion Time			1.8			μs
tsamp	Sample Time			0.2			μs
VREF	Reference Voltage			2		Vcc	V
VIA	Analog Input Voltage			0		VREF	V

NOTES:

Table 26.49 D/A Conversion Characteristics (VCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V at Topr = -40 to 85°C (T version), f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	S	Unit		
Gymbol	Symbol Farameter Weastrement Condition		Min	Тур	Max	Onn
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
tsu	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
IVREF	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

Table 26.50 Flash Memory Version Electrical Characteristics

Parameter		Standard		Unit
Falantelei	Min	Тур	Max	Offic
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V at Topr= 0 to 60° C, unless otherwise specified

^{1.} Divide f(X_{IN}), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.

^{1.} Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "00₁₆". The resistor ladder in the A/D converter is exclued. IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Timing Requirements (VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Table 26.51 External Clock Input

	- External Glock Input			
Symbol	Parameter	Standard		Unit
		Min	Max	
tc	External Clock Input Cycle Time	33		ns
tw(H)	External Clock Input High ("H") Pulse Width	13		ns
tw(L)	External Clock Input Low ("L") Pulse Width	13		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Table 26.52 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Stan	ıdard	Unit
	i arameter	Min	Max	
tc(TA)	TAin Input Cycle Time	100		ns
tw(tah)	TAil Input High ("H") Pulse Width	40		ns
tw(TAL)	TAin Input Low ("L") Pulse Width	40		ns

Table 26.53 Timer A Input (Gate Input in Timer Mode)

Symbol	Deremeter	Stan	l lait	
	Parameter	Min	Max	Unit
tc(TA)	TAin Input Cycle Time	400		ns
tw(tah)	TAil Input High ("H") Pulse Width	200		ns
tw(TAL)	TAilN Input Low ("L") Pulse Width	200		ns

Table 26.54 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
	Falanielei	Min	Max	Offic
tc(TA)	TAin Input Cycle Time	200		ns
tw(tah)	TAin Input High ("H") Pulse Width	100		ns
tw(tal)	TAin Input Low ("L") Pulse Width	100		ns

Table 26.55 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Star	ıdard	Unit
	raidilletei	Min	Max	Unit
tw(TAH)	TAil Input High ("H") Pulse Width	100		ns
tw(TAL)	TAil Input Low ("L") Pulse Width	100		ns

Table 26.56 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min	Max	
tc(UP)	TAiour Input Cycle Time	2000		ns
tw(UPH)	TAicu⊤ Input High ("H") Pulse Width	1000		ns
tw(UPL)	TAiour Input Low ("L") Pulse Width	1000		ns
tsu(UP-TIN)	TAiou Input Setup Time	400		ns
th(TIN-UP)	TAiou Input Hold Time	400		ns

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Table 26.57 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		- Unit
		Min	Max	Offic
tc(TB)	TBiin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiin Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.58 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	Falanielei	Min	Max	Offic
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.59 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
	raidilletei	Min Max		
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.60 A/D Trigger Input

Symbol	Parameter	Standard		Unit
	T drameter	Min Max	OTILL	
tc(AD)	ADTRG Input Cycle Time (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.61 Serial I/O

Symbol	Parameter	Standard		Unit
		Min	Max	Offic
tc(ck)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Pulse Width	100		ns
tw(CKL)	CLKi Input Low ("L") Pulse Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(c-q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Set Up Time	30		ns
th(c-q)	RxDi Input Hold Time	90		ns

Table 26.62 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min Max		
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width	250		ns

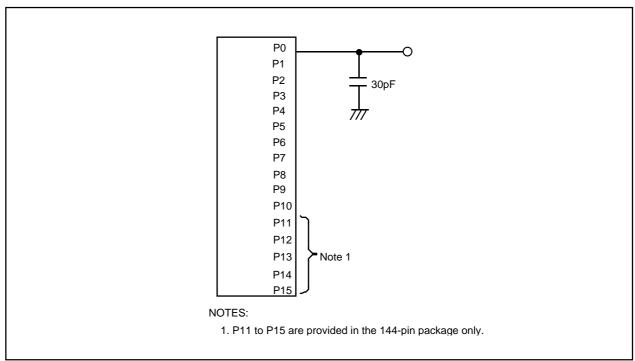


Figure 26.18 P0 to P15 Measurement Circuit

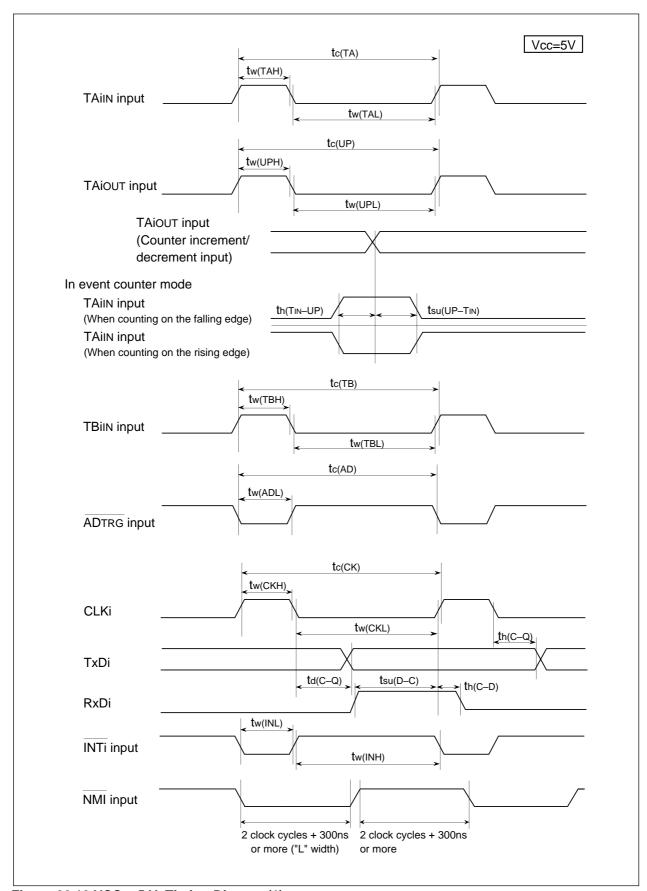


Figure 26.19 VCC = 5 V Timing Diagram(1)

27. Precautions

27.1 Processor Mode

27.1.1 Microprocessor Mode

SFR, internal RAM and external space can be accessed when in microprocessor mode. The internal ROM cannot be accessed.

The internal ROM cannot be accessed, despite entering memory expansion mode or single-chip mode , if the microcomputer begins operation in microprocessor mode while the CNVss is held high ("H") after reset.

27.2 Bus

27.2.1 HOLD Signal

When entering microprocessor mode or memory expansion mode from single-chip mode and using HOLD input, set the PM01 to PM00 bits to "112" (microprocessor mode) or to "102" (memory expansion mode) after setting the PD4_0 to PD4_7 bits in the PD4 register and the PD5_0 to PD5_2 bits in the PD5 register to "0" (input mode).

P40 to P47 (A₁₆ to A₂₂, A₂₃, CS0 to CS3, MA8 to MA12) and P50 to P52 (RD/WR/BHE, RD/WRL,WRH) do not enter a high-impedance state even when an "L" signal is applied to the HOLD pin, if the PM01 to PM00 bits are set to "112" (microprocessor mode) or to "102" (memory expansion mode) after setting the PD4_0 to PD4_7 bits in the PD4 register and the PD5_0 to PD5_2 bits in the PD5 register to "1" (output mode) in single-chip mode.

27.2.2 External Bus

The internal ROM cannot be read when an "H" signal is applied to the CNVss pin and the hardware reset (hardware reset 1 or hardware reset 2) occurs.

27.3 SFR

27.3.1 100-Pin Package

Set address space for 03CB16, 03CE16, 03CF16, 03D216, 03D316 to "FF16" after reset when using the 100-pin package. 03DC16 must be set to "0016" after reset.

27.3.2 Register Settings

Table 27.1 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Table 27.1 Registers with Write-only Bits

Register	Address	Register	Address
WDTS register	000E16	U2BRG register	033916
G0RI register	00EC16	U2TB register	033B16, 033A16
G1RI register	012C16	UDF register	034416
G2TB register	016D16, 016C16	TA0 register ⁽¹⁾	034716, 034616
G3TB register	017D16, 017C16	TA1 register ⁽¹⁾	034916, 034816
U4BRG register	02F916	TA2 register ⁽¹⁾	034B16, 034A16
U4TB register	02FB16, 02FA16	TA3 register ⁽¹⁾	034D16, 034C16
TA11 register	030316, 030216	TA4 register ⁽¹⁾	034F16, 034E16
TA21 register	030516, 030416	U0BRG register	036916
TA41 register	030716, 030616	U0TB register	036B16, 036A16
DTT register	030C16	U1BRG register	02E916
ICTB2 register	030D16	U1TB register	02EB16, 02EA16
U3BRG register	032916	AD0CON2 register	039416
U3TB register	032B16, 032A16		

NOTES:

1. In one-shot timer mode and pulse width modulation mode only.

27.4 Clock Generation Circuit

27.4.1 PLL Frequency Synthesizer

Stabilize supply voltage when using the PLL frequency synthesizer. The ripple of supply voltage at 5V must be less than 10kHz in frequency, 0.5V (peak to peak) in voltage fluctuation range, and 1V/ms in voltage fluctuation rate. The ripple of supply voltage at 3.3V must be less than 100Hz in frequency, 0.2V (peak to peak) in voltage fluctuation range, and 0.1V/ms in voltage fluctuation rate.

27.4.2 Power Consumption Control

- When resetting the microcomputer to exit stop mode, apply an "L" signal to the RESET pin until the main clock oscillation stabilizes.
- Write at least 4 NOP instructions after the WAIT instruction or instructions to set the CM10 bit in the CM1 register to "1" (all clocks stop). When entering wait mode or stop mode, the instruction queue reads ahead to instructions following the WAIT instruction and instructions to set the CM10 bit to "1", and the program stops. The next instruction may be executed before entering wait mode or stop mode, depending on the combination of instructions and their execution timing.
- The followings are suggestions for reducing power consumption when programming or designing systems:

Ports: I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unused ports as input ports and stablize electrical potential before entering wait mode or stop mode.

A/D Converter: If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0"(no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1µs before starting the A/D conversion.

D/A Converter: Set the DAi bit (i=0 to 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

Peripheral Function Stop: Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and lowpower consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).

External Clock: When an external clock is selected as the CPU clock, set the CM05 bit in the CM0 register to "1" (main clock stops). This disables the XOUT pin and reduces power consumption. (When using an external clock input, the clock is applied regardless of the CM05 bit setting.)

27.4.3 Wait Mode

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after WAIT instruction.

27.4.4 Stop Mode

- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction as follows, after the instruction setting the CM10 bit to "1".

```
e.g., bset 0, prcr ; protection removed
```

fset I ; I flag set

bset 0, cm1; all clocks stopped (stop mode)

jmp.b LABEL_001; jmp.b instruction executed (no instruction between jmp.b and LABEL)

LABEL_001;

nop ; nop (1) nop ; nop (2) nop ; nop (3) nop ; nop (4)

mov.b #0, prcr ; Protection set

•

•

•

27.5 Protection

The PRC2 bit in the PRCR register is changed to "0" (write disable) when an instruction is written to any address after the PRC2 bit is set to "1" (write enable). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the following instruction.

27.6 Interrupts

27.6.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is acknowledged. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use $\overline{\text{NMI}}$ interrupt, set the ISP at the beginning of the program. The $\overline{\text{NMI}}$ interrupt can be acknowledged after the first instruction has been executed after reset.

27.6.2 NMI Interrupt

- NMI interrupt cannot be denied. Connect the NMI pin to Vcc via a resistor (pull-up) when not in use.
- The P8_5 bit in the P8 register indicates the NMI pin value. Read the P8_5 bit only to determine the pin level after a NMI interrupt occurs.
- H" and "L" of a signal applied to the NMI pin must be over 2 CPU clock cycles + 300 ns wide.

27.6.3 INT Interrupt

- Edge sensitive
 - "H" and "L" of a signal applied to the $\overline{INT}0$ to $\overline{INT}5$ pins must be at least 250 ns wide, regardless of the CPU clock.
- Level sensitive
 - "H" and "L" of a signal applied to the INT0 to INT5 pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.
- The IR bit may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 27.1 shows an example of the switching procedure for the INT interrupt.

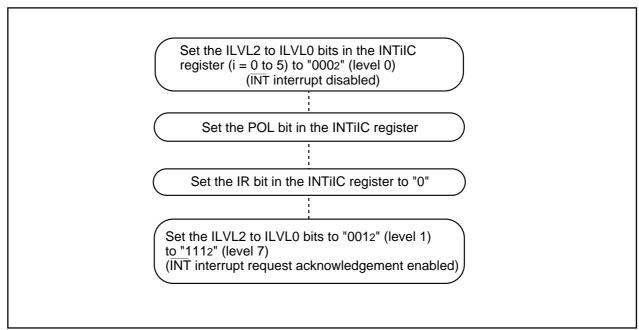


Figure 27.1 Switching Procedure for INT Interrupt

27.6.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

27.6.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is disabled, follow the instructions below.

Changing Bits Except IR Bit

When an interrupt request occurs while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

Changing IR bit

The IR bit may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

27.6.6 Changing IIOiIR Register (i = 0 to 11)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested). AND, BCLR

27.6.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMACII bit to "0" (interrupt priority level 7 available for interrupts).

27.7 DMAC

- Set DMAC-associated registers while the MDi1 to MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 to MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of the setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).
 When a DMA request is generated but the receiving channel is not ready to receive⁽¹⁾, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTES:

- 1. The MDi1 to MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h,DMiSL Set the DSR and DRQ bits to "1" simultaneously.

- Do not generate a channel i DMA request when setting the MDi1 to MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA⁽²⁾ after setting the DMiSL register (i=0 to 3) and waiting 6 BCLK cycles or more by program.

NOTES:

2. DMA is enabled when the values set in the MDi1 to MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).

27.8 Timer

27.8.1 Timers A and B

The timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operation mode, count source and counter.

Set the following registers and bits while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONFS register
- TRGSR register

27.8.2 Timer A

27.8.2.1 Timer A (Timer Mode)

- (a) The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting operation mode and setting the TAi register.
- (b) The TAi register indicates the counter value during counting at any given time. However, the counter will read "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter is stopped and before the counter starts counting.
- (c) TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin)

27.8.2.2 Timer A (Event Counter Mode)

- (a) TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting operation mode and setting the TAi register.
- (b) The TAi register indicates the counter values during counting at any given time. However, the counter will read "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter is stopped and before the counter starts counting.
- (c) The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bit in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

27.8.2.3 Timer A (One-shot Timer Mode)

- (a) TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set TAiS bit to "1" (starts counting) after selecting operation mode and setting the TAi register.
- (b) The followings occur when setting the TABSR register to "0" (stops counting) while counting:
 - The counter stops counting and the microcomputer reloads contents of the reload register.
 - The TAiout pin becomes low ("L").
 - The IR bit in the TAilC register is set to "1" (interrupt requested) after 1 CPU clock cycle.
- (c) The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of 1 count source cycle maximum, from trigger input to the TAiIN pin to the one-shot timer output.

- (d) The IR bit is set to "1" when the timer operation mode is selected as follows:
 - one-shot timer mode is selected after reset.
 - timer mode is switched to one-shot timer mode.
 - event counter mode is switched to one-shot timer mode.

Therefore, set the IR bit to "0" by program when generating a timer Ai interrupt (IR bit), if the timer operation mode is selected as is described above.

- (e) When a trigger is generated while counting, the reload register reloads and continues counting after the counter has downcounted once following a re-trigger. To generate a trigger while counting, wait at least 1 count source cycle after the previous trigger has been generated and generate a retrigger.
- (f) The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register is set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).
- (g) If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

27.8.2.4 Timer A (Pulse Width Modulation Mode)

- (a) TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- (b) The IR bit is set to "1" when the timer operation mode is selected as follows:
 - PWM mode is selected after reset.
 - timer mode is switched to PWM mode.
 - event counter mode is switched to PWM mode.

Therefore, set the IR bit to "0" by program when generating a timer Ai interrupt (IR bit), if the timer operation mode is selected as is described above.

- (c) The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
 - The counter stops counting.
 - The IR bit changes to "1" and the output level changes to low ("L") when TAiouT pin is held high ("H").
 - The IR bit and the output level remain unchanged when TAiout pin is held low ("L").
- (d) The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register are set to "1" (three-phase output forced cutoff enabled).

27.8.3 Timer B

27.8.3.1 Timer B (Timer Mode, Event Counter Mode)

- (a) TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set TBiS bit to "1" (starts counting) after selecting an operation mode and setting the TBi register.
- The TB0S to TB2S bits are the bits 5 to 7 in the TABSR register. The TB3S to TB5S bits are bits 5 to 7 in the TBSR register.
- (b) The TBi register indicates the counter value during counting at any given time. However, the counter will read "FFFF16" when reloading . The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

27.8.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- (a) The IR bit in the TBiIC register is set to "1" (overflow) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt service routine.
- (b) Count overflow on a different timer if an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer overflows.
- (c) To set the MR3 bit in the TBiMR register to "0" (no overflow), set when the TBiS bit is set to "1" (count starts) and at least one count is counted after the MR3 bit is set to "1" (overflow).
- (d) The IR bit in the TBilC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt service routine.
- (e) Indeterminate values are transferred to the reload register during the first valid edge input following the start of the count. Timer B interrupt request is not acknowledged at this time.
- (f) The counter value is indeterminate at the start of a count. Therefore, the MR3 bit may change to "1" (overflow) and cause timer B interrupt requests to be generated, until a valid edge is input after the count begins.
- (g) The IR bit may be set to "1" (interrupt requested) if the MR1 to MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 to MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- (h) Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high ("H") or low ("L").

27.9 Three-Phase Motor Control Timer Functions

27.9.1 Changing TAi and TAi1 (i=1, 2, 4) Registers

Do not write to the TAi and TAi1 registers at the same time timer B2 underflows. Follow the procedure below when rewriting the TAi1 register.

- (1) Write value to the TAi1 register
- (2) Wait 1 timer Ai count source cycle
- (3) Write the same value to the TAi1 register again

27.10 Serial I/O

27.10.1 Clock Synchronous Serial I/O Mode

27.10.1.1 Transmission / Reception

When the RTS function is used while an external clock is selected, the output level of the RTS pin is held low ("L") indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the RTSi pin becomes high ("H") when reception begins. Therefore, connecting the RTSi pin to the CTSi pin of the transmitting microcomputer synchronizes transmission and reception. The RTS function is disabled if an internal clock is selected.

The RTS2 pin and CLK2 pin are placed in high-impedance states when an "L" signal is applied to the NMI pin while the INV02 to INV01 bits in the INVC0 register are set to "112" (forced cutoff of the threephase output by low-level signal ("L") applied to NMI pin).

27.10.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held high ("H") or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held low ("L"), meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiBT register)
- Apply "L" signal to the CTSi pin if the CTS function is selected

27.10.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1(i=0 to 2) registers is set to "1" (receive enable) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enable) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1(i=0 to 2) register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register becomes "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held high ("H") or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held low ("L"), meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

27.10.2 UART Mode

- Set the UiERE bit in the UiC1 register after setting the UiMR register.
- The RTS2 and CLK2 pins will enter a high-impedance state when an "L" signal is applied to the NMI pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the NMI pin).

27.10.3 Special Mode 2

The $\overline{\text{RTS}}_2$ and CLK2 pins will enter high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

27.11 A/D Converter

- Set the ADiCON0 (i=0,1) (bit 6 excluded), ADiCON1, and ADiCON2 registers while the A/D conversion is stopped (before trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit in the ADiCON1 register from "0" (VREF no connection) to "1" (VREF connection). Change the VCUT bit from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between pins AVCC, VREF, analog input pin ANjk (j=none, 0, 2, 15; k=0 to 7) and AVSS to prevent latch-ups and malfunctions due to noise and to minimize conversion errors. The same applies to pins Vcc and Vss. Figure 27.2 shows the procedure.

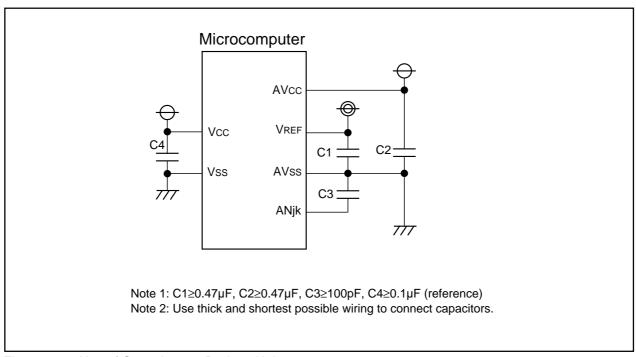


Figure 27.2 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG1 to TRG0 bits in the ADiCON2 register are set to "002" (ADTRG).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- When the sample and hold function is not activated, ØAD frequency must be 250kHz or more. If the sample and hold function is activated, ØAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the ADiCON0 register or the SCAN1 to SCAN0 bits in the ADiCON1 register to select analog input pins again when changing A/D conversion mode.

- Wrong values are stored in the ADij register (i=0,1; j=0 to 7) if the CPU reads the ADij register while the ADij register is storing results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.
 - In one-shot mode or single sweep mode, read the corresponding ADij register after verifying that the A/D conversion has been completed. The IR bit in the ADiIC register can determine the completion of the A/D conversion.
 - In repeat mode, repeat sweep mode 0 and repeat sweep mode 1, use an undivided main clock as the CPU clock.
- Conversion results of the A/Di is indeterminate if the ADST bit in the ADiCON0 register (i=0,1) is set to "0" (A/D conversion stopped) and the conversion is forcibly terminated by program. The ADij register (j=0 to 7) not performing an A/D conversion may also be indeterminate.
 - If A/Di is forcibly terminated, do not use any values obtained from the ADij registers.
 - If either A/D0 or A/D1 is forcibly terminated while the ADS bit in the ADiCON2 register is set to "0" (channel replacement disabled), the other A/D converter, A/Di, will perform normally. The values of ADij registers not performing an A/D conversion remain unchanged.

27.12 Intelligent I/O

27.12.1 Register Setting

Operations controlled by the values written to the GiBT (i=0 to 3), GiBCR1, BTSR, GjTMCR0 to GjTMCR7 (j=0,1), GiTPR6, GiTPR7, GjTM0 to GjTM7, GiPOCR0 to GiPOCR7, GiPO0 to GiPO7, G3MK4 to G3MK7, GjFS, GiFE, G2RTP, and G3RTP registers are affected by the count source (fBTi) set in the BCK1 to BCK0 bits in the GiBCR0 register.

Set the BCK1 to BCK0 bits before setting the GiBT, GiBCR1, BTSR, GjTMCR0 to GjTMCR7, GiTPR6, GiTPR7, GjTM0 to GjTM7, GiPOCR0 to GiPOCR7, GiPO0 to GiPO7, G3MK4 to G3MK7, GjFS, GiFE, G2RTP, and G3RTP registers.

Operations controlled by the values written to the GjRI, GjTO, GiCR, GiRB, GiMR, GjEMR, GjETC, GjERC, GjIRF, GiTB, GjCMP0 to GjCMP3, GjMSK0, GjMSK1, GjTCRC, GjRCRC, IECR, IEAR, IETIF, IERIF, and G3FLG registers are affected by the transfer clock. Set transfer clock before setting the GjRI, GjTO, GiCR, GiRB, GiMR, GjEMR, GjETC, GjERC, GjIRF, GiTB, GjCMP0 to GjCMP3, GjMSK0,GjMSK1, GjTCRC, GjRCRC, IECR, IEAR, IETIF, IERIF, and G3FLG registers.

27.12.2 BTSR Register Setting

The BTSR register is a located in the intelligent I/O group 2. When starting the base timer using the BTiS bit in the BTSR register, set the BTiS bit to "1" (base timer starts counting) after selecting the count source for the intelligent I/O group 2. If the BTiS bit is not being used, set the BTiS bit to "0" (base timer reset) after selecting the count source for the intelligent I/O group 2.

Set only either the BTiS bit or the BTS bit in the GiBCR1 register to "1" when starting the base timer. If both BTiS bit and the BTS bit are set to "0", both bits must be set "0" when stopping the base timer.

27.13 Programmable I/O Port

Because ports P72 to P75, P80, and P81 have the three-phase PWM output forced cutoff function, they are affected by the three-phase motor control timer function and the $\overline{\text{NMI}}$ pin when these ports are set for output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O output). Table 27.2 shows the relationship between the INVC0 register setting, the $\overline{\text{NMI}}$ pin input level and the state of output ports.

Table 27.2 INVC0 Register and the NMI Pin

Setting Value of IN	IVC0 Register	Input Level	States of P72 to P75, P80, and P81	
INV02 bit	INV02 bit INV03 bit		Pins (when setting an output pin)	
0 (not using three-phase motor control function)	-	-	Output functions selected in the PS1, PSL1, PSC, PS2, and PSL2, registers	
1 (using three-phase motor control timer function	0 (three-phase PWM output disabled)	-	High-impedance	
	1 (three-phase PWM output enabled) ⁽¹⁾	Н	Output functions selected in the PS1, PSL1, PSC, PS2, and PSL2, registers	
		L (forcibly terminated)	High-impedance	

NOTES:

1. The INV03 bit is set to "0" after an "L" signal is applied to the NMI pin.

The input threshold voltage differs with programmable I/O ports and peripheral functions. Therefore, if the level of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level determined will differ with the programmable I/O ports and peripheral functions.

27.14 Flash Memory Version

27.14.1 Differences Between Flash Memory Version and Masked ROM Version

Due to differences in internal ROM and layout pattern, flash memory version and mask ROM version have varying electrical characteristics such as attributes, performance margins, noise endurance capacity, and noise radiation. When switching to masked ROM version, administer system evaluation tests equal to those held on the flash memory version.

27.15 Noise

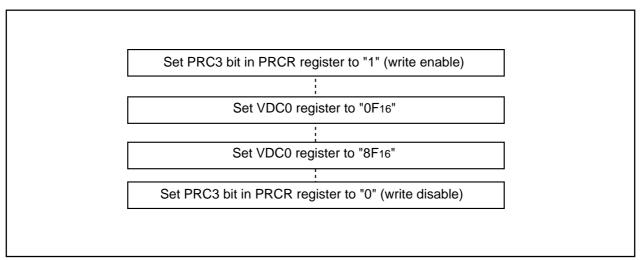
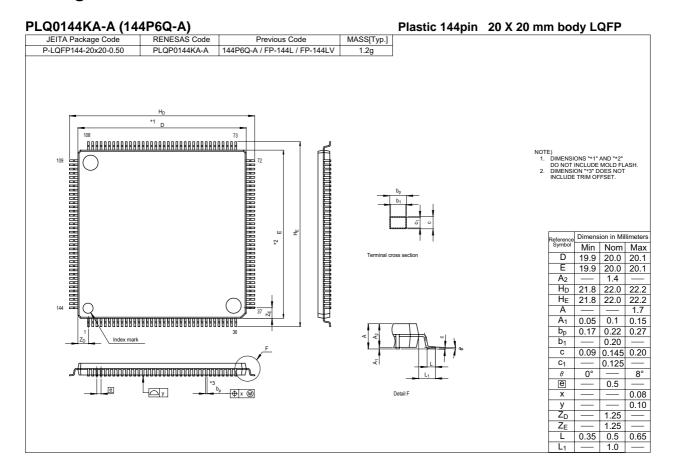
Connect a bypass capacitor (approx. $0.1\mu F$) between Vcc and Vss by shortest path, using thick wires.

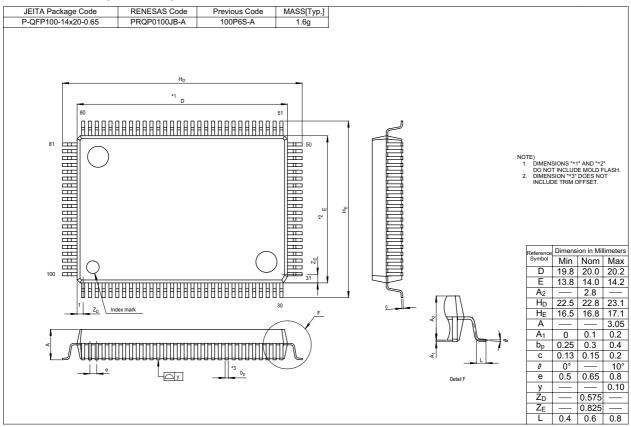
27.16 Low Voltage Operations

The voltage down converter (VDC) is a circuit used to step down external supply voltage to the internal operation voltage of 3.3V. Disconnect the VDC when applying a 3.3V supply voltage to reduce power consumption.

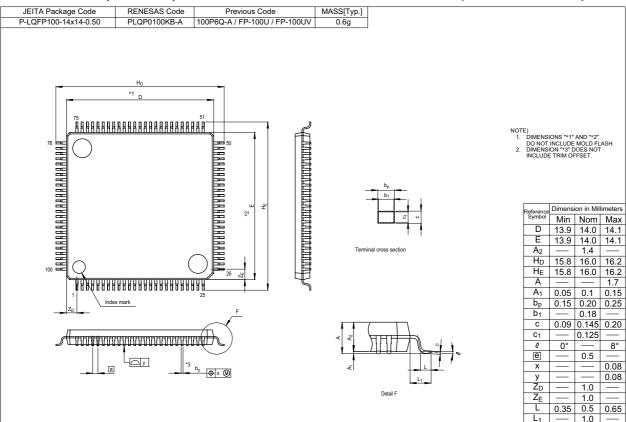
Figure 27.3 shows the procedure for disconnecting the VDC.

Perform these settings immediately after reset, while the CPU clock is divided by 8. Do not set the VDC0 register (001B₁₆) to other values. Furthermore, do not write to the VDC0 register when applying a supply voltage of 3.3V or more.


Figure 27.3 VDC Disconnection Procedure

Package Dimensions


PRQP0100JB-A (100P6S-A)

Plastic 100pin 14 X 20 mm body LQFP

PLQP0100KB-A (100P6Q-A)

Plastic 100pin 14 X 14 mm body LQFP

Register Index

A	C0SLOT0_0 350
AD00 to AD07 230	C0SLOT0_1 350
AD0CON0 228	C0SLOT0_2 351
AD0CON1 229	C0SLOT0_3 351
AD0CON2 230	C0SLOT0_4 352
AD10 to AD17 233	C0SLOT0_5 352
AD1CON0 231	C0SLOT0_6 to C0SLOT0_13 353
AD1CON1 232	C0SLOT0_14 353
AD1CON2 233	C0SLOT0_15 353
AIER 107	C0SLOT1_0 350
D	C0SLOT1_1 350
В	C0SLOT1_2 351
BTSR 257	COSLOT1_3 351
С	C0SLOT1_4 352 C0SLOT1_5 352
	C0SLOT1_6 to C0SLOT1_13 353
COAFS 354	C0SLOT1 14 353
COBPR 337	C0SLOT1_15 353
C0CONR 334	COSLPR 330
COCTLR0 326	C0STR 331
COCTLR1 329	C0TEC 336
COEIMKR 341	C0TSR 336
COEISTR 342	CM0 67 , 113
COGMR0 343	CM1 68
C0GMR1 344 C0GMR2 344	CM2 70
COGMR3 345	CPSRF 71
COGMR4 345	CRCD 243
COIDR 333	CRCIN 243
COLMARO 343	D
COLMAR1 344	
C0LMAR2 344	DA0 to DA1 242
C0LMAR3 345	DACON 242
C0LMAR4 345	DCT0 to DCT3 119
COLMBRO 343	DM0SL to DM3SL 116
C0LMBR1 344	DMA0 to DMA3 120
C0LMBR2 344	DMD0 to DMD1 117, 118
C0LMBR3 345	DRA0 to DRA3 120 DRAMCONT 360
C0LMBR4 345	DRC0 to DRC3 119
COMCTL0 to COMCTL15 346	DS 52
COREC 337	DSA0 to DSA3 120
COSBS 349	DTT 166
COSIMKR 340	21. 100
COSISTR 338	

F	G3MK4 to G3MK7 261
FMR0 395	G3MR 318 G3PO0 to G3PO7 261
G	G3POCR0 to G3POCR7 260
G0BCR0 to G3BCR0 253	G3RB 317
G0BCR1 and G1BCR1 254	G3TB 317
GOBT to G3BT 253	1
G0CMP0 to G0CMP3 295	•
G0CR to G1CR 290	ICTB2 167
G0EMR to G1EMR 292	IDB0 to IDB1 166
G0ERC to G1ERC 293	IEAR 308
G0ETC to G1ETC 292	IECR 308
G0FE to G3FE 262	IERIF 309
G0FS and G1FS 262	IETIF 309
G0IRF to G1IRF 294	IFSR 105, 181
G0MR to G1MR 291	
G0MSK0 to G0MSK1 295	IIOOIR to IIO11IR 109
G0PO0 TO G0PO7 261	Interrupt Control 96, 97 INVC0 164
G0POCR0 to G0POCR7 259	INVC0 164 INVC1 165
G0RB to G1RB 291	IPS 383
GORCRC to G1RCRC 295	
G0RI to G1RI 289	М
G0TB to G1TB 294	MCD 69
	IVICE US
G0TCRC to G1TCRC 295	
G0TM0 to G0TM7 259	O
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258	
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289	O ONSF 138
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258	0
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295	O ONSF 138 P P0 to P15 372
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295	O ONSF 138 P P0 to P15 372 PCR 383
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2MR 307	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2PO0 to G2PO7 261	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2MR 307 G2PO0 to G2POCR7 260	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373 PS2 374
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2MR 307 G2PO0 to G2PO7 261 G2POCR0 to G2POCR7 260 G2RB 306 G2RTP and G3RTP 263 G2TB 306	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373 PS2 374 PS3 374
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G2BCR1 255 G2CR 307 G2PO0 to G2PO7 261 G2POCR0 to G2POCR7 260 G2RB 306 G2RTP and G3RTP 263 G2TB 306 G3BCR1 256	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373 PS2 374 PS3 374 PS5 375
G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2MR 307 G2PO0 to G2PO7 261 G2POCR0 to G2POCR7 260 G2RB 306 G2RTP and G3RTP 263 G2TB 306	O ONSF 138 P P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373 PS2 374 PS3 374 PS3 375 PS6 375

PS9 377
PSC 380
PSL0 378
PSL1 378
PSL2 379
PSL3 379
PUR0 381
PUR1 381
PUR2 381
PUR2 381
PUR3 382
PUR4 382

R

REFCNT **360**RLVL **98**, **126**RMAD0 to RMAD7 **107**ROMCP **393**

TA0 to TA4 136

Т

TA0MR to TA4MR 137, 142, 145, 148, 150
TA1, TA2, TA4, TA11, TA21, TA41 167
TA1MR, TA2MR, TA4MR 169
TABSR 137, 153, 168
TB0 to TB5 152
TB0MR to TB5MR 153, 155, 157, 159
TB2 168
TB2MR 169
TB2SC 167
TBSR 154
TCSPR 71, 139
TRGSR 139, 168

U

U0BRG to U4BRG 175
U0C0 to U4C0 176
U0C1 to U4C1 177
U0MR to U4MR 175
U0RB to U4RB 174
U0SMR to U4SMR 177
U0SMR2 to U4SMR2 178
U0SMR3 to U4SMR3 179
U0SMR4 to U4SMR4 180
U0TB to U4TB 174
UDF 138

W

WCR **58** WDC **112** WDTS **112**

X

X0R to X15R **245** XYC **245**

Υ

Y0R to Y15R 245

Rev.	Date		Description
		Page	Summary
1.01	2002-12	All	Full-fledged revision
		/	Modify the notation system of registers and bits
		23	Reset
			Delete the figure "Device's internal status after a reset is cleared".
		65	System Clock
			Modify the figure "Clock Generation Circuit".
			Add descriptions about the 'PLL clock'.
			Modify the figure "Status Transition".
		88	Interrupt
			Modify the figure "Intelligent I/O Interrupt and CAN Interrupt".
			Add tables 'registers to be used and settings'.
			Change symbols of the bits in the interrupt request register.
			Change symbols of the bits in the interrupt enable register.
		137	Timer A
			Modify the figure "Timer A Configuration".
			Add tables 'registers to be used and settings'.
		154	Timer B
			Modify the figure "Timer B Configuration".
			Add tables 'registers to be used and settings'.
		163	Three-Phase Control Timer Function
			Change the bit name, the 'INV17bit' in the INVC1 register to reserved bit.
		174	Serial I/O
			Modify the figure "UARTi Block Diagram".
			Add the table 'registers to be used and settings' in each mode.
			Add distributions about the 'clock-divided synchronous function (GCI mode)'.
			Add descriptions about the 'bus conflict detect function (IE mode)'.
		264	Intelligent I/O
			Modify the figure "Intelligent I/O Group 0 Block Diagram".
			Modify the figure "Intelligent I/O Group 1 Block Diagram".
			Modify the figure "Intelligent I/O Group 2 Block Diagram".
			Modify the figure "Intelligent I/O Group 3 Block Diagram".
			• Add the table 'registers and settings' associated with each function and mode.
			Add a bit function of 'the BCK0 to BCK1 bit in the G0BCR0 to G3BCR0 register'. Crown 0 and 4.
			-Group 0 and 1
			Add descriptions about the 'HDLC data processing mode'Group 0 and 1 Add distributions about the 'IERus mode'. Group?
			Add distributions about the 'IEBus mode'Group2 Add descriptions about the '8-bit and 16-bit clock synchronous social I/O
			 Add descriptions about the '8-bit and 16-bit clock synchronous serial I/O function'Group3

Rev.	Date		Description
		Page	Summary
		338	A/D Convertor
			Modify the figure "A/D Convertor Block Diagram".
			Add the table 'pin settings'.
		355	D/A Convertor
			Add the table 'pin settings'.
		394	Usage Precaution
			Add descriptions about the 'PLL synthesizer'.
			Add descriptions about the 'Timer A' and 'Timer B'.
			Add descriptions about the 'Low-Voltage Operation'.
1.02	2003-1		Overview
		2-3	• Add -40 to 85°C to 'Operating ambient temperature' row in Table 1.1.1 and 1.1.2.
		3	• Delete 8-bit or 16-bit clock synchronous serial I/O:1 channel (group3) on
			'Peripheral function' row in Table 1.1.2.
			SFR
		33	• Modify 00?0 X0002 to 0000 X0002 on 'value after RESET' column on '017B16'
			row.
			System Clock
		78	Modify 0 to 1 on 'PLC00' column and '10MHz' row in Table 1.8.2.
		78	Modify the PLC02 to PLC0 bits and the PLC05 to PLC04 bits to the PLC0 register
			in the third step in Figure 1.8.13.
		80	Modify 1 to 0 on 'CM00' column and 'BCLK output' row in Table 1.8.5.
			DMAC
		117	Add the note 3 in Figure 1.11.2.
			Timer
		141	Modify TA4 and TA1 to TA0 and TA2 on the TA1TGL and TA1TGH in the top
			figure of Table 1.14.5.
			Modify TA4 and TA1 to TA1 and TA3 on the TA2TGL and TA2TGH in the top
			figure of Table 1.14.5.
			Modify TA4 and TA1 to TA2 and TA4 on the TA3TGL and TA3TGH in the top
			figure of Table 1.14.5.
			Modify TA4 and TA1 to TA3 and TA0 on the TA4TGL and TA4TGH in the top
			figure of Table 1.14.5.
			Serial I/O
		186	• Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in Table 1.18.4.
		192	Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in
		132	Table 1.19.4.
		206	 Modify a function description on 'UiRRM' row in Table 1.20.9.
		200	meany a randian accompliant on Character fow in Table 1.20.0.

Rev.	Date		Description
		Page	Summary
		207	• Modify PD7_2=0 to PD7_0=0 on 'PD7 register' column and 'SRxD2 input' row in
			Table 1.20.11.
			Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in
			Table 1.20.11.
		216	Modify PS3_4=0 to PS3_5=0 on 'PS3 register' column and 'CLK4 input' row in
			Table 1.20.23.
			CAN Module
		226	Modify PSL2_2=0 to PSL2_1=0 on 'PSL1 and PSL2 registers' column and 'P82'
			row in Table 1.21.2.
			Intelligent I/O
		296	Modify Setting value of the GiPO0 register to Setting value of the GiPOk register
			as n and m on the second figure in Figure 1.22.26.
		304	Modify RxD to ISRxD on 'IPOL' row and TxD to ISTxD on 'OPOL' row in Figure
			1.22.33.
		315	Modify IPS=1 to IPS1=1 on IPS registers column and 'P112' row in Table
			1.22.26.
		317	Modify TCRCRC to TCRCE on 'CRC' row in Table 1.22.28.
			Delete SIOiTR and SIOiRR and add SRTiR in note 3 in Table 1.22.28.
		320	Modify IER to OER in note 1 in the second figure of Figure 1.22.42.
		324	Modify SIOiTR to SIO2TR and SIO5RR to SIO2RR in Table 1.22.30 and 1.22.36.
		334	Modify GiCR to G3CR in Table 1.22.41.
		004	DRAMC
		364	Modify SRDF to SREF in note 3 in Figure 1.27.1. Madify IOUTO45 to OUTO45 as (BDO) of the size Figure 4.20.44.
		385	Modify IOUTC10 to OUTC10 on 'PSC_3' row in Figure 1.28.14. Modify IO to D5 to D4 in page 4 in Table 4.28.47.
		388	Modify P0 to P5 to P1 in note 1 in Table 1.28.17. Programable I/O Port
		390	Modify INPC1 to INPC11 on 'PS1 register' column and 'Bit 4' row in Table 1.28.4.
		391	Modify INPC to INPC 1 on PS1 register column and 'Bit 0' row in table 1.28.5.
		393	Modify INFC0 to INFC02 of F32 register coldifination bit 0 flow in table 1.28.3. Modify ISCLK input to ISCLK0 input on 'Bit 1' row in table 1.28.12.
		333	Usage Precaution
		394	Modify PM0 to PM00 in "HOLD Signal"
		334	Modify all SP to ISP in (1) SP Setting of "Interrupts".
		398	Modify all TAi to TBi in 1. Timer Mode and Event Counter Mode of "Timer B".
		400	Modify the CAN module to the microcomputer in "Resetting CNVSS Pin with H".
		.55	Delete a discription of 'Difference between Flash Memory version and Masked
			ROM'
			Electric Charactistics
		429	Modify IOH=5mA to IOL=5mA on 'VOL' row and 'Mesurement Condition' column
			in Table 1.31.3.
			•

Rev.	Date		Description
	24.0	Page	Summary
1.10	2004-3	All Pages	Chapter numbers, section numbers, etc., added; Table and Figure numbers
			modified; Chapter sequence modified; Word Phrasing in Revision History
			changed
			Overview
		2, 3	• Tables 1.1 and 1.2 M32C/83 Group Performance
			Shortest Instruction Execution Time modified: 31.3ns(f(BCLK)=30MHz
			changed to 31.3ns(f(BCLK)=32MHz, 50ns(f(BCLK)=20MHz added;
			Performance details of Multifunction Timer, Intelligent I/O, Clock Generating
			Circuit, and Electrical Characteristics revised;
			Oscillator Stop Detect Function added;
			32MHz added to Supply Voltage and Power Consumption
		,	Note 3 added • Figure 1.1 M32C/83 Block Diagram modified
		4 5	• Table 1.3 M32C/83 Group Product deleted
		9, 13	• Tables 1.3 M32C/03 Gloup Floduct deleted • Tables 1.4 and 1.5 Pin Characteristics VREF pin changed from "analog pin"
		9, 13	to "control pin"
		15 to 18	• Table 1.6 Pin Description SDA0 to SDA4 changed from "output" to "input";
			Descriptions of A/D-related pin functions revised
			Centeral Processing Unit
		20	• Figure 2.1 CPU Register modified
			Memory
		23	Figure 3.1 Memory Map Product deleted; Diagram modified
			SFR
		24 to 45	Value after reset and lisiting sequence modified
			"? : Indetermination" changed to "X : Indeterminate"
			Notation "Users cannot use any symbols with *" deleted
			• Register names, symbols, and Values after RESET of addresses 001F16 to
			002516, 003016 to 003516, 005516 to 005616, 01AC16, and 01AE16 to 01BF16
			deleted
			Notations added to PM0 and TCSPR registers Notations added to PM0 and TCSPR registers
			Value after reset in the RLVL register modified Reset
		46	• Figure 5.1 Reset Circuit modified
		47	Figure 5.2 Reset Sequence Diagram modified; Note 1 added
		48	• 5.3 Watchdog Timer Reset added
		49	Figure 5.3 CPU Register after Reset modified
			Processor Mode
		50	6.2.2 Applying Vcc to CNVss Pin Contents added

Rev.	Date		Description
		Page	Summary
			Bus
		55	• 7.1.3.2 Multiplexed Bus revised
		60	• 7.2.4 Bus Timing revised
		64	• 7.6 RDY Signal revised
		65	Figure 7.7 RD Signal Output Extended by RDY Signal modified
	·		Clock Generating Circuit
			Chapter name changed from "System Clock " to "Clock Generating Circuit"
		67	Table 8.1 Clock Generation Circuit Specifications
			Main clock clock frequency modified; "Ceramic oscillator" changed to "Ceramic
			resonator"; Reference point added to PLL Frequency Synthesizer
		68	Figure 8.1 Clock Generation Circuit revised
		69	• Figure 8.2 CM0 Register Bit 3 function changed from "Nothing is assigned" to
			"Reserved Bit"
		72	• Figure 8.5 CM2 Register CM21 bit function modified; Note 5 revised
		75	• Figure 8.8 PLC1 Register Note 3 revised; Note 4 added
		77	• 8.1.2 Sub Clock revised
		79	Figure 8.11 Switching Procedure form On-chip Oscillator Clock to Main
			Clock modified
			• 8.1.4 PLL Clock revised
			• Table 8.2 Bit Settings to Use PLL Clock as CPU Clock Source Setting added
			for when f(XIN) is 8MHz
		80	Figure 8.13 Procedure to Use PLL Clock as CPU Clock Source modified
		81	8.2 CPU Clock and BCLK revised
		84	• 8.5.2.2 Before Entering Wait Mode revised
		85	• 8.5.2.5 Entering Wait Mode added
		86	• 8.5.3 Stop Mode revised
			• 8.5.3.1 Before Entering Stop Mode revised
			• 8.5.3.3 Exiting Stop Mode revised
		87	• 8.5.3.4 Entering Stop Mode added
		88	Figure 8.15 Status Transition modified
			Interrupts
		93	Table 10.1 Fixed Vector Table Point of reference changed
		95	Table 10.2 Relocatable Vector Tables Reserved Space added
		99	• Figure 10.5 RLVL Register Value after reset changed; Note 3 revised; Note 4
			added
			• 10.6.2.3 RLVL2 to RLVL0 Bits revised
		103	• Figure 10.8 Interrupt Priority "Oscillation Stop Detect" added
		104	Figure 10.9 Interrupt Priority Level Select Circuit modified
		106	• 10.8 NMI Interrupt revised

Rev.	Date		Description
		Page	Summary
		108	• "10.11 Intelligent I/O and CAN Interrupt" changed to "10.11 Intelligent I/O
			Interrupt and CAN Interrupt"
			Precautions pertaining to Interrupts are compiled into one chapter, "27.
			Precaution"
			Watchdog Timer
		111	Contents revised
			DMAC
		115	• 12. DMAC revised
		114	• Table 12.1 DMAC Specifications CAN interrupt added to DNA Request
			Factors; Note 1 revised
			• Precautions pertaining to DMAC are compiled into one chapter, "27. Precaution"
			DMAC II
		125	Table 13.1 DMAC II Specifications Note 2 added
		126	• Figure 13.1 RLVL Register Values after reset modified; Note 3 revised; Note 4
			added
		129	• 13.3 Transfer Data Contents added
		130	• 13.4.2 Burst Transfer revised
			• 13.4.4 Chain Transfer revised
		132	• 13.5 Execution Time revised
			Timer
		135	• 14.1 Timer A Contents added
		140	• Table 14.1 Pin Settings for Output from TAio∪T Pin (i= 0 to 4) modified
		149	• 14.1.4 Pulse Width Modulation Mode Settings changed for 16-bit PWM and
			8-bit PWM
		152	• 14.2 Timer B Contents added
		159	• Figure 14.22 TB0MR to TB5MR Registers (Pulse Period/ Pulse Width
			Measurement Mode) Values after reset modified
			Three-Phase Motor Control Timer Function
		161	Table 15.1 Three-Phase Motor Control Timer Functions Specification modified
		162	• Figure 15.1 Three-Phase Motor Control Function Block Diagram modified
		163	• Figure 15.2 INVC0 Register modified
		164	• Figure 15.3 INVC1 Register modified
		166	• Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers
			and TB2SC Register Notes 2 and 3 added to ICTB2 register; Note 7 added to
			TAi and TAi1 registers
		168	• Figure 15.7 TAiMR Register (i=1, 2, 4) MR1 bit function modified

Rev.	Date	1	Description
		Page	Summary
		169	Figure 15.8 Triangular Wave Modulation Operation modified
		170	• Figure 15.9 Sawtooth Wave Modulation Operation modified
			Serial I/O
		173	• Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers Note 3
			added to U0RB to U4RB registers
		175	• Figure 16.4 UiC0 Register Note 3 added to UFORM bit
		176	• Figure 16.5 UiC1 Register Note 2 added to UiLCH bit; Note 1 added to
			SCLKSTPB (UiERE) bit
		181	• Table 16.1 Clock Synchrnous Serial I/O Mode Specifications Explanation of
			CLK Polarity in Selectable Functions revised
		182 to 219	• Tables 16.2, 16.7, 16.12, 16.19, 16.24, and 16.34 Registers to be Used and
			Settings Points of reference deleted
		183	• Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1) revised
		184	Figure 16.10 Transmit and Receive Operation modified
		188	• Table 16.7 Registers to be Used and Settings in UART Mode Function of the
			UiERE bit in the UiC1 register modified
		189	Table 16.8 Pin Settings in UART (1) revised
		190	Figure 16.14 Transmit Operation modified
		192	Figure 16.17 Serial Data Logic Inverse modified
		195	• Table 16.12 Registers to be Used and Settings (I ² C Mode) Setting values for
			master and slave indicated separately
		196	• Table 16.13 I ² C Mode Functions "P61, P65, P72, P90, P75 Pin Functions"
			changed to "P61, P65, P72, P90, P95 Pin Functions"
		197, 198	• Tables 16.14 to 16.16 Pin Settings in I ² C Mode modified
		200	• 16.3.4 Transfer Clock revised
		203	• Table 16.19 Registers to be Used and Settings in Special Mode 2 Functions
			of the UFORM bit in the UiC0 register and the UiRRM bit in the UiC1 register
			modified
		204	• Table 16.20 Pin Settings in Special Mode 2 (1) revised
			• Table 16.21 Pin Settings in Special Mode 2 (2) revised
			• Table 16.22 Pin Settings in Special Mode 2 (3) revised
		208	• Table 16.23 GCI Mode Specifications Explanations of Transmit/Receive Start
			Conditions revised
		210	Table 16.25 Pin Settings in GCI Mode (1) revised
			Table 16.26 Pin Settings in GCI Mode (2) revised
			Table 16.27 Pin Settings in GCI Mode (3) revised
		213	Table 16.31 Pin Settings in IE Mode (2) revised
			Table 16.32 Pin Settings in IE Mode (3) revised
		219	Figure 16.29 SIM Interface Operation modified

Rev.	Date		Description
i tov.	Date	Page	Summary
		221	Figure 16.32 SIM Interface Format modified
			A/D Converter
			Sequence of content modified
		223	• Table 17.1 A/D Converter Specifications Explanaition of A/D Conversion
			Start Conditions revised; ϕ A/D frequency modified
		226, 227	• Figure 17.2 AD0CON0 Register, Figure 17.3 AD0CON1 Register
			frequency modified
		229, 230	• Figure 17.5 AD1CON0 Register, Figure 17.6 AD1CON1 Register ϕ A/D
			frequency modified
		232	Table 17.4 One-shot Mode Specifications Explanation of Start Condition
			revised
		235	Table 17.9 Trigger Select Function Settings Table modified; Note 2 added
		237	• Figure 17.9 Analog Input Pin and External Sensor Equivalent Circuit
			Capacitance of the capacitor modified
		238 to 247	·
			Calculation, XY Conversion
			Intelligent I/O
		248	• Figure 21.2 Intelligent I/O Group 1 Block Diagram modified
		251	• Figure 21.5 G0BT to G3BT Registers and G0BCR0 to G3BCR0 Registers
			Note 2 added to G0BT to G3BT registers, Note 3 deleted from G0BCR0 to
			G3BCR0 registers
		252	• Table 21.2 Base Timer Specifications Explanation of Counter increment/
			decrement mode in Selectable Function modified
		263	• Tables 21.3, 21.6, 21.8, 21.17, 21.23, 21.29, 21.31, 21.37, and 21,42
			Associated Register Settings Point of reference deleted
		266	• Figure 21.18 Counter Increment Mode (Group 0 and 1) modified
		265	• Figure 21.19 Counter Increment/Decrement Mode (Group 0 and 1) modified
		266	• Figure 21.20 Base Timer Operation in Two-Phase Pulse Signal Processing
			Mode Note 1 revised
		267	• 21.2 Time Measurement Function (Group 0 and 1) Contents added
		270	• Figure 21.22 Time Measurement Function (2) modified
		271	• Figure 21.23 Prescaler Function and Gate Function Diagram modified; Note
			2 of Gate Function deleted
		272	Table 21.7 Pin Settings for Waveform Generation Function modified
		273	• Table 21.8 Waveform Generation Function Associated Register Settings
			Note 1 added
		274	• 21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3) revised
			• Table 21.9 Single-Phase Waveform Output Mode Specifications revised
		275	• Figure 21.24 Single-Phase Waveform Output Mode modified

Rev.	Date		Description
		Page	Summary
		276	Table 21.10 Phase-Delayed Waveform Output Mode Specifications revised
		277	Figure 21.25 Phase-Delayed Waveform Output Mode modified
		278	• 21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode revised
			Table 21.11 SR Waveform Output Mode Specifications revised
		280	Figure 21.26 SR Waveform Output Mode modified
		281	• 21.3.4 Bit-Modulation PWM Output Mode revised
			Table 21.12 Bit Modulation PWM Output Mode revised
			Figure 21.27 Bit Modulation PWM Mode Pulse numbering added
		283	• 21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3) revised
			Table 21.14 RTP Output Mode Specifications Note 1 added
		284	Figure 21.29 Real-Time Port Output Mode modified
		285	• 21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3) revised
			Table 21.15 Parallel RTP Output Mode Note 1 added
		286	Figure 21.31 Parallel RTP Output Mode modified
		290	• Figure 21.35 G0EMR to G1EMR Registers and G0ETC to G1ETC Registers
			Note 1 added
		291	Figure 21.36 G0ERC to G1ERC Registers Note 1 added
		292	• Figure 21.37 G0IRF to G1IRF Registers and G0TB to G1TB Registers Notes
			1 and 2 in G0IRF to G1IRF registers revised; Note 1 added to G0TB to G1TB registers
		293	• Figure 21. 38 G0CMP0 to G0CMP3 Registers, G1CMP0 to G1CMP3 Registers, G0MSK0 to G0MSK1 Registers, G1MSK0 to G1MSK1 Registers, G0TCRC to G1TCRC Registers, and G0RCRC to G1RCRC Registers Note 1 revised and Note 2 added to G0TCRC to G1TCRC registers; Note 3 in G0RCRC to G1RCRC registers revised
		294	Table 21.16 Clock Synchronous Serial I/O Mode Specifications (Group 0 and 1) Explanation of transfer clock revised
		297	Table 21.22 UART Mode Specifications (Group 0 and 1) Explanation of transfer clock and Note 2 revised
		301	Table 21.28 HDLC Processing Mode Specifications (Group 0 and 1) Explanation of transfer clock revised
		308	Table 21.30 Variable Clock Synchronous Serial I/O Mode Specifications (Group 2) Explanation of transfer clock revised
		312	Table 21.36 IE Bus Mode Specification Explanation of transfer clock revised
		318	Table 21.41 Clock Synchronous Serial I/O Mode (Group 3) Explanation of transfer clock revised
			CAN
		322	Bit symbols of each register are now capitalized (e.g. Reset0 is changed to RESET0)

Rev.	Date		Description
		Page	Summary
		325	• 22.1.1.3 BASICCAN Bit revised
		344	• 22.1.16 CANi Message Slotj Control Register (CiMCTLj Register) (i=0, 1;
			j=0 to 15) Funtion of the INVALDATA/TRMACTIVE bit when set to "1" changed
			to "Transmits"; Note 4 in REMACTIVE deleted; RW modified to RO
			Table 22.4 C0MCTLi Register (i=0 to 15) Setting and Transmit/Receive
			Mode Hyphens (-) changed to "0"
		345	• 22.1.16.4 REMACTIVE Bit revised
		346	• 22.1.16.5 RSPLOCK Bit revised
			Programmable I/O Port
		364	• 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) revised
		365	• 24.5 Function Select Register C (PSC Register) revised
			• 24.7 Port Control Register (PCR Register) revised
		367	Figure 24.2 Programmable I/O Ports (2) modified
		369	• Figure 24.5 PD0 to PD15 Registers Note 4 added
		371	• Figure 24.7 PS0 Register and PS1 Register PS0 register revised
		372	• Figure 24.8 PS2 Register and PS3 Register PS3 register revised
		376	• Figure 24.12 PSL0 Register and PSL1 Register Note 1 added to PSL1
			register
		377	• Figure 24.13 PSL2 Register and PSL3 Register PSL3 register revised
		378	Figure 24.14 PSC Register revised
		379	• Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register Note 1 revised
		383	Table 24.3 Port P6 Peripheral Function Output Control Bits 3 and 7 modified
			• Table 24.4 Port P7 Peripheral Function Output Control Note 1 added to
			PSC register; Bit 0 modified
		384	• Table 24.6 Port P9 Peripheral Function Output Control Bit 2 and 6 modified
		- 504	Flash Memory Version
		387	• Table 25.1 Flash Memory Version Specifications Supply voltage modified
		389	• 25.2.1 ROM Code Protect Function revised
			• 25.2.2 ID Code Check Function revised
		393	• 25.3.1.3 FMR02 Bit revised
		395	• 25.3.3 Data Protect Function revised
		397	• 25.3.5.3 Clear status Register revised
		405	• 25.3.7.8 Rewriting the User ROM Area
		406	• 25.4.2 ID Code Check Function revised
		412	• 25.5.2 ROM Code Protect Function revised

Rev.	Date		Description
		Page	Summary
			Electrical Characteristics
		413	• Table 26.1 Absolute Maximum Ratings VREF, XIN P70 and P71 deleted and
			Xout added to Output Voltage
		414	• Table 26.2 Recommended Operation Conditions (Vcc= 3.0V to 5.5V at
			Topr= -20 to 85°C) Maximum value of 50MHz added to f(Xcin) Sub Clock
			Oscillation Frequency
		416	• Table 26.4 A/D Conversion Characteristics
		416, 434	• Tables 26.6 Flash Memory Version Electrical Characteristics added
			Precautions
		450 to 472	Overall structure modified
1.20	2004-6	All pages	Words standardized: On-chip oscillator, A/D converter and D/A converter
			Interrupts
		111	• Figure 10.15 IIO0IE to IIO11IE Registers Note 2 added
			Watchdog Timer
		112	• Figure 11.1 Watchdog Timer Block Diagram modified
			Electrical Characteristics
		432	• Figure 26.8 Vcc=5V Timing Diagram (7) Figure modified
		449	• Figure 26.16 Vcc=3.3V Timing Diagram (7) Figure modified
1.31	2006-1	All Pages	M32C/83T version added; Package code changed: 144P6Q-A to PLQP0144KA-
			A, 100P6Q-A to PLQP0100KB-A, 100P6S-A to PRQP0100JB-A
		All Pages	
			D/A Converter, XY Conversion, Low -power consumption
			Overview
		1	• 1.1 Applications Automobile added
		2, 3	• Tables 1.1 and 1.2 M32C/83 Group (M32C/83, M32C/83T) Performance
		5	Table 1.3 M32C/83 Group (1) (M32C/83) Information updated
			Table 1.3 M32C/83 Group (2) (M32C/83T) M32C/83T product information
			added
			• Figure 1.2 Product Numbering System Classification modified
			• Table 1.4 Pin Characteristics for 144-Pin Package Note 1 added
			• Table 1.5 Pin Characteristics for 100-Pin Package Note 1 added
			Table 1.6 Pin Description modified, notes added
		04	Memory
		21	• Figure 3.1 Memory Map modified; Note 2 modified, notes 3 and 4 added
		22 to 23	Special Function Registers (SFR) • Note 2 added
		22 10 23	Reset
		45	• Figure 5.2 Reset Sequence Note 2 added
		40	- I iguite 3.2 Neset sequence indie 2 added

Rev.	Date		Description
		Page	Summary
			Processor Mode
		48	Chapter Note added
		49	• Figure 6.1 PM0 Register Note 9 added
		50	• Figure 6.2 PM1 Register Note 6 added
			Bus
		52	Chapter note added
			Figure 7.1 DS Register Note 2 added
		54	Table 7.2 Processor Mode and Port Function Note 3 modified
		58	Table 7.3 WCR Register Note 3 added
			Clock Generation Circuit
		67	Figure 8.2 CM0 Register Function of the CM07 bit modified
		68	Figure 8.3 CM1 Register Note mark position changed
		71	• Figure 8.6 TCSPR and CPSRF Register Note 2 added for TCSPR register
		74	Figure 8.9 Main Clock Circuit Connection modified
		75	Figure 8.10 Sub Clock Connection Circuit modified
		76	• 8.1.3.2 How to Use Oscillation Stop Detect Function partially modified
		78	Figure 8.12 External Circuit with PLL Frequency Synthesizer modified
		80	Table 8.5 BLCK/CLKOUT Pin in Memory Expansion Mode and
			Microprocessor Mode Note 4 added
		81	• 8.5.1 Normal Operation Mode Description partially modified
		82	• 8.5.2 Wait Mode modified
		83	Table 8.6 Pin States in Wait Mode Note 2 added
		84-85	• 8.5.3 Stop Mode modified
		85	Table 8.8 Pin Status in Stop Mode Note 2 added
		86	• Figure 8.14 Status Transition in Wait Mode and Stop Mode The mode
			between stop mode and low-speed mode, low-power consumption mode
			changed; Note 2 deleted
			Interrupts
		97	Figure 10.4 Interrupt Control Register (2) Note mark position changed
		98	• Figure 10.5 RLVL Register Note 3 modified
		109	Figure 10.14 IIO0IR to IIO11IR Registers partially modified
		110	Figure 10.15 IIO0IE to IIO11IE Registers partially modified
			Watchdog Timer
		113	• Figure 11.3 CM0 Register Function of the CM07 bit modified
			DMAC
		115	• Table 12.1 DMAC Specifications Specification of DMA Transfer Cycles
			partially modified
		119	• Figure 12.4 DCT0 to DCT3 Registers Notes 3 and 4 modified; DRC0 to DRC3
			Registers Notes 2 and 4 modified

Rev.	Date		Description
		Page	Summary
		120	• Figure 12.5 DMA0 to DMA Registers Notes 3 and 4 modified; DSA0 to DSA3
			Registers Notes 3 and 4 modified
			DMACII
		126	• Figure 13.1 RLVL Register Note 3 modified
		140	• 13.4.2 Burst Transfer partially added
			Timer
		139	Figure 14.7 TCSPR Register Note 2 added
		141-156	Table 14.4 Specification in Event Counter Mode (when not processing two -
			phase pulse signal) to Table 14.7 Specifications in Pulse Width Modulation
			Mode; Table 14.9 Specifiations in Timer Mode and Table 14.10
			Specifications in Event Counter Mode Condition for "Write to Timer" modified
			Serial I/O
		173	 Figure 16.1 UARTi Block Diagram modified between transmit control circuit and CTSi/RTSi pins
		175	• Figure 16.3 U0BRG to U4BRG Registers Note 3 added
		176	• Figure 16.4 U0C0 to U4C0 Registers Note 4 added
		177	Figure 16.5 U0C1 to U4C1 Register and U0SMR to U4SMR Registers
			RI bit revised
		191	Figure 16.14 Transmit Operation Timing modified
		192	• 16.2.1 Bit Rate added
		204	• Table 16.19 Special Mode 2 Specifications Transmit Start Condition modified;
			Specification for Error Detection partially added
		221	Figure 16.29 SIM Interface Operation Timing modified
			A/D Converter
		225	Table 17.1 A/D Converter Specifications Note 3 added
			D/A Converter
		242	Figure 18.3 D/A Converter Equivalent Circuit modified
			Intelligent I/O
		250	• Figure 21.2 Intelligent I/O Group 1 Block Diagram modified
		274, 275	 Table 21.7 Pin Settings for Waveform Generation Function PSL3 register added
		296	• Table 21.16 Clock Synchronous Serial I/O Mode Specifications (Groups 0
			and 1) Specification for interrupt request modified
		297	Table 21.19 Pin Settings (2) Bit and Setting modified for the PD8 register
		299	• Table 21.22 UART Mode Specifications Specification for interrupt request modified
		304	Table 21.28 HDLC Processing Mode Specifications Specification for interrupt request modified

Rev.	Date		Description
		Page	Summary
		314	Table 21.36 IEBus Mode Specifications Specification for interrupt request
			modified
		315	• Table 21.37 Registers to be Used and Settings Description for the IPOL bit in
			the G2CR register is modified
			Programmable I/O Ports
		369	Figure 24.2 Programmable I/O Ports (2) Figure modified
		384	• Table 24.1 Unassigned Pin Settings in Single-chip Mode Notes 2, 3, 4, and 6
			added
			• Table 24.2 Unassigned Pin Settings in Memory Expansion Mode and
			Microprocessor Mode Notes 2, 3, 4, and 6 added
		385	Figure 24.19 Unassigned Pin Handling Note 2 added
		387	Table 24.7 Port P10 Peripheral Function Output Control Title modified
			Flash Memory Version
		393	Figure 25.2 ROMCP Register Note 4 added
			Electrical Characteristics
		453-461	26.2 Electrical Characteristics (M32C/83T) Newly added
		418	• Table 26.3 Electrical Characteristics Minimum standard values for VOH
			revised, values for ICC when f(XIN)=32 MHz, square wave, no division revised,
			one condition of "f(XIN)=32 MHz, square wave, no division" deleted
		426	• Table 26.23 Memory Expansion Mode and Microprocessor Mode Symbols
			for Row Address Output Delay Time and for Row Address Output Hold Time
			(BCLK standard) modified
		434	• Figure 26.8 Vcc=5 V Timing Diagram (7) Timing for NMI input added
		436	• Table 26.24 Electrical Characteristics Minimum standard value for Voн
			revised
		444	Table 26.44 Memory Expansion Mode and Microprocessor Mode Symbols
			for Row Address Output Delay Time and for Row Address Output Hold Time
			(BCLK standard) modified
		451	• Figure 26.8 Vcc=3.3 V Timing Diagram (7) Timing for NMI input added
		453-461	26.2 Electrical Characteristics (M32C/83T) Newly added
			Precautions
		476	• 27.4.3 Wait Mode modified
			• 27.4.4 Stop Mode modified
		472	27.8.2.3 Timer A (One-shot Timer Mode) Information (g) newly added

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/83 Group (M32C/83, M32C/83T)

Publication Data: Rev.1.01 Dec. 2002

Rev.1.31 Jan. 31, 2006

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

